355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Норман Х. Хоровиц » Поиски жизни в Солнечной системе » Текст книги (страница 6)
Поиски жизни в Солнечной системе
  • Текст добавлен: 7 октября 2016, 13:08

Текст книги "Поиски жизни в Солнечной системе"


Автор книги: Норман Х. Хоровиц



сообщить о нарушении

Текущая страница: 6 (всего у книги 12 страниц)

Образцы грунта, доставленные с Луны экипажами кораблей "Аполлон", изучались более тщательно и разносторонне, большим числом специалистов разного профиля и при более высоком уровне организации научных исследований, чем какой-либо другой материал в прошлом. Для выяснения наличия в образцах живых организмов было проведено множество тестов, и все они дали отрицательные результаты. Тем же завершились попытки обнаружить в привезенных образцах грунта микроископаемые (микрофоссилии). По данным химического анализа, концентрация углерода в лунном грунте составляла 100–200 частей на миллион, причем главным образом он был обнаружен в составе неорганических соединений (например, карбидов). Есть основания полагать, что наличие углерода на лунной поверхности обусловлено действием "солнечного ветра" – потока высокоэнергетических заряженных частиц, испускаемых солнечной короной. Некоторые простые органические соединения были обнаружены в лунных образцах в ничтожно малых (следовых) количествах (порядка нескольких частей на миллион). Разумеется, предполагалось, что на Луне может присутствовать органическое вещество, занесенное метеоритами, но нельзя с уверенностью сказать, имеют ли обнаруженные "следы" органики метеоритное происхождение или они появились в результате загрязнения, вызванного ракетными выхлопами либо прикосновением рук человека уже на Земле. Поскольку невозможно с достаточной достоверностью говорить о наличии органического вещества метеоритов, можно предполагать, что органические соединения на поверхности Луны разрушены. В любом случае нет сомнений, что Луна безжизненна и, вероятно, всегда была такой.

За исключением Титана (спутника Сатурна) и, возможно, Тритона (спутника Нептуна), все спутники планет в Солнечной системе похожи на Луну в том отношении, что у них нет сколько-нибудь плотной атмосферы. Представляют интерес Ганимед и Каллисто – два спутника Юпитера, по размерам близкие к планете Меркурий, так как их низкая плотность (см. табл. 4) заставляет думать о наличии на них большого количества воды. Современные модели предполагают, что оба спутника, возможно, имеют под поверхностью океаны, а какая-то часть воды на поверхности находится в виде твердого как камень льда, при температуре -10 °C.

Теперь обратимся к объектам Солнечной системы, массы которых (а в ряде случаев и низкие температуры) достаточны, чтобы удержать атмосферу.

Таблица 4. Планеты и основные спутники Солнечной системы

Венера

Венера – ближайшая к Земле планета Солнечной системы, которая также наиболее сходна с ней по массе, размерам и плотности (табл. 4). Еще в XVIII в. было установлено, что она имеет атмосферу. Однако сплошной, сильно отражающий солнечный свет облачный покров Венеры делает ее поверхность невидимой с Земли. Этим же объясняется большая яркость Венеры (это третий по яркости объект на нашем небе), которая издавна привлекала к ней внимание наблюдателей (фото 2). Первоначально предполагалось, что облака на Венере, как и на Земле, состоят из водяных паров и, следовательно, на поверхности планеты имеется изобилие воды. Некоторые ученые представляли Венеру как планету, покрытую громадным болотом, над которым постоянно поднимаются испарения, другие предполагали, что всю ее поверхность занимает гигантский океан. В любом случае казалось, что там великолепные условия для существования жизни.

Фото 2. Изображение Венеры в УФ-диапазоне спектра, полученное космическим аппаратом «Маринер-10», позволяет выявить структуру облачного слоя. Голубой цвет создан искусственно. (НАСА и Лаборатория реактивного движения.)

