355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Вершинский » Окно в подводный мир » Текст книги (страница 1)
Окно в подводный мир
  • Текст добавлен: 16 апреля 2017, 22:30

Текст книги "Окно в подводный мир"


Автор книги: Николай Вершинский



сообщить о нарушении

Текущая страница: 1 (всего у книги 3 страниц)

Николай Всеволодович Вершинский
Окно в подводный мир



«Вы любите море, капитан?

– Да, я люблю море! Мореэто все! Оно покрывает собой семь десятых земного шара. Дыхание его чисто, животворно. В его безбрежной пустыне человек не чувствует себя одиноким, ибо вокруг себя он ощущает биение жизни. В лоне морей обитают невиданные, диковинные существа. Мореэто вечное движение и любовь, вечная жизнь, как сказал один из ваших поэтов. И в самом деле, господин профессор, водная среда представляет для развития жизни исключительные преимущества. Тут представлены все три царства природы: минералы, растения, животныеМореобширный резервуар природы. Если можно так выразиться, морем началась жизнь земного шара, морем и окончится!».

«…Позвольте уверить вас, господин профессор, что вы не пожалеете о времени, проведенном на борту моего корабля. Вы совершите путешествие в страну чудес! Смена впечатлений взволнует ваше воображение. Вы постоянно будете находиться в восторженном состоянии. Вы не устанете восхищаться виденным. Жизнь подводного мира будет развертываться перед вашими глазами, не пресыщая ваш взор!».

Жюль Верн. «Двадцать тысяч лье под водой».


Много тайн скрыто в глубине морей. Не удивительно, что с древних времен люди проявляют большой интерес к изучению морских глубин. Мореплаватели и рыбаки, искатели жемчуга и охотники-водолазы, наконец, ученые, наблюдая жизнь моря в течение веков, собрали много интересных данных о жизни в подводном мире.

В море обитает более половины всех известных на Земле живых существ (не считая насекомых). Самые большие в мире животные обитают в море и самые длинные растения – на дне у берегов океана. Статистика установила, что ежегодно в море открывают до 20 видов новых существ, ранее науке не известных. Например, совсем недавно были пойманы удивительные животные на глубинах, где давление составляет около 1000 атмосфер и где поэтому раньше жизнь считалась невозможной.

Творцы народных легенд, авторы научно-фантастических романов населили дно океана таинственными существами, и ведь до сих пор нет полной уверенности в том, что ни одно из них не существует. Вспомним хотя бы, каких «чудищ» наблюдали Тур Хейердал и его спутники во время плавания на плоту «Кон-тики». Подводные луга и джунгли, хребты и пропасти ждут своих исследователей.

Драгоценные жемчужины лежат в раковинах на дне теплых морей, а древние легенды говорят о громадных кладах, сокрытых, в трюмах погибших кораблей. Но на дне океанов имеются гораздо более значительные ценности, чем жемчужины и золотые монеты. На дне морском найдены обширные залежи горных пород с очень высоким содержанием марганца и железа, редкие металлы молибден и ванадий. Не исключено, что будут обнаружены и другие металлы, в которых нуждается современная индустрия.

Но море крепко хранит свои секреты и нелегко расстается с ними. Много отчаянных смельчаков заплатили своей жизнью за попытки поглубже проникнуть в морскую глубь. Человек изобрел водолазный колокол, скафандр, под– водную лодку. Но этого было слишком мало для беспрепятственных путешествий в подводном мире на сколько-нибудь значительной глубине. Ученые могли только мечтать о таких условиях наблюдения жизни морей и океанов, какие открывал чудесный корабль «Наутилус», с детства знакомый нам по известному роману Жюля Верна. Капитан Немо мог опустить «Наутилус» на любую глубину, открыть металлические шторы иллюминаторов, осветить море электрическим прожектором, – и перед профессором-океанографом Пьером Аронаксом и его друзьями открывалось чудесное зрелище подводного мира.

Однако современная наука и техника предоставляют в распоряжение океанографов несравненно более совершенный метод всестороннего изучения жизни моря. Таким методом является подводное телевидение.

Давайте познакомимся поближе с этой новой областью применения электронной техники.

