412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Николай Левашов » Неоднородная Вселенная » Текст книги (страница 9)
Неоднородная Вселенная
  • Текст добавлен: 7 октября 2016, 16:18

Текст книги "Неоднородная Вселенная"


Автор книги: Николай Левашов



сообщить о нарушении

Текущая страница: 9 (всего у книги 16 страниц)

Неустойчивость тяжёлых элементов попадает в «прокрустово ложе» логики, – ядро образуется из протонов и нуклонов, чем больше последних, тем менее устойчивую систему они образуют. Чем более сложная система, тем сложней для неё находиться в устойчивом состоянии. Это правило действует в отношении, практически, любой сложной системы. Тем не менее, остаётся открытым вопрос о причинах возникающей неустойчивости, потому что для разных сложных систем причинами неустойчивости становятся разные природные явления. Так вот, в современной ядерной физике не существует объяснения самого явления радиоактивного распада, а только констатируется реальность последнего. И, если с неустойчивостью трансурановых элементов хотя бы логика согласуется, то с неустойчивостью изотопов более «простых» элементов, включая водород, эта логика, мягко говоря, работать отказывается.

Ядро атома водорода содержит только один нуклон – протон – и атомный вес его принимается за единицу. Тяжелый водород – дейтерий или тритий – в ядре имеет, соответственно, на один или два нуклона больше. Только эти нуклоны, в отличие от протона, электрически нейтральны, имеют практически такой же вес и размер и называются нейтронами. В отличие от «простого» водорода, они неустойчивы, другими словами, радиоактивны. В то время, как другие элементы, имеющие атомный вес в десятки атомных единиц, продолжают быть устойчивыми. А золото, атомный вес которого достигает почти ста девяносто семи атомных единиц, вообще является максимально химически устойчивым элементом. Появление в ядре любого устойчивого атома, «лишнего» нейтрона, превращает его в неустойчивый изотоп. К примеру, то же золото Au имеет в ядре семьдесят девять протонов и сто семнадцать нейтронов, и устойчиво! При появлении ещё одного нейтрона в ядре атома золота дополнительного к уже имеющимся ста семнадцати делает его неустойчивым. В то время, как следующий элемент, имеющий на один протон больше, ртуть Hg в ядре содержит сто девятнадцать нейтронов, устойчив.

Возникает противоречие со здравым смыслом, если подходить к рассмотрению этого явления с классической точки зрения. Одно и тоже число нейтронов в разных атомах проявляет себя по-разному. Значит природу явления радиоактивности определяет не число нейтронов в ядре. Если это так, что же всё-таки делает атомы неустойчивыми, радиоактивными?! Давайте разберёмся с этим любопытнейшим явлением природы.


3.3. Влияние материальных объектов микрокосмоса на окружающие их пространство

В зоне деформации микропространства, к которой выполняются необходимые условия для полного слияния семи первичных материй, происходит синтез гибридных форм материй. Причём, гибридные формы материи сами начинают влиять на своё микропространство с обратным знаком. Каждая гибридная форма материи увеличивает мерность окружающего пространства на некоторую величину. Процесс синтеза этих первичных материй будет продолжаться до тех пор, пока деформация мерности микропространства не будет нейтрализована. Гибридные формы материи заполняют собой эти деформации мерности. Представим себе грунтовую дорогу с ямами. Если взять и засыпать эти ямы полностью камнями, поверхность дороги вновь станет ровной, хотя в реальности ямы никуда не исчезли. Просто их заполнили качественно другими твёрдыми материалами. Так и гибридные материи, возникшие в зонах деформации микропространства, качественно отличаясь от первичных материй их создавших, заполняют зоны неоднородности и собой компенсируют искривление пространства. В данном случае, нас интересует гибридная форма материи, возникшая, как результат слияния семи форм первичных материй. Диапазон значений мерности, в пределах которого физически плотное вещество стабильно, т. е. не распадается на первичные материи его образующие, лежит в пределах:

2.87890 < ΔLф.п.в. < 2.89915    (3.3.1)