Спектроскопические результаты, полученные в 1930-х годах, показали наличие в атмосфере Венеры значительного количества диоксида углерода и полное отсутствие паров воды. Однако возможность обнаружения водяных паров выше верхней границы облачного покрова выглядела сомнительной даже при наличии океана на поверхности; поэтому представление о влажной Венере не было отброшено. Высказывались и другие предположения о характере облачного покрова: от неорганической пыли до углеводородного смога. Только в 1973 г. несколько исследователей независимо друг от друга пришли к выводу, что свойства облаков Венеры лучше всего объясняются, если предположить, что они состоят из мельчайших капель концентрированной (70–80 %) серной кислоты; теперь это представление общепринято. Тем временем исследования с применением современных радио– астрономических методов и с помощью автоматических межпланетных космических аппаратов показали, что средняя температура поверхности Венеры достигает примерно 45 °C, атмосфера под облачным покровом почти целиком (на 96 %) состоит из углекислого газа, а давление у поверхности составляет 90 атм. При такой температуре на поверхности Венеры жидкая вода существовать не может.

Высокая температура Венеры обусловлена так называемым парниковым эффектом: солнечный свет, достигая поверхности, нагревает грунт и вновь излучается в виде тепла, но из-за непрозрачности атмосферы для инфракрасного (теплового) излучения тепло не может рассеиваться в космическое пространство. По некоторым соображениям, Венера могла когда-то иметь океан, который в дальнейшем испарился при разогревании планеты. Под действием солнечного ультрафиолета водяные пары в основном разрушились, водород улетучился, а оставшийся кислород окислил углерод и серу на поверхности до диоксида углерода (углекислого газа) и оксидов серы. По-видимому, то же самое случилось бы и на Земле, если бы она находилась так же близко к Солнцу, как Венера. Тот же сценарий позволяет объяснить, почему диоксид углерода на Венере находится в атмосфере, тогда как на Земле он существует главным образом в виде карбонатов, составляющих горные породы. На нашей планете диоксид углерода растворяется в океанах, осаждаясь затем в виде карбонатных минералов кальцита (известняка) и доломита; на Венере же, где океанов нет, он остается в атмосфере. Подсчитано, что если бы весь углерод на поверхности Земли и в ее коре превратился в диоксид углерода, масса этого газа оказалась бы близкой к той, которая обнаружена на Венере.

Хотя в далеком прошлом условия на Венере могли быть более благоприятными для жизни, чем сейчас, совершенно очевидно, что существование жизни там невозможно уже в течение длительного времени.


Планеты-гиганты

Юпитер, Сатурн, Уран и Нептун, часто называемые планетами-гигантами, намного больше Земли (см. табл. 4). Среди этих гигантов Юпитер и Сатурн являются супергигантами: на них приходится свыше 90 % общей массы планет Солнечной системы. Низкая плотность этих четырех небесных тел означает, что они состоят главным образом из газов и льда, а поскольку водород и гелий не в состоянии преодолеть действие их гравитационных полей, предполагается, что по своему элементному составу они должны быть больше похожи на Солнце (см. табл. 3), чем на планеты земной группы. Наблюдения Юпитера и Сатурна, проведенные с Земли и с космических аппаратов «Пионер» и «Вояджер», показали, что обе планеты действительно состоят преимущественно из водорода и гелия. Вследствие большой удаленности Уран и Нептун изучены слабо, но водород и водород– содержащий газ метан (СН 3) были обнаружены в их атмосферах с помощью спектрометрических наблюдений с Земли. Предполагается, что в их атмосферах может присутствовать и гелий, но пока его не удается обнаружить из-за отсутствия спектрометров нужной чувствительности. По этой причине сведения, изложенные в этой главе, относятся в основном к Юпитеру и Сатурну.

Многое из того, что известно о структуре планет-гигантов, основано на теоретических моделях, которые благодаря простому составу планет можно рассчитать достаточно точно. Результаты, полученные на основе моделей, говорят о том, что в центре как Юпитера, так и Сатурна находится твердое ядро (более крупное, чем земное), давление в котором достигает миллионов атмосфер, а температура 12000– 2500 °C. Такие высокие значения температуры соответствуют результатам наблюдений: они свидетельствуют, что обе планеты излучают примерно вдвое больше тепла, чем получают от Солнца. Тепло поступает к поверхности планет из внутренних областей. Поэтому температура уменьшается с удалением от ядра. У верхней границы облачного покрова, видимой "поверхности" планеты, температуры составляют -150 и -18 °C соответственно на Юпитере и Сатурне. Окружающая центральное ядро зона представляет собой толстый слой, состоящий преимущественно из металлического водорода – особой электропроводящей формы, которая образуется при очень высоких давлениях. Далее следует слой молекулярного водорода в смеси с гелием и небольшими количествами других газов. Около верхней границы водородно– гелиевой оболочки лежат слои облаков, состав которых определяется локальными значениями температуры и давления. Облака, состоящие из кристаллов водного льда, а местами, возможно, из капелек жидкой воды, образуются там, где температура приближается к 0 С. Несколько выше находятся облака гидросульфида аммония, а над ними (при температурах около -115 С) – облака, состоящие из аммиачного льда.