ТЕЛЕПЕРЕДАЧА ИЗ МОРСКИХ ГЛУБИН

Над палубой экспедиционного судна висит» покачиваясь, передающая камера подводной телевизионной установки. Она заключена в массивный металлический корпус. Инженер в последний раз проверяет затяжку гаек.

Мы находимся в затененном салоне судна, где стоит телевизионный приемник. В такт покачиваниям Камеры на его экране качаются палубные надстройки, кусочек моря. Когда набегает волна побольше, камера начинает раскачиваться сильнее. Тогда на экране появляется четкая линия далекого берега.

Все приготовления к спуску закончены. До нас доносится команда: «Майна!» Камера начинает опускаться в море.

Вот морская волна стремительно набегает на экран, виден пенистый всплеск, и затем экран темнеет. Снизу вверх по нему быстро пробегают несколько воздушных пузырей, сначала крупные, потом все более мелкие и редкие. Камера погружается глубже. Экран телевизора кажется теперь серым и пустым. Может быть, что-нибудь случилось, отказала аппаратура? Нет. На экране четко видна «удочка», прикрепленная к передающей камере. К концу «удочки» привязан кусок веревки, и хорошо видно, как натягивает и треплет его встречное течение.

Еще некоторое время экран остается пустым, а потом на нем вдруг появляется крупным планом сверкающая медуза.

– Стоп!

Спуск камеры прекращается. Медуза на секунду застывает в центре экрана. Ее студенистое тело ритмично пульсирует. Хорошо видны детали внутреннего строения.

Снова включается лебедка, и спуск камеры продолжается. Медуз становится больше. Вот появились и новые обитатели моря: тысячи мальков. Они сбились плотным слоем и, влекомые течением, медленно дрейфуют в одном направлении. Рыбок так много, что иногда кажется, будто спуск камеры встречает ощутимое сопротивление. Но все мальки какие-то сонные, на появление камеры они почти не обращают внимания. Только при столкновении с горячей лампочкой подводного светильника пострадавшие делают резкие движения и уходят в сторону. Может быть, мальки крепко спят?

Спуск телевизионной камеры продолжается. Мальков становится все меньше, и через несколько метров они исчезают совсем. Теперь в луче подводного прожектора изредка вспыхивают отдельные точки. Число их возрастает, и картина на экране телевизора напоминает чистое небо в безлунную ночь, усеянное звездами. Но это – не звезды. Это – планктон, огромные скопления мельчайших растительных и животных организмов, пассивно переносимых движением воды. Чистая вода морских глубин рассеивает мало света и поэтому кажется черной. Но как пылинки в луче солнца на воздухе, мельчайшие планктонные организмы рассеивают свет прожектора, и мы их наблюдаем в виде мерцающих ярких точек.

Неожиданно экран заполняют рачки – миллионы рачков. Они тоже столпились здесь тесно, как и мальки в слое, оставшемся выше. Тихо покачиваясь, рачки медленно передвигаются по экрану, уносимые течением. Иногда среди рачков появляются какие-то не известные нам создания, похожие на очень крупных головастиков с большими мохнатыми ногами. Таких животных в этом море до сих пор еще никто не находил. Биологи высказывают предположение, что подобные формы свойственны соседнему Среди-земному Морю. Очевидно, их принесло сюда какое-то пока еще не изученное течение. Систематические подводные телевизионные наблюдения позволят проследить путь этого течения, нанести его на карту и определить пути проникновения к нам неизвестных пришельцев.

Слой рачков кончается. Его толщина, по-видимому, не превышает нескольких метров. Но в этих нескольких метрах сосредоточены миллионы маленьких существ! Оказывается, море, во всяком случае в некоторых местах, напоминает слоеный пирог. Около «сладкой» прослойки из планктона собираются любители хорошо покушать: мальки и рачки. И не только они собрались на обильное угощение. Временами мы видим на экране силуэты крупных рыб, быстро пронизывающих слои малоподвижной «мелочи». Деловито шныряя вверх и вниз, они явно не теряют времени даром, набивая свои желудки. Крупные рыбы держатся осторожно и близко к камере не подходят.

Глубже слои воды опять становятся безжизненными. Близко дно моря.

