Текст книги "Последнее обращение к человечеству"
Автор книги: Николай Левашов
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 15 (всего у книги 17 страниц)
Другими словами, вещество, образованное восьмью формами материй распадается, и синтезируется вещество из семи форм материй. Зона смыкания этих пространств имеет мерность, лежащую в интервале:
3,00017 < λср.< 3,020373236
Поэтому освобождающаяся восьмая форма продолжает находиться в этой зоне, не становится свободной. Со временем она накапливается в зоне смыкания и начинает влиять в некоторых пределах на мерность этой зоны. Это приводит к увеличению канала между пространствами-вселенными и вызывает ещё больший отток вещества с мерностью λ8. А это приводит к возникновению условий, при которых часть вещества с мерностью λ7 становится неустойчивой и начинает распадаться на составляющие части; возникает, так называемая, термоядерная реакция.
Так «зажигаются» звёзды… (см. Рис. 155, Рис. 156, Рис. 157, Рис. 158).
Зоны неоднородностей могут быть как с Δλ > 0, так и Δλ < 0. В случае, когда неоднородности мерности пространства меньше нуля Δλ < 0, происходит смыкание пространств-вселенных с мерностями λ7 и λ6. При этом вновь возникают условия для перетекания материй, только на этот раз вещество с мерностью λ7перетекает в пространство с мерностью λ6. Таким образом пространство-вселенная с мерностью λ7 (наша вселенная) теряет своё вещество. И именно так возникают загадочные «чёрные дыры»… (см. Рис. 159).
Рис. 155; Рис. 156; Рис. 157; Рис. 158; Рис. 159 – после рождения звезда проходит через несколько этапов эволюции, каждый из которых связан с изменением мерности пространства, окружающего звезду. В конце жизни, в зависимости от изначального размера и массы, звезда становится или нейтронной звездой, или «чёрной дырой».
Эволюция звезды от голубого гиганта до красного карлика проходит за десятки миллиардов лет. Звезда рождается, постепенно уплотняется и начинается синтез из лёгких элементов более тяжёлых. Со временем доля тяжёлых элементов внутри звезды увеличивается. В результате звезда начинает всё больше и больше влиять на своё окружающее пространство. В этой точке происходит пересечение микрокосмоса и макрокосмоса. Точнее, устанавливается баланс между ними.
Изменения качественного состояния макрокосмоса приводит к появлению звезды. Звезда возникает, как результат синтеза вещества слоя с меньшим уровнем мерности, при распаде в точке смыкания вещества слоя с большим уровнем мерности. Возникает объект макрокосмоса.
В течение жизни звезды происходит синтез из лёгких элементов более тяжёлых. Это – процессы микрокосмоса. Эти качественные изменения на уровне микрокосмоса, сливаясь воедино, влияют на состояние макрокосмоса звезды. Звезда «стареет», доля лёгких элементов уменьшается, при росте доли тяжёлых.
В итоге, степень влияния звезды на свой макрокосмос увеличивается и происходит деформация слоя тождественной мерности в сфере влияния звезды. Если изначальный размер звезды был меньше десяти солнечных радиусов, то при гибели звезды образуется так называемая нейтронная звезда. И, хотя нейтронная звезда и не «открывает» дверь в другой слой с тождественной мерностью, но, тем не менее, оказывает значительное влияние на качественное состояние «своего» слоя тождественной мерности.
Если же при рождении звезда имела радиус больше десяти солнечных, то в конце своей жизни она столь сильно влияет на окружающее пространство, что происходит смыкание со слоем тождественной мерности, имеющим меньший уровень мерности, и рождается «чёрная дыра». Вещество, попадая в окрестности этой «чёрной звезды», распадается на первичные материи, а в слое тождественной мерности меньшего уровня мерности рождается новая звезда, которая проходит аналогичный эволюционный путь в «своём» слое тождественной мерности.
В конце этого пути появляется или аналог нейтронной звезды или «чёрная дыра» другого слоя тождественной мерности. И опять рождается звезда в следующем слое тождественной мерности, которая проходит свой эволюционный путь. В конце этого цикла качественного преобразования материи происходит освобождение последней первичной материи…
λ6 – мерность пространства-вселенной, образованного слиянием шести форм материй.
λ7 – мерность пространства-вселенной, образованного слиянием семи форм материй.
λ8 – мерность пространства-вселенной, образованного слиянием восьми форм материй.