Структура описанной модели предполагает, что по составу Юпитер и Сатурн близки к Солнцу: содержание водорода как по объему, так и по молекулярному составу атмосферы достигает 90 % и выше. По всей видимости, в атмосферах такого типа углерод, кислород и азот присутствуют почти исключительно в составе метана, воды и аммиака соответственно. Эти газы, как и водород, были обнаружены на Юпитере, причем все, за исключением воды, в количествах, характерных для атмосфер типа солнечной. При изучении спектров атмосфер вода не обнаруживается в достаточных концентрациях – возможно, потому, что ее пары конденсируются в сравнительно глубоких атмосферных слоях. Кроме этих газов в атмосфере Юпитера зарегистрированы оксид углерода и следы простых органических молекул: этана (С 2Н 6), ацетилена (С 2Н 2) и цианистого водорода (HCN). Причина яркой окраски облаков Юпитера – красной, желтой, голубой, коричневой – пока до конца не выяснена, но как теоретические, так и лабораторные исследования приводят к заключению, что за это ответственны сера, ее соединения и, возможно, красный фосфор.

Наличие в верхних слоях атмосферы Юпитера паров воды и простых органических соединений, а также вероятность образования облаков, состоящих из капелек жидкой воды в более глубоких слоях, позволяет говорить о возможности химической эволюции на планете. На первый взгляд кажется, что в восстановительной атмосфере Юпитера следует ожидать присутствия сложных органических соединений, подобных тем, которые образуются в экспериментах, моделирующих добиологические условия на примитивной Земле (см. гл. 3), а возможно, даже характерных для этой планеты форм жизни. Действительно, еще до того, как в атмосфере Юпитера были обнаружены пары воды и органические молекулы, Карл Саган высказал предположение, что "из всех планет Солнечной системы Юпитер априори представляет наибольший интерес с точки зрения биологии".

Однако реальные условия на Юпитере не оправдали этих надежд.

Атмосфера Юпитера не способствует образованию сложных органических соединений по ряду причин. Во-первых, при высоких температурах и давлениях, характерных в основном для очень сильно восстановленной среды этой планеты, водород разрушает органические молекулы, превращая их в метан, аммиак и воду. Как указывал много лет назад Юри, умеренно восстановленные, т. е. частично окисленные, газовые смеси более благоприятны для осуществления важнейших органических синтезов, чем сильно восстановленные. Например, синтез глицина, самой простой аминокислоты, не может протекать самопроизвольно в газовой смеси, состоящей из воды, метана и аммиака, присутствующих в атмосфере Юпитера. Он невозможен без поступления свободной энергии (6). С другой стороны, без доступа энергии синтез может происходить в не столь сильно восстановленной газовой смеси, состоящей из окиси углерода, аммиака и водорода (7):

При наличии свободного водорода, что характерно для атмосфер планет, подобных Юпитеру, в соответствии с уравнением (6) реакция может идти справа налево, что означает, что глицин будет самопроизвольно превращаться в метан, воду и аммиак. Пока не было поставлено экспериментов с реальными газовыми смесями, которые позволили бы выяснить, сколько различных реакций органического синтеза может протекать в атмосфере Юпитера. Подобные эксперименты трудновыполнимы, поскольку требуют очень высоких концентраций водорода и гелия. Однако уменьшение концентрации одного из компонентов (в некоторых публикациях о результатах экспериментов по синтезу органических веществ в газовых смесях, имитирующих атмосферу Юпитера, сообщается о том, что водород вообще не использовался) ставит под сомнение ценность полученных результатов.