Через несколько минут передающая телевизионная камера останавливается в нескольких метрах от дна. Великолепная картина! Прямо перед камерой чуть колышатся густые кусты водорослей. Ботаники определяют, что это филифора – ценное сырье. Из ее стеблей добывают агар-агар. Заросли филофоры простираются направо и налево. Неподалеку колеблются ветви куста цистозиры – другого морского растения. Между его стеблями плавают рыбы. По характерной форме тела, широкой и плоской, легко определить, что это морские караси. В камнях удобно устроился морской петух. Испуганный движением камеры, он распускает свои большие плавники, похожие на крылья, и исчезает из поля зрения. Около большого камня притаился краб. Он не боится камеры, она его даже явно интересует: вместо того чтобы бежать, он взбирается на камень и вытягивает свои клешни.

Вот на экране появилась какая-то светлая полоса, вскоре она заняла весь экран, и мы видим, что это рыбачья сеть. Хорошо видны отдельные ее ячейки. Если задержаться здесь подольше, то можно сделать много полезных наблюдений: узнать о поведении рыб при встрече с орудиями лова, выбрать наилучшую конструкцию сети, ее материал.

…Телепередача из морских глубин закончена. Попробуем теперь представить себе, какую службу мог бы сослужить нам старый знакомый – телевизионный приемник.

В поведении рыб, например, имеется еще много загадок, и подводное телевидение открывает новый путь для их изучения. Недаром в устье одной из английских рек установлен постоянный телевизионный пикет для наблюдения за рыбами. Подводная телевизионная аппаратура является хорошим средством изучения глубинных течений. Определение направления, в котором движется планктон – «кормовое поле» промысловых рыб, открывает новые перспективы промысловой разведки рыбы. Буксируя телевизионную камеру над подводными лугами, можно узнать их площадь и установить запасы ценных водорослей.

Есть у подводного телевидения и другая область применения.

Весной 1951 года английская подводная лодка «Эфрей» потерпела аварию в проливе Ла-Манш. Использование для поисков обычных металлоискателей было затруднено тем, что на дне в этом районе лежит большое количество других затонувших судов. Применение подводной телевизионной аппаратуры позволило быстро найти погибшую лодку. На экране телевизора-приемника поисковая команда опознала контуры погибшей лодки и прочитала ее название. Телевизионная аппаратура была использована также для исследования положения лодки на грунте и выяснения причин аварии.

Кроме аварийно-спасательных работ, подводную телевизионную аппаратуру можно эффективно применять, например, при прокладке различных подводных кабелей и трубопроводов, когда особенно важно знать, что кабель или трубопровод правильно легли на дно, что под ними нет острых скал. Проверить это может только водолаз или телевизионная передающая камера.

Мы знаем, что геологическое строение дна океанов так же сложно, как и строение суши. На дне есть и высокие горы, и глубокие пропасти, и горные хребты, и равнины. Эти открытия сделаны с помощью эхолота. Но таким путем можно обнаруживать и промерять лишь большие детали геологического строения дна. А для суждения о возможных запасах полезных руд или нефти, для изучения геологической истории земной коры важно знать такие мелкие детали, которые можно обнаружить с помощью подводной телевизионной аппаратуры.

Геолог, работающий на поверхности земли, имеет возможность рассмотреть все интересующие его детали геологического строения. Не один десяток километров проходят ежедневно участники поисковых геологических партий. Но если геолог надевает водолазный костюм и превращается в водолаза, то пройти и осмотреть за день всего пять километров представляет для него трудную задачу даже на малых глубинах. А на больших глубинах такая возможность исключается совсем. Приходится пользоваться дно-черпателями, трубками для забора проб грунта или фотографировать дно с помощью фото или киноаппаратов, опуская их в специальных камерах. Но снимать на пленку подряд все морское дно, даже в наиболее интересных в геологическом отношении районах, конечно, невозможно, Слишком много надо пленки! А при выборочной съемке отдельных мест легко пропустить важные детали. Использование подводной телевизионной аппаратуры позволяет непрерывно просматривать большие площади дна.

Осмотр подводных частей различных гидротехнических сооружений – плотин, волноломов, молов – также очень облегчается.

Известно, как трудна работа водолазов. Она относится в настоящее время к числу наиболее тяжелых видов человеческого труда. Рабочий день водолаза уже на глубине в несколько десятков метров ограничен небольшим количеством минут. Если водолаз проработает дольше, он рискует тяжело заболеть. А подводная телевизионная аппаратура, если соединить с ней специальные машины и орудия для выполнения различных трудовых операций, позволит работать под водой как угодно долго и без участия водолазов.