Самый маленький атом – атом водорода – в своём ядре имеет только один нуклон – протон, атомный вес которого равен одной условной атомной единице. Естественно предположить, что и влияние на свой окружающий микрокосмос атом водорода будет оказывать минимальное. В силу этого, водород будет устойчив во всём диапазоне значений физически плотного вещества (3.3.1). Именно поэтому, водород – самый распространённый элемент во Вселенной. Давайте попытаемся понять, почему водород – самый распространённый элемент во Вселенной? При синтезе атомов, в частности водорода, происходит изменение качественного состояния микропространства вокруг ядра этих атомов. Причём, возникшее дополнительное искривление пространства имеет другой знак по отношению к зоне деформации пространства, в которой произошёл синтез этих атомов. Если считать отрицательной величину деформации пространства, в которой произошёл синтез атомов, тогда дополнительное искривление пространства, вызванное каждым атомом, будет положительной величиной.

Таким образом, на первичное искривление пространства накладывается вторичное искривление с противоположным знаком. В результате чего, первичное искривление пространства частично компенсируется. Атом водорода, имеющий в своём ядре только один нуклон – протон – создаёт таким образом минимальное вторичное искривление пространства и поэтому стабилен практически во всём диапазоне. Опасность неустойчивости возникает только при нахождении атомов водорода у границ диапазона стабильности физически плотного вещества. Поэтому, водород имеет спектр устойчивых состояний, практически равный диапазону устойчивости физически плотного вещества (Рис. 3.3.1).



Рис. 3.3.1. Собственный уровень мерности водорода H (степень влияния атома или другого материального объекта на окружающее пространство) – столь незначительный, что делает его устойчивым в пределах всего диапазона мерности между физически плотной и второй материальными сферами. Водород может быть устойчивым, как и внутри раскалённой звезды, так и в межзвёздном пространстве. В силу этого, водород является самым распространённым элементом во Вселенной. Практически все процессы происходящие во Вселенной не обходятся без его участия. Водород – основа не только термоядерных реакций звёзд, но и играет важнейшую роль в обеспечении возможности существования живой материи.

1. Нижний уровень мерности физически плотной сферы.

2. Верхний уровень мерности физически плотной сферы.

Каждому устойчивому состоянию атома соответствует уровень собственной мерности атома. Если атом имеет уровень собственной мерности близкий к верхней границе диапазона устойчивости физически плотного вещества, то, при поглощении атомом фотона с длинной волны, соизмеримой с размерами атома (при поглощении атомом фотона, электрон атома «переходит» с ближней к ядру орбиты на более удалённую), уровень собственной мерности атома изменяется на величину амплитуды поглощённой атомом волны.

Таким образом, в результате поглощения атомом фотона, уровень собственной мерности атома увеличивается. И, если изначально атом находился близко к верхней границе диапазона устойчивости физически плотного вещества, подобное изменение мерности приводит к неустойчивому состоянию атома, и он распадается. Может возникнуть вопрос, каким образом атом водорода в частности или любой другой атом, устойчивый в своём обычном состоянии, становится неустойчивыми и распадается? Вёрнёмся к образу ям на дороге, заполняемых водой во время дождя. Как размеры, так и глубина этих ям всегда будет различной и потребуется разное количество воды или чего-нибудь другого, чтобы заполнить эти ямы до краёв.

Поэтому, если возникает незначительное искривление микропространства, возникает синтез только таких атомов, собственное влияние которых на своё микропространство соизмеримо с величиной деформации микропространства в области синтеза данных атомов. На деформацию макропространства накладывается деформация микропространства, только с обратным знаком, и они взаимно уравновешивают друг друга. Минимальное искривление макропространства, при котором возникает синтез физически плотного вещества, соответсвует условиям синтеза водорода. Атом водорода Н оказывает минимальное влияние на своё микропространство и именно поэтому является первейшей формой физически плотного вещества во Вселенной (Рис. 3.3.2).