Юпитер и другие планеты-гиганты не имеют подходящих поверхностей, на которых могли бы накапливаться и взаимодействовать образовавшиеся в атмосфере органические продукты, а это важный фактор, который необходимо учитывать, рассматривая возможность химической эволюции. Следовательно, эволюция должна происходить в атмосфере, предположительно в облаках паров воды. Но атмосфера Юпитера не является стабильной средой, как, например, океаны на Земле. Она больше напоминает гигантскую печь, где вертикальные потоки постоянно перемещают горячие газы из нижних (внутренних) областей к периферии: там эти газы отдают свое тепло в космическое пространство, в то время как охлажденные газы перемещаются вниз, в более глубокие слои, где снова нагреваются. Наблюдаемая в облаках Юпитера турбулентность является признаком подобной конвекции (см. фото 3). Насколько интенсивно может протекать химическая эволюция в таких условиях, когда органические молекулы, образовавшиеся под действием солнечного света в верхних слоях атмосферы, перемещаются в более горячие области, где разрушаются? По-видимому, практически незаметно. Как показывают расчеты, перемещение газов, находящихся в атмосфере на уровне слоя водяных облаков, в область, где температура 20 °C, – дело нескольких дней. Следовательно, спустя короткое время органические соединения начнут разрушаться, а выделившиеся при этом углерод, азот и кислород вновь превратятся в метан, аммиак и воду.

Даже со скидкой на неточность в вычислениях ясно, что условия в атмосфере Юпитера не благоприятны для химической эволюции. Кроме того, Юпитер представляет собой не только "печь", но и, как мы видели, реакционный сосуд, а это исключает всякую возможность стабилизации органических молекул высоким давлением при тепловом воздействии. Таким образом, следует заключить, что время жизни органических соединений на Юпитере слишком мало, чтобы стал возможным какой-либо сложный органический синтез. Подобные рассуждения применимы и к Сатурну (см. фото 4); вероятно, они справедливы и для Нептуна. Уран пока представляет собой загадку, но есть все основания предполагать, что он обитаем не более, чем другие планеты-гиганты.


Титан, Тритон и Плутон

Титан, самый большой спутник Сатурна, – единственный спутник в Солнечной системе, имеющий, как известно, плотную атмосферу. Полет автоматической станции «Вояджер-1», приблизившейся в 1980 г. на расстояние около 5000 км к поверхности Титана и передавшей на Землю большое количество данных о химических и физических условиях на этом необычном космическом теле величиной с планету Меркурий, положил конец многочисленным домыслам. (Полная сводка данных и результатов исследований этого спутника многими учеными содержится в статьях Стоуна и Майнера, а также Поллака [15, 19].).

Как видно из табл. 4, атмосферное давление у поверхности Титана равно 1,6 атм. Его атмосфера состоит в основном из азота (90 % или более) и метана (1-10 %), обнаружены также небольшие количества этана, ацетилена, этилена (С 2Н 4) и цианистого водорода. Последние представляют собой продукты фотохимических реакций, и, как мы видели, некоторые из них обнаружены также в атмосфере Юпитера. Они образовались в результате воздействия УФ– излучения Солнца на метан, а цианистый водород (HCN) – при воздействии на газообразный азот. При низкой температуре, господствующей на Титане (-18 °C), аммиак должен существовать в виде твердого льда. В атмосфере Титана обнаружены также молекулы моноксида и диоксида углерода. Это явилось неожиданностью, так как ранее предполагалось, что кислород, присутствующий на Титане в составе водяного льда, вымораживается на поверхности. Источником кислорода может быть вода, содержащаяся в упавших метеоритах. (Такая же вода может служить источником кислорода, который участвует в образовании моноксида углерода, обнаруженного в атмосфере Юпитера.)

Поверхность Титана скрыта атмосферным туманом – своего рода смогом, – который, как предполагается, состоит из больших молекул углеводородов, образующихся фотохимическим путем из метана (см. фото 5). Увеличение размеров частиц этого смога в результате их слипания может привести к образованию настолько крупных зерен, что они могут оседать на поверхность, образуя сугробы. Кроме того, если учесть низкую температуру Титана, не исключена возможность наличия на его поверхности жидкого этана, который, как предполагается, способен образовать целый океан. Таким образом, Титан может в изобилии обладать как органическими веществами, так и растворителем. И все же из-за низкой температуры (близкой к температуре жидкого воздуха) вряд ли он может представлять собой место, благоприятное для жизни. При – 18 °C химические реакции протекают в растворе слишком медленно для многих процессов химической эволюции, даже если иметь в виду солидный возраст Солнечной системы. Химические процессы, протекающие в атмосфере, получают необходимую энергию за счет фотонов УФ-излучения Солнца. А химические процессы в растворах зависят от тепловой энергии, которой у Титана мало. Тем не менее органическая химия Титана – крайне привлекательный предмет для будущих космических исследований.