ПРЕИМУЩЕСТВА ПОДВОДНОГО ТЕЛЕВИДЕНИЯ

Подводное телевидение еще только начинает входить в обиход исследований морских глубин. Но для того чтобы заглянуть под поверхность моря, существуют и другие средства.

Широкое распространение получили например, акваланги. (О возможностях, которые они открывают, рассказывает книжка Бориса Зюкова «В тайны глубин». М., Изд-во «Знание», 1960. Серия «Прочти, товарищ!») Но акваланги хороши только для плавания в верхних слоях океана. Жесткие водолазные скафандры позволяют опуститься несколько глубже. А как же быть, если нужно опуститься на несколько сотен метров?

Для этой цели была применена батисфера.

Это прочная стальная камера, опускаемая в море с судна на стальном тросе. Через люк в нее садится исследователь. Наблюдение ведется сквозь толстые стеклянные иллюминаторы.

Знаменитый исследователь морских глубин Вильям Биб рассказывает о том, каковы были его первые впечатления при пробных спусках:

«…На глубине 890 метров я уловил по телефону металлический треск, и когда я спросил, в чем дело, я получил какой-то уклончивый ответ. Позднее я узнал, что один из вспомогательных тросов, употребляемых для наматывания поступающего главного троса на барабан, внезапно порвался с ужасающим треском. Это был жуткий момент для всех на палубе, пока они не убедились, что порвался вспомогательный трос, а не основной…».

Слова эти написаны смелым человеком, впервые решившимся заглянуть в морские глубины.

«Ужасающий треск…». Но, может быть, так было только при первом опыте? Может быть, при дальнейших спусках исследователи были освобождены от тяжелых переживаний? Ведь происходило все это более четверти века назад.

Современные батисферы значительно усовершенствованы, и погружение в них стало менее опасным. Но подвеска батисферы на тросе ограничивает глубину погружения и лишает исследователя возможности свободно передвигаться в толще воды.

Подводная лодка значительно удобнее. Вероятно, многие из читателей слышали про «Северянку», подводную лодку Всесоюзного научно-исследовательского института рыбного хозяйства и океанографии. «Северянка» – довольно большая лодка, на которой научные работники проводят важные исследования.

Несомненный интерес представляют индивидуальные подводные лодки, освоенные производством в Италии. Образец такой лодочки типа «Наутилус» изображен на цветной вкладке. Двухместные лодочки имеют длину всего 6 метров, а диаметр корпуса – около одного метра. Корпус лодки сделан из пластмассы. Максимальная глубина погружения составляет около 60 метров, скорость хода под водой до 7 километров в час.

На другой цветной вкладке показано «Ныряющее блюдце» Кусто. Это тоже особая подводная лодка, отличающаяся большой маневренностью и малыми габаритами.

Но все же обычные подводные лодки не могут глубоко опускаться, поэтому громадным шагом вперед в освоении человеком больших океанских глубин явилось создание батискафа.

Батискаф – разновидность подводной лодки для плавания на больших и предельных глубинах океана. Батискаф отдаленно напоминает аэростат (или дирижабль). Его легкий корпус заполнен бензином, а в качестве балласта применена стальная дробь, которую удерживает электромагнит. Выпуская часть бензина (как аэростат – водорода), батискаф опускается. Для подъема на поверхность батискаф сбрасывает часть балласта. Команда находится в сферической очень прочной гондоле. Под водой батискаф приводится в движение электромоторами.

Самоходный батискаф, имеющий возможность самостоятельно маневрировать в любых направлениях, является совершенным и относительно безопасным устройством для исследования морских глубин.

23 января 1959 года батискаф «Триест», имея на борту профессора Пикара и нескольких других ученых, опустился на дно Марианской впадины. Это – самое глубокое место Тихого океана. По данным этого спуска, достигнутая глубина составляет 10914 метров. Об этом рекордном погружении газета «Вечерняя Москва» в номере от 26 января 1959 года писала следующее:

«…Погружение «Триеста» заняло в общей сложности 8 часов 35 минут, из которых 4 часа 48 минут ушло на опускание и 3 часа 17 минут– на подъем. На дне батискаф оставался 30 минут. Когда исследователи поднялись на поверхность, они дрожали от холода, который установился в батискафе на глубине, их одежда была совершенно мокрой от скопившейся внутри «Триеста» влаги. На дне Марианской впадины, по словам ученых, царит вечный мрак, и лучи солнца туда совершенно не доходят. Дно оказалось «очень мягким».