Рис. 3.3.2. Атом водорода Н является самым устойчивым и самым распространённым элементом в нашей Вселенной в силу того, что он (водород) оказывает минимальное влияние на окружающее пространство. В силу того, что для синтеза водорода из первичных материй достаточно незначительных изменений мерности пространства. Именно поэтому, водород является самым распространённым элементом во Вселенной. В то же самое время следует помнить, что каждый атом, в том числе и атом водорода, влияют на мерность пространства, заполняя деформацию пространства своей массой. Поэтому, после синтеза каждого атома, зона деформации пространства уменьшается на некоторую величину, пропорционально атомному весу данного атома. Поэтому, по мере синтеза физически плотной материи с каждым синтезируемым атомом, величина деформации пространства уменьшается, и этот процесс будет продолжаться до тех пор, пока зона деформации полностью не нейтрализуется за счёт возникших в результате синтеза атомов. При этом, прекращается и сам синтез.

Атом водорода – это первокирпичик материи нашей Вселенной и именно он послужил строительным материалом, как для звёзд, так и всех других известных атомов, которые возникали в недрах звёзд в результате термоядерных реакций, появляющихся в результате сжатия водородных звёзд – голубых гигантов. Сжатие водородных голубых гигантов происходит вследствие того, что внутри голубого гиганта существует перепад мерности, направленный к центру звезды (Рис. 3.3.3).



Рис. 3.3.3. Во Вселенной постоянно происходит синтез атомов, в основном водорода; в силу этого, синтез возникает в зонах смыкания между данным пространством-вселенной и вышележащим. Поэтому зоны деформации пространства чаще всего возникают ближе к верхней границе устойчивости физически плотного вещества. И, как следствие этого, возникают оптимальные условия для синтеза именно водорода, в силу его минимального вторичного влияния на окружающее пространство. Так как зоны неоднородности имеют огромные пространственные размеры, синтезированные атомы начинают накапливаться в этих зонах, постепенно заполняя их собой. В силу того, что зоны неоднородности сами неоднородны в разных пространственных направлениях, возникают внутренние перепады (градиенты) мерности, направленные к центру зоны неоднородности. В результате чего, пленённые в зоне неоднородности атомы водорода попадают под воздействие потоков первичных материй, направленных к центру зоны неоднородности. И, как следствие, возникает сжатие водородного вещества, что приводит к разогреву и началу термоядерных реакций.

В результате этого сжатия, атомы водорода начинают двигаться к центру зоны деформации макропространства и, сталкиваясь друг с другом, излучают волны. При этом электрон каждого излучающего атома водорода переходит с орбиты с большей энергией на орбиту с меньшей. И так продолжается до тех пор, пока электрон не приблизится к ядру-протону настолько близко, что происходит качественное преобразование атома водорода в нейтрон. Существует критическая минимальная орбита для электрона атома водорода. И если электрон, находясь на этой орбите, излучает волну и переходит на орбиту ниже критической, происходят необратимые процессы и водород переходит в новое качественное состояние – нейтрон. В нейтроне расстояние между протоном и электроном настолько малы, что можно сказать что электрон практически упал на протон. При сбросе электрона на орбиту ниже критической, возникает ситуация, когда практически не существует возможности вывести его на более высокую орбиту. Нейтрон, не имеющий электрического заряда, становится строительным материалом для других атомов. Ускоряясь, в результате столкновения с атомами и другими нейтронами, нейтроны достигают таких энергий, когда они в состоянии проникнуть в ядро водорода и создать дейтерий, так называемый, тяжёлый водород.

Таким образом возникают условия для термоядерных реакций, в результате которых синтезируется гелий. Аналогичным образом происходит синтез и атомов всех остальных элементов. В результате сжатия звезды наступает момент, когда происходит взрыв, так называемой, сверхновой, и вещество верхних слоёв звезды, состоящее из атомов разных элементов, выбрасывается в окружающее пространство. Кроме этого, следует вспомнить, что, в пределах диапазона устойчивости физически плотного вещества мерность микропространства меняется непрерывно в то время, как вторичное влияние каждого атома на это же пространство имеет конкретную, конечную величину. Эта величина влияния собственно атома может быть очень маленькой, как у водорода, или соизмеримой с диапазоном устойчивости – как у урана и следующих за ним элементов (Рис. 3.3.4). Влияние всех остальных элементов лежит между этими крайностями.