Тритон, самый большой из спутников Нептуна, наблюдать трудно, и поэтому он плохо изучен. Недавно было установлено, что Тритон обладает разреженной атмосферой, состоящей из метана; однако, учитывая размеры и низкую температуру атмосферы, можно предполагать, что на самом деле она более плотная. Температура на поверхности Тритона меньше, чем у Титана, и значительно ниже точки замерзания жидкого воздуха.

Плутон – самая малая и удаленная от Солнца планета. Его орбита в среднем столь же далеко проходит от Нептуна, как орбита Сатурна – от Солнца. Очень малая масса и необычная форма орбиты Плутона свидетельствуют о том, что он, по-видимому, возник иным путем, нежели другие планеты. Предполагают, что первоначально это был спутник Нептуна и его следует считать скорее астероидом, чем истинной планетой. Если это так, то можно предполагать, что он имеет разреженную атмосферу, состоящую из метана, и твердый метан на поверхности. Температура на поверхности Плутона еще ниже, чем на Тритоне. Трудно представить менее подходящее место для жизни.

Рассмотрев все планеты, кроме Марса (и Земли), с точки зрения существования на них жизни, мы приходим к заключению, что ни одна из них в настоящее время не обеспечивает пригодной для жизни среды, хотя в некоторых случаях не исключено, что когда-то условия там были более благоприятными. Разумеется, в Солнечной системе многое еще не изучено, но вряд ли будущие открытия изменят это представление. Все изложенные здесь соображения и выводы были в основном известны (или предполагались) еще до запуска на Марс в 1975 г. двух космических аппаратов "Викинг". К тому времени стало ясно, что только Марс можно рассматривать как возможное место существования внеземной жизни. В следующей главе мы перейдем к удивительной истории исследований Марса, кульминацией которой стали полеты "Викингов".

Глава 5. Марс: мифы и реальность

Наши знания о Марсе постоянно совершенствуются. Каждое новое противостояние добавляет что-то свое к тому, что мы уже знали. С тех пор как около 50 лет назад была впервые создана теория о возможности жизни на этой планете, каждый вновь установленный факт вполне согласуется с ней. Не обнаружено ничего такого, что нельзя было бы объяснить в рамках этой теории. Таким образом, теория и наблюдения не противоречат друг другу.

Е. К. Слайфер, «История фотографических исследований Марса» (1962)

В книге «Золотая ветвь» антрополог Джеймс Фрезер поведал о том, что изначально Марс считался богом растений, а не войны. Римские крестьяне возносили ему молитвы об удачном урожае, именем Марса был освящен весенний месяц март. В свете столь древней связи между богом Марсом и весенним пробуждением природы вполне естественно, что из всех планет Солнечной системы, за исключением Земли, именно Марс казался наименее враждебным и наиболее благоприятным для жизни.

Хотя по своим размерам Марс примерно вдвое меньше Земли, с большого расстояния он удивительно напоминает нашу планету и действительно обладает определенным сходством с ней. В 1659 г., проводя одно из самых первых наблюдений Марса в телескоп, Христиан Гюйгенс (с его взглядами на возможность внеземной жизни мы познакомились в предыдущей главе) обнаружил на марсианской поверхности постоянно существующие пятна, благодаря которым ему удалось оценить период вращения планеты вокруг своей оси. Гюйгенс установил, что Марс, как и Земля, делает полный оборот вокруг своей оси за 24 ч. Позднее более точные измерения показали, что продолжительность солнечного дня на Марсе точно равна 24 ч 37 мин 22 с: во время полета "Викингов" этот период получил название "сол" – во избежание путаницы с земными сутками. Кроме того, выяснилось, что в настоящее время ось вращения Марса наклонена [13]под углом в 25 к плоскости его орбиты (что сравнимо с углом наклона земной оси, равным 23,5). Это означает, что на Марсе, как и на Земле, происходит смена времен года, когда сначала одно, а затем другое его полушарие поворачивается к Солнцу. По продолжительности марсианский год равен 687 земным суткам (669 солам), т. е. примерно на шесть недель короче двух земных лет, так что продолжительность времен года на Марсе вдвое больше, чем у нас. Однако вследствие эксцентричности (большей вытянутости) марсианской орбиты времена года там существенно отличаются по продолжительности, тогда как на Земле они почти одинаковы. Так, на Марсе северное лето (и южная зима) продолжается 178 сол, а северная зима (и южное лето) -154 сола; на Земле они равны соответственно 94 и 89 суткам.