«Триест» был оснащен мощными прожекторами. Во время спуска и подъема Пикар и его коллеги наблюдали обитателей больших глубин. Однако на самом дне не удалось заметить каких-либо признаков жизни. Впрочем, нервное напряжение участников погружения было настолько велико, что они не полагаются на свое зрительное восприятие…».

Смелым исследователям приходилось, что называется, туго! Плавание в батискафе требует высоких специальных технических познаний, поэтому длительное время спуски в батискафах выполнялись лишь специалистами инженерами и моряками. И, наконец, батискафы очень дороги.

При использовании современного высококачественного телевидения картина, получаемая на экране телевизора, очень мало отличается от той, которую наблюдатель видит через толстые стекла батисферы, а использование стереоскопической передачи практически полностью устраняет разницу в обоих видах наблюдений. Если потребуется взять пробу грунта или поймать какое-либо глубоководное животное, то придется прибегать к помощи механизмов – манипуляторов и ловушек. Только в первом случае исследователь будет спокойно управлять манипулятором сверху, наблюдая за экраном телевизора, стоящего в салоне экспедиционного судна, а во втором случае он будет рисковать собой, опустившись в бездну.

Современная техника позволяет проводить подводные телевизионные наблюдения на глубинах свыше километра. Несомненно, наступит день, когда можно будет опустить передающую телевизионную камеру на предельные глубины океана.

ПЕРВЫЕ ОПЫТЫ

Тринадцать лет назад в Советском Союзе еще не было подводной телевизионной аппаратуры и никто не хотел заниматься ее разработкой. А мне очень хотелось заглянуть в тайны морских глубин с помощью электроники.

Когда я в первый раз пришел в Институт океанологии, представился заместителю директора профессору В. Г. Богорову (ныне член-корреспондент АН СССР) и сказал, что хочу поступить на работу в институт, то Вениамин Григорьевич со свойственной ему любезностью внимательно выслушал меня, расспросил о моей специальности, а потом сказал, что… электроники институту не требуются.

Немного спустя я снова пришел в институт. Мое появление вызвало легкую улыбку. Но на этот раз я лучше подготовился.

Директор института академик Петр Петрович Ширшов одобрил идею внедрения электроники в океанографические исследования. Его заинтересовало телевидение под водой. И моя судьба была решена – я получил приглашение поступить в институт.

Начинать приходилось буквально на пустом месте. Мне было разрешено пригласить в новую лабораторию одного сотрудника. Выбор мой пал на Александра Александровича Депрейса. А. А. Депрейс – энтузиаст телевидения, и его увлекла идея создания подводной установки. Трудности нас не пугали.

У лаборатории не было главного – помещения. Посоветовавшись, решили рассчитывать, изготовлять и настраивать первую отечественную подводную телевизионную установку на квартире у А. А. Депрейса.

Группа из руководителя и одного сотрудника – это очень мало для разработки, постройки и наладки целой подводной телевизионной установки. Но мы поняли это вполне лишь позже.

Тогда в литературе не было еще опубликовано описаний портативных передвижных телевизионных станций. Действовавший в Москве телевизионный центр мы, конечно, не могли копировать. Недостаток площади на экспедиционных судах не позволил бы разместить такую громоздкую аппаратуру! Трудно было разрабатывать упрощенную схему, но, наконец, все как будто было готово.

Теперь много хлопот доставлял нам герметический кожух для передающей камеры. Ведь для того, чтобы передающую телевизионную аппаратуру можно было опускать глубоко под воду, ее нужно поместить в корпус, способный выдерживать огромное давление – т. е. в сущности в ту же батисферу.

Мы не знали точно, как надо делать герметический корпус, чтобы он не пропускал воду. После того, как нам удалось разработать чертеж, нашли какое-то СМУ, которое согласилось взять наш заказ. И вот кожух готов. Решили испытать его на Химкинском водохранилище.