Рис. 3.3.4. Для синтеза атома урана U зона деформации пространства должна быть максимально допустимой для возможных состояний физически плотного вещества. Деформация пространства, создаваемая ядром атома урана настолько значительна, что единичный атом урана практически полностью нейтрализует максимально возможный для физически плотной материи перепад мерности. Поэтому уран и все трансурановые элементы становятся неустойчивыми и начинают распадаться на материи их образующие в обычных условиях. Так как даже поглощения излучений шумового фона Вселенной достаточно, чтобы состояние атома, поглотившего фотон этого фона, стало сверхкритическим и он распался. В процессе распада из освободившихся первичных материй происходит синтез устойчивых в данных условиях атомов и происходит мощный выброс излучений. После чего система возвращается к устойчивому состоянию. Процессы и причины, приводящие к взрыву сверхновой и процессы и причины, приводящие к радиоактивному распаду, имеют тождественную природу, имея особенности, вызванные различиями между макро– и микромиром.

Водород мы называем самым «лёгким» элементом, а трансурановые – самыми «тяжёлыми» (Рис. 3.3.5).



Рис. 3.3.5. Сопоставление степени влияния на окружающий микрокосмос (микропространство) атома водорода H и атома урана U. Собственный уровень мерности урана U позволяет ему быть устойчивым в пределах незначительного диапазона мерности. Именно поэтому уран и все трансурановые элементы радиоактивны, т. е., неустойчивы, практически, при любых условиях. В то время, как водород и другие лёгкие элементы, становятся неустойчивыми только в определённых условиях. Чем легче элемент, тем он более устойчив, а это означает, что необходимо большее внешнее воздействие, чтобы вызвать его неустойчивость.

1. Нижний уровень мерности физически плотной сферы.

2. Верхний уровень мерности физически плотной сферы.

Но, врядли кто-нибудь задумывался, что стоит за этими столь очевидными понятиями. Мы привыкли принимать, как должное, многие природные явления, хотя они несут в себе порой удивительную информацию, обладание которой может помочь разгадать многие загадки природы. Представим, что в воду брошено много шариков разного размера, но одинаковой плотности и самый маленький из них – целое число раз помещается в любом другом. Вследствие этого, вес каждого будет больше веса самого маленького во столько раз, сколько раз он помещается в данном шарике. После того, как все эти шарики упали в воду, они пришли в хаотическое, по отношению друг к другу, движение. Но постепенно, по мере потери ими изначального импульса, они распределятся в воде в определённом порядке. Самый лёгкий шарик будет плавать на поверхности воды или близко к ней, там, где его вес будет нейтрализован давлением воды. Все остальные шарики, в зависимости от их размера, а следовательно и веса, окажутся погружёнными на разные глубины. Любое движение воды будет приводить в движение все эти шарики, но каждый раз, после прекращения движения водных масс, все эти шарики вновь займут «свои» места – вернутся на ту глубину, где их вес нейтрализуется давлением воды. Не правда ли, понятная и знакомая каждому из нас картина. Так вот, самым «лёгким шариком» является водород, а все остальные шарики – атомами других элементов, атомный вес которых – кратный атомному весу атома водорода. Кратный потому, что любое ядро состоит из нуклонов – протонов и нейтронов, вес которых – практически одинаковый.