Внешнее сходство с Землей усиливается благодаря сезонным изменениям окраски поверхности Марса, которые можно наблюдать в телескоп. Самое поразительное впечатление производят ежегодные наступления и отступления полярных ледовых шапок (фото 6). Другие, менее заметные изменения наблюдаются в более низких широтах, где марсианская поверхность разделена на ряд светлых и темных областей (фото 7). Светлые области, ранее называемые пустынями, имеют красновато-оранжевый цвет; темные, в прошлом называемые морями (предполагалось, что это скопления воды), описывали по-разному, называя их серыми, коричневыми, голубыми или зелеными. О сезонных изменениях цвета и контрастности марсианских морей, казавшихся темными и голубовато-зелеными поздней весной и летом, сливавшихся с общим коричневатым фоном осенью и зимой, а затем опять темневших весной, астрономы упоминали еще в XIX в. В 1860 г. впервые было высказано предположение, что такие изменения скорее всего объясняются тем, что темные области, по-видимому, покрыты растительностью, а не водой. Некоторые наблюдатели говорили также о сети тонких прямых линий, простиравшихся на сотни километров по марсианской поверхности. Эти линии, которые итальянский астроном Джованни Скиапарелли (1835–1910), составивший прекрасные карты Марса, назвал canal (откуда и пошло их название "каналы"), как и моря, менялись в зависимости от сезона: они темнели в период местной весны и лета и утрачивали окраску осенью и зимой. Скиапарелли отмечал, что "каналы" напоминают искусственные сооружения, созданные разумными существами, но при этом не пытался объяснить их происхождение.

Фото 6. Одна из лучших фотографий Марса, сделанная наземным телескопом на Маунт-Вилсоновской обсерватории. Видны светлые и темные участки поверхности; уменьшающаяся в размерах южная полярная шапка льда находится слева вверху, поскольку изображение в телескопе перевернуто. Интересно сравнить это изображение с фото 7. (©Калифорнийский технологический институт, 1965 г.)

Фото 7. Фотография освещенного Солнцем полушария Марса, полученная космическим аппаратом «Викинг-1», когда в 1976 г. он приблизился к планете. (Север-вверху.) Различимы иней, атмосферная дымка и много деталей на поверхности. Огромный каньон Долины Маринер расположен в верхней части снимка, а Равнина Агрир – в нижней. Желтоватый цвет поверхности обусловлен присутствием оксидов железа. (НАСА и Лаборатория реактивного движения.)

Столь интригующие результаты наблюдений, достигнутые благодаря усовершенствованию телескопов в XIX в., убедили многих, что наконец получено прямое доказательство существования жизни на другой планете. Одним из тех, кого потрясли эти новые открытия, был американец Персиваль Ловелл (1855–1916). В необычной истории биологических исследований Марса Ловелл занимает особое место и заслуживает отдельного рассказа.


Наследство Персиваля Ловелла

Персиваль Ловелл принадлежал к весьма известной в Новой Англии семье. Его брат Лоуренс стал президентом Гарвардского университета, а сестра Эми была поэтом-имажинистом. Ловелл не был профессиональным астрономом – он посвятил себя изучению японской и корейской культур, о которых написал целый ряд книг. Увлечение Марсом началось сравнительно поздно. Как писал Уильям Грейвс Хойт, автор последней биографии Ловелла, среди множества увлечений Ловелла была и астрономия. И вдохновило его на занятие этой наукой открытие Скиапарелли марсианских каналов. Наблюдения Скиапарелли, по-видимому, почти убедили Ловелла в том, что Марс населен разумными существами. Уверившись (или почти уверившись) в этом, он потратил все свое значительное состояние и талант на создание во Флагстаффе обсерватории (ныне она называется Ловелловской обсерваторией). Ее главной задачей ставилось изучение Марса. Обсерватория была открыта в мае 1894 г., а уже к июлю, всего лишь два месяца спустя, Ловелл четко сформулировал свои взгляды по поводу жизни на Марсе, от которых, по замечанию Хойта, не отказался до конца своей жизни.