Вдвоем с водолазом института Е. Васильевым мы долго долбили лед, потом с помощью подоспевших работников с соседней спасательной станции опустили кожух в воду на глубину 20 метров. Обратно поднимать кожух было тяжело. Когда дружными усилиями нам удалось его вытащить, из него ручьем полилась вода. Кожух тек, как решето! Потом выяснилось, что это было его хроническим заболеванием. Сколько ни варили его сварщики СМУ, он продолжал течь. Нам удалось вылечить его от этой болезни лишь значительно позже, с помощью дипломированных сварщиков Новороссийского вагоноремонтного завода. Этот завод много помогал нам и впоследствии.

В конце концов мы привезли нашу первую установку в Голубую бухту.

Это поэтичное название присвоено ей не зря. Клин голубой воды, врезанный в скалистые берега. Два десятка красивых домиков, раскиданных так, как будто они были сброшены на парашютах с самолета. Чудесный галечный пляж, над которым бездонное небо, такое же голубое, как и море. Вот в каком месте разместилась Черноморская станция Института океанологии Академии наук.

Станция в то время была еще очень мала, и для нас в ее здании не нашлось места. Мы расположились прямо на берегу моря, у палатке. Но осенние холода, неожиданно рано начавшиеся в тот год, и сильные ветры очень затрудняли сборку нашей установки. К счастью, на станции в то время работал В. Ф. Лец – мастер на все руки. В штате станции он числился столяром, но большую часть своего рабочего времени посвящал различным изобретениям. (Он был занят тогда особыми драгами для сбора филофоры с морского дна). Он всерьез заинтересовался нашей работой и, видя наши затруднения, предложил нам переселиться в его мастерскую. Она находилась в дощатом сарае около причала Конечно, мы не замедлили воспользоваться этим приглашением. Там было тесно, но зато тепло, и не мешал ветер. Позже нам удалось получить в том же сарае крохотное соседнее помещение, ранее служившее караульной.

Теперь у нас появилось хоть какое-то помещение и можно было приступить к дальнейшей работе.

Скоро обнаружилось, что в щели стен нашей мастерской проникает морская сырость, портит изоляцию и создает утечку тока в схеме установки. Затем – вопрос о кабеле. На первых порах у нас не было специального подводного телевизионного кабеля. После некоторых колебаний мы решили воспользоваться обычным, камерным кабелем. Он промок при погружении камеры в море на глубину 20 метров, но дал возможность произвести первые наблюдения у причала Голубой бухты.

Они были очень интересными, эти первые наблюдения в холодную зиму на Черном море.

К этому времени мы получили комнату для лаборатории в новом здании института, в Москве, и отличный домик на берегу моря в Голубой бухте. А немного позже к нам пришли новые люди. Так начались годы напряженной работы. Коллектив подобрался дружный. Мы разрабатывали новые установки, испытывали их в море, изучали особенности поведения различных передающих трубок в водах разной прозрачности.

Очень затрудняло работу отсутствие у лаборатории собственного судна.

Черноморская станция имеет несколько экспедиционных судов, обслуживающих нужды нескольких лабораторий. Нам обычно давалось самое маленькое судно один раз в год на очень ограниченный срок, дней на 10-12. Вот и попробуй за этот срок погрузить на судно новую аппаратуру, расставить ее, наладить (это самое трудное) и успеть произвести испытания аппаратуры в море! А тут еще шторм обязательно подвернется и загонит судно на несколько Дней в дальний угол бухты с самой грязной водой. На земле телевизионщики не встречаются с подобными затруднениями!

Одной из наших главных задач было определить, насколько хорошо новая установка способна видеть в воде.

Сначала мы сделали так: спустили на морское дно в мелком месте стальной стол. На него поставили передающую камеру. Поблизости поставили светильники. А рядом с камерой попросили встать водолаза. Другому водолазу дали в руки стандартную тест-таблицу, которую все видят на экранах своих телевизоров перед началом передачи. Чтобы в воде таблица не размокла, ее заклеили в органическое стекло.

Водолаз держал таблицу поблизости от камеры, а затем, после настройки аппаратуры, мы по телефону просили его постепенно отходить дальше. Идет водолаз по морскому дну, считает шаги, а на таблицу в его руках одновременно смотрят передающая камера и другой водолаз, который остался у камеры – целая подводная телевизионная студия! В каюте судна, на экране приемного телевизора видно, как изображение таблицы становится все менее четким и резким и, наконец, совсем пропадает. Водолаз, стоящий у камеры, также передает свои наблюдения за таблицей по телефону.