Так вот, так же, как и водные массы приходят в движение под воздействием ветра или чего-нибудь другого, в пространстве постоянно происходят различные процессы (например, прохождение через пространство разных волн), в результате чего все «плавающие» в пространстве атомы и молекулы почти постоянно находятся в движении. После каждого очередного возмущения мерности пространства атомы возвращаются к своим «равновесным» состояниям. Вследствие этого атомы водорода скапливаются у верхней границы диапазона устойчивости физически плотного вещества. Понимание этого, приближает к осмыслению радиоактивности изотопов «лёгких» и «средней тяжести» элементов. К примеру, при бомбардировке водорода нейтронами, некоторые атомы водорода захватывают один или два нейтрона, в результате чего атомный вес этих атомов увеличивается на одну или две атомные единицы и образуется дейтерий или тритий, имеющие больший, чем водород, атомный вес при таких же электрохимических свойствах. Дейтерий и тритий, имея такой незначительный атомный вес, являются радиоактивными изотопами водорода. Необъяснимое с классической точки зрения явление становится естественным для понимания, если учесть вышесказанное. В принципе, водород устойчив в пределах практически всего диапазона устойчивости физически плотного вещества. Но, при этом, уровень собственной мерности водорода располагается близко к верхней границе диапазона устойчивости. Для того, чтобы понять, что такое уровень собственной мерности, следует вспомнить, что каждый атом влияет на своё микропространство. Это влияние обусловлено тем, что атом занимает собой часть макропространства.

Влияние каждого атома на своё микропространство и макропространство – постоянно и пропорционально атомному весу, другими словами, количеству протонов и нейтронов, образующих атомное ядро: чем большее число нуклонов (протонов и нейтронов) входят в состав ядра атома, тем больше влияние атома на окружающее пространство. Деформация макропространства может быть различной. Атомы, возникающие вследствие синтеза или попавшие в эту деформацию, заполняют её собой. Поэтому, при заполнении одной и той же неоднородности разными атомами, последние (атомы) окажутся в разных качественных условиях. Атом водорода, при своём минимальном влиянии на окружающее пространство, будет устойчив по всей зоне неоднородности в силу того, что степень влияния атома водорода на окружающее пространство значительно меньше величины самой деформации. В то время, как степень влияния на окружающее пространство атомом урана U соизмеримо с максимальной величиной деформации пространства, при которой может существовать физически плотное вещество. Поэтому, условия для синтеза и устойчивого состояния атома урана возможны только при величине деформации, соизмеримой со степенью влияния атома урана на окружающее пространство. А эта величина, как уже говорилось, соизмерима с величиной диапазона устойчивости физически плотного вещества. Поэтому, уровень собственной мерности атома урана будет лежать вблизи нижней границы диапазона устойчивости.

Атом водорода H оказывает минимальное влияние на окружающее пространство и поэтому он будет устойчив практически в пределах всего диапазона устойчивости физически плотного вещества. Другими словами, водород имеет спектр значений собственной мерности, соизмеримый с диапазоном устойчивости физически плотного вещества. Таким образом, уровень собственной мерности представляет собой значение(я) мерности пространства внутри диапазона устойчивости физически плотного вещества, при которых происходит синтез данного атома и при которой он сохраняет устойчивое состояние. Спектр значений уровней собственной мерности водорода означают, что синтез атомов водорода будет происходить, как при деформациях пространства, соизмеримых со степенью влияния атома водорода на окружающее пространство, что близко к верхней границе диапазона устойчивости, так и при деформациях пространства, соизмеримых с величиной диапазона устойчивости физически плотного вещества.

Следует отметить, что каждый атом влияет на окружающее пространство в зависимости от его атомного веса. Но, вне зависимости от того, как сильно он влияет, он частично или полностью заполняет собой деформацию пространства, уменьшая тем самым величину этой деформации. Поэтому, совокупное влияние на пространство двухсот тридцати восьми атомов водорода приблизительно будет равно степени влияния одного атома урана. Причём, заполняя собой и компенсируя деформацию пространства, каждый атом водорода будет уменьшать «глубину» этой деформации и двести тридцать восьмой атом водорода окажется в таких же качественных условиях, как и один атом урана – станет неустойчивым, радиоактивным. Отличие будет только в том, что все эти атомы водорода будут находиться в постоянном движении друг относительно друга и периодически каждый из них окажется в положении неустойчивости и, если в это время через данную точку пространства пройдёт какое-нибудь микроскопическое возмущение мерности пространства, данный атом водорода станет радиоактивным. В то время, как каждый атом урана постоянно находится в неустойчивом состоянии и при микроскопических возмущениях мерности пространства начинает распадаться на более устойчивые атомы.