Хотя Ловелл приступил к изучению Марса сравнительно поздно, вскоре он приобрел солидный авторитет в вопросах, связанных с изучением этой планеты. Обсерватория Ловелла имела прекрасное оборудование, квалифицированных сотрудников и располагалась в очень удобном для наблюдений месте. Последнее он не упускал случая отмечать, когда другим не удавалось подтвердить результаты его наблюдений. Кроме того, все научные силы обсерватории были направлены на исследование Марса, использовалась любая возможность пополнить запас знаний об этой планете. Благодаря столь интенсивным наблюдениям Ловелл собрал огромный систематизированный материал и приобрел репутацию самого информированного исследователя Марса того времени. (Критика, раздававшаяся в адрес Ловелла как при жизни, так и после его смерти, касалась в основном не его данных, а их истолкования.) Наконец, Ловелл без устали пропагандировал свое восторженное отношение к этой проблеме и непоколебимую уверенность в правильности своих выводов в книгах, статьях и публичных лекциях. Активная деятельность Ловелла пробудила огромный интерес к Марсу не только среди специалистов, но и в самых широких кругах населения.

Теория Ловелла была достаточно проста. Он начал с предположения, что полярные шапки Марса состоят, по всей вероятности, из водяного льда. В подтверждение своего мнения он ссылался на темно-голубой ободок (воротник), образующийся вокруг шапок, когда они начинают уменьшаться весной, и сокращающийся вместе с ними. Только жидкая вода, возникающая в результате таяния ледовых шапок, может служить причиной появления таких ободков. утверждал Ловелл, часто называя их "полярными морями". Он знал, что климат Марса (за исключением полярных областей) очень сухой. Темные участки поверхности планеты не могли быть скоплениями воды, поскольку, хотя они и меняли свою окраску в зависимости от сезона, как бы высыхая, вода, по-видимому, исчезавшая из них, больше нигде не проявлялась. Как указывали другие исследователи, если бы в марсианских морях существовала вода, они отражали бы солнечный свет, однако подобное явление никогда не наблюдалось. Отметив сухость поверхности планеты, Ловелл пришел к заключению, что сезонное исчезновение одной полярной шапки, сопровождающееся увеличением другой, вероятно, означает, что вода перемещается от одного полюса к другому: "В силу метеорологических условий сначала происходит перемещение [воды] в район одного полюса, затем, после таяния [льда], концентрация – у другого, и такое маятникообразное движение является единственным источником увлажнения планеты". Эти перемещения воды раз в полгода сопровождаются увеличением контрастности темных областей, которое, подобно волнам, распространяется "по поверхности планеты от одного полюса к другому в течение шести марсианских месяцев". Ловелл был убежден, что регулярное потемнение доказывает существование на Марсе растительности. "Наблюдения свидетельствуют, – писал он, – что условия, существующие на планете, не просто совместимы с жизнью, но растительная жизнь проявляет себя настолько очевидно, насколько этого можно ожидать, и ничто, кроме растительности, не может быть первопричиной наблюдаемого явления".

В первом томе "Ежегодника", выпускавшегося в его обсерватории, Ловелл писал:

Если бы уровень развития жизни на планете был выше чисто растительной жизни и если бы представляющие его организмы могли обеспечивать нечто большее, чем просто вегетацию, и использовали бы природные условия в собственных целях, то первым и главным их стремлением было бы изобретение средства, эффективно использующего каждую частицу необходимого и столь трудно доступного фактора жизни – воды. Ибо нет организма, способного существовать без воды. В общем, орошение для сельскохозяйственных целей было бы главной заботой марсиан…

Затем, подводя итоги своим наблюдениям каналов, Ловелл заключает:


    Ваша оценка произведения:

Популярные книги за неделю