Таким путем мы получили возможность измерить дальность видения камеры и сравнить ее с дальностью видимости водолаза.

Но у этого способа измерения быстро обнаружилось несколько больших недостатков. Необходимость использования водолазов очень осложняла организацию опытов. Водолазы, передвигаясь по дну, поднимали ногами донные отложения и мутили воду. И, наконец, такие измерения было удобно производить лишь на мелководье, где и без того вода не отличается прозрачностью. А нам очень важно было провести измерения в более прозрачной воде. Прозрачную воду в море легко найти подальше от берега. А там глубоко. Поэтому надо было придумать какой-то другой способ измерения дальности видения. После нескольких опытов мы остановились на следующем. Длинную легкую раму прикрепляли к передающей камере и вместе с ней опускали в море. На раме, на разных расстояниях от камеры, находились предметы, за изменением видимости которых и велись наблюдения.

Применение рамы оказалось удобным для небольших наблюдаемых объектов. Постепенно росла дальность видения, и надо было увеличивать длину рамы. На небольшом судне работа с рамой длиной около 10 метров была уже довольно затруднительна. Использовать же раму длиной в 20-30 метров на судне длиной 18 метров и думать не приходилось.

Выход, оказалось, существовал. Надо было приспосабливать для подводных телевизионных работ не раму, а целое судно…

И тут мы впервые подумали о понтоне. Понтон, достаточно большой и хорошо приспособленный для проведения гидрооптических и телевизионных измерений, нас вполне устроит. Пусть он не сможет передвигаться сам – для этого найдется буксир. Но мы получим плавучую лабораторию, и можно будет вести систематические исследования! Не надо будет тратить каждый раз массу сил на погрузку и выгрузку аппаратуры, на ее наладку. Аппаратура не будет биться при перевозках и перегрузках. Освободится много времени, которое можно будет использовать с пользой для дела.

Но тут возникло новое препятствие: как сделать понтон достаточно прочным, надежным. Ведь море не шутит. Чтобы успокоить скептиков, я предложил остановить выбор на артиллерийском понтоне. Это – самая прочная из всех известных конструкций понтонов. Прямые попадания артиллерийских снарядов не способны его утопить. Для того чтобы приспособить такой понтон для телевизионных работ, в нем потребуется сделать некоторые изменения. Необходима рубка, в которой разместится телевизионная аппаратура, а также помещение для электростанции. А главное необходима ферма, которая могла бы опускаться в море с испытуемыми приборами. Двухлодочная конструкция понтона очень удобна для подвески такой фермы между лодками. Но для того чтобы ферму можно было поднимать и опускать в море, нужны лебедки.

Кроме того, понтон должен иметь якоря. Для подъема якорей нужен брашпиль. Нужны также стояночные огни, а во время буксировки на понтоне должны гореть все фонари, какие полагаются по морским законам. Словом, дедка – за репку, бабка – за дедку и т. д. Возникло множество специфических вопросов, которые не могли быть решены нашими силами.

Тогда мы привлекли к делу конструкторов Новороссийского судоремонтного завода. В один из чудесных летних вечеров я привез на совещание из Новороссийска в Голубую бухту заведующего техническим отделом судоремонтного завода тов. Пашкова и конструктора тов. Светашова. Мы рассказали им о нашей мечте и с трепетом ждали, что они скажут. Против ожидания, тов. Пашков одобрил идею постройки понтона и сказал, что Новороссийский завод сможет его сделать. Нужны только чертежи. За изготовление чертежей взялся В. К. Светашов.

Тотчас после спуска долгожданный понтон был использован для проведения наблюдений.

«Во всех изысканиях человеческого разума самое трудное – это начало». Слова эти, принадлежащие знаменитому философу древности, видимо, не утратили своего значения до сих пор. Из этой небольшой главы читатель мог увидеть, какие неожиданные трудности возникали, когда мы приступили к созданию аппаратуры для подводного телевидения.

Но, конечно, потом одна к другой стали вырастать перед нами проблемы уже специального характера.


    Ваша оценка произведения:

Популярные книги за неделю