Таким образом, вне зависимости от того, какой это атом, он становится радиоактивным, если он, по тем или иным причинам, окажется близко к верхней границе диапазона устойчивости физически плотного вещества. В силу того, что в пространстве постоянно присутствуют различные микроскопические колебания мерности, атомы водорода постоянно находятся в движении, при котором они отклоняются от оптимального для них уровня мерности. Но, как и поплавок ушедший под воду всплывает после того, как рыба отпустит наживку, так и атомы водорода (впрочем, как и любые другие атомы) возвращаются к оптимальному уровню собственной мерности (Рис. 3.3.6).



Рис. 3.3.6. Синтез атомов водорода может происходить в пределах практически всего диапазона устойчивости физически плотного вещества. Уровень собственной мерности водорода, тем не менее, близок к верхней границе устойчивости. Вступает в силу эффект поплавка. Оптимальный уровень мерности водорода находится близко к верхней границе диапазона устойчивости.

Это связано с тем, что водород – легчайший из атомов и его собственное влияние на окружающие пространство минимально. И поэтому потоки первичных материй, которые после завершения процесса синтеза продолжают циркулировать в зоне деформации пространства, «выносят» атомы водорода на тот уровень мерности, при котором их собственное влияние на окружающее пространство уравновешивает воздействие потоков первичных материй. Аналогом может служить уравновешивание плавучести объекта, погружённого под воду его весом, в результате чего, материальный предмет остановится на той глубине, где обе эти силы уравновешивают друг друга. При этом объект как бы зависает на определённой глубине. Так и любой атом будет стремиться к своему оптимальному уровню.

Если во время движения атомов водорода под воздействием возмущений мерности микропространства ядро какого-либо из атомов водорода «захватит» один или два «лишних» нейтрона, то, при возвращении таких изменённых атомов к оптимальному для водорода уровню мерности они «выпадают» из диапазона устойчивости физически плотного вещества (Рис. 3.3.7).



Рис. 3.3.7. Практически все атомы имеют радиоактивные изотопы. Радиоактивные изотопы водорода – дейтерий и тритий – имеют в своих ядрах на один или два нейтрона больше, чем у собственно водорода. Их атомный вес на одну или две атомные единицы отличается от атомного веса водорода и, тем не менее, они являются радиоактивными. В то время, как атомы других элементов, имеющих точно такой и даже больший атомный вес, не проявляют признаков радиоактивности и только их изотопы, имеющие «лишний» нейтрон, проявляют себя, как радиоактивные элементы. Атомы очень многих элементов в своих устойчивых состояниях имеют в своих ядрах нейтроны, порой десятки, и, тем не менее, не становятся радиоактивными. Почему появление ещё одного нейтрона, в дополнение к уже присутствующим, делает подобный атом радиоактивным? Всё дело в том, что лишний нейтрон не меняет оптимального уровня мерности атома в целом, а изменяет степень влияния ядра этого атома, в пределах самого ядра. Поэтому атом с «лишним» нейтроном продолжает вести себя, как и атом без оного и, в результате, становиться радиоактивным.

В результате чего, становятся неустойчивыми и распадаются (Рис. 3.3.8).



Рис. 3.3.8. Радиоактивный изотоп водорода – дейтерий D – вне зависимости от того, где произошёл его синтез, устремляется к оптимальному уровню собственной мерности обычного водорода H и в результате этого, оказывается в близких к критическим для физически плотного вещества условиях. Пространство постоянно насыщено микроскопическими колебаниями мерности пространства на разных уровнях собственной мерности, в том числе и на уровне оптимальной мерности водорода. В основном, эти микроскопические колебания мерности (фотоны) возникают при переходах электронов с более удалённых от ядра орбит на более близкие к ядру у тех же самых атомов водорода, что «плавают» на уровне своей оптимальной мерности. При поглощении (наложении на атом) этих фотонов атомами дейтерия D, уровень собственной мерности увеличивается и в результате, такой атом оказывается за пределами диапазона устойчивости физически плотного вещества.

1. Нижний уровень мерности физически плотной сферы (Ф.П.С).

2. Верхний уровень мерности Ф.П.С.

И всё сразу становится на свои места, исчезают противоречия, вместо абсурда открывается великолепная картина микромира в своей первозданной красоте.

Осталось выяснить только маленькое «но»: почему тяжёлый водород возвращается к тому же оптимальному уровню собственной мерности, что и «простой» водород, в результате чего становится неустойчивым и распадается?!

Давайте чуть глубже «заглянем» в ядро атома водорода. Ядро «просто» водорода имеет один нуклон – протон – положительно заряженную частицу, заряд которой нейтрализуется отрицательным зарядом электрона, что обеспечивает устойчивость атома. Вспомним, что ядро содержит практически всю массу атома, в нём содержится физически плотное вещество, представляющее собой гибридную форму материи, возникшую в результате слияния семи первичных материй. Гибридные формы влияют на мерность микропространства с обратным знаком. Вследствие чего, изначальная деформация микропространства нейтрализуется, и восстанавливается баланс – устойчивое состояние пространства. Ядро атома водорода, при своём рождении, создаёт свою микроскопическую деформацию мерности окружающего микропространства такой же природы, что и изначальная. И, если изначальную деформацию считать отрицательной, то физически плотное вещество создаёт положительную деформацию микропространства. В зависимости от того, на каком расстоянии от ядра возникает вызванная протоном деформация микропространства, появляется или атом водорода, или нейтрон.

Дело в том, что нейтрон – электрически нейтральная частица, качественно образована протоном и электроном, расстояние между которыми – на порядок меньше размера атома водорода. Поэтому, столь близко расположенные положительная и отрицательная зоны деформации микропространства полностью компенсируют друг друга, и возникает нейтральная зона микропространства, которая не вступает во взаимодействие ни с какими другими, изолированная от всего и вся. У атома водорода «электронная» зона деформации микропространства несколько отдалена от протона, в результате чего её влияние на протон ядра водорода значительно меньше, в силу чего сила взаимодействия между ними – значительно меньше чем внутри нейтрона, в результате чего, появляются свойства, характерные для атомов. Таким образом, чётко вырисовались отличия между атомом водорода и нейтроном и это различие – только в расстоянии между двумя зонами деформации микропространства разных знаков. Именно расстояние между ними так значительно влияет на их свойства, что мы говорим, в одном случае, об атоме водорода, а в другом – о нейтроне. И опять, пространственные характеристики приводят к качественному скачку проявления материи.

А теперь, вспомним, что «электронная» зона деформации недостаточна для полного слияния семи форм материи и, что условия для слияния возникают только временно, во время прохождения фронта волны через «электронную» зону деформации микропространства. В результате этого, физически плотная материя «рождается», чтобы в следующее мгновение умереть, и так повторяется бесконечное число раз. Во время своей «кратковременной жизни» электрон проявляет свойства вещества, другими словами, влияет на пространство точно так же, как и ядро атома водорода – протон. В момент его распада – «смерти» – подобное влияние исчезает. И, как следствие, атом водорода постоянно совершает микроскопические колебания мерности окружающего микропространства, относительно уровня устойчивого состояния равновесия. В результате периодической материализации электрона, «электронная» минусовая зона деформации микропространства то исчезнет, то вновь появится.

Таким образом, различие между атомом водорода и нейтроном определяются только их пространственной структурой, которая оказывает влияние только на их химические свойства, в то время, как природа их влияния на микропространство – практически тождественна. Поэтому, когда атом водорода «захватывает» нейтрон, атом тяжёлого водорода стремится к тому же оптимальному уровню собственной мерности, что и «простой» водород, в то время, как совокупное влияние ядра на окружающее микропространство у тяжёлого водорода в два или три раза (в случае дейтерия или трития, соответственно) больше, чем у простого водорода. И, как следствие, тяжёлый водород выпадает за пределы устойчивости физически плотного вещества. Его ядра оказываются в зоне микропространства, где не может существовать материя, возникшая при слиянии семи первичных материй, происходит распад ядра на материи, его образующие. Что и соответствует радиоактивному распаду.


    Ваша оценка произведения:

Популярные книги за неделю