λb – мерность жёлтого гиганта.
λc – мерность красного гиганта.
λd – мерность красного карлика.
λe – мерность нейтронной звезды.
λf – мерность «чёрной дыры».
ю) Образование планетарных систем
Вот таким образом в зонах неоднородностей мерности пространств-вселенных образуются звёзды и «чёрные дыры». При этом возникает перетекание вещества, материй между разными пространствами-вселенными.
Существуют также пространства-вселенные, имеющие мерность λ7, но имеющие другой состав вещества. При стыковке в зонах неоднородностей пространств-вселенных с одинаковой мерностью, но разным составом их образующего вещества, возникает канал между этими пространствами. При этом происходит перетекание веществ, как в одно, так и в другое пространство-вселенную. Это – не звезда и не «чёрная дыра», а зона перехода из одного пространства в другое.
Зоны неоднородности мерности пространства, в которых происходят описанные выше процессы, обозначим как ноль переходы. Причём, в зависимости от знака Δλ, можно говорить о следующих типах этих переходов:
Положительные ноль переходы (звёзды), через которые вещество перетекает в данное пространство-вселенную из другого с большей мерностью:
(Δλ > 0) n+
Отрицательные ноль переходы, через которые вещество из данного пространства-вселенной перетекает в другое с меньшей мерностью:
(Δλ < 0) n-
Нейтральные ноль переходы, когда потоки материй движутся в обоих направлениях и тождественны друг другу, а мерности пространств-вселенных в зоне смыкания практически не отличаются: n.
Если продолжить далее анализ происходящего, то увидим, что каждое пространство-вселенная, через звёзды, получает материю, а через «чёрные дыры» – её теряет. Для возможности устойчивого существования этого пространства необходим баланс между приходящей и уходящей материей в данное пространство-вселенную. Должен выполняться закон сохранения вещества, при условии устойчивости пространства. Это можно отобразить в виде формулы:
∫n+(i)km(i)kdk+ ∫n(ij)km(ij)kdk≡∫n-(j)km(j)kdk (9)
где:
n+(i)k – положительный ноль-переход (звезда).
n(ij)k – нейтральный ноль-переход.
n-(j)k – отрицательный ноль-переход.
m(i)k – совокупная масса форм материй, протекающая через звезду.
m(j)k – совокупная масса форм материй, протекающих через данную «чёрную дыру» в другое пространство-вселенную.
Таким образом, между пространствами-вселенными с разной мерностью через зоны неоднородности происходит циркуляция материи между пространствами, образующими данную систему (см. Рис. 156). Количество пространств-вселенных, образующих замкнутую сбалансированную систему может быть различным. Поэтому тождество (9) правильней будет записать в виде:
∫∫n+(i)km(i)kdkdi+ ∫∫n(ij)km(ij)kdkd(ij) ≡∫∫n-(j)km(j)kdkdj (10)
Через зоны неоднородности мерности (ноль переходы) возможен переход из одного пространства-вселенной в другое. При этом происходит трансформация вещества нашего пространства-вселенной в вещество того пространства-вселенной, куда осуществляется переброс материи. Так что, неизменённой «наша» материя попасть в другие пространства-вселенные не может.
Зонами, через которые возможен такой переход являются «чёрные дыры», в которых происходит полный распад вещества данного типа и нейтральные ноль переходы, через которые происходит балансный обмен материей.
Нейтральные ноль переходы могут быть устойчивыми или временными, появляющимися периодически или спонтанно. На Земле есть целый ряд областей, где периодически возникают нейтральные ноль переходы. И если в их пределы попадают корабли, самолёты, лодки, люди то они бесследно исчезают. Такими зонами на Земле являются: Бермудский треугольник, районы в Гималаях и Пермская зона и другие.
Практически невозможно, в случае попадания в зону действия ноль перехода, предсказать, в какую точку и в какое пространство переместится материя. Не говоря уже о том, что вероятность возвращения в исходную точку практически равна нулю… Отсюда следует, что нейтральные ноль переходы нельзя использовать для целенаправленного перемещения в пространстве.
Не менее интересна по своей природе эволюция жизни звёзд…
Только что рождённые звёзды могут быть гигантами. Их размеры могут быть больше (голубые гиганты) всей солнечной системы… Плотность материи таких звёзд изначально невысока (см. Рис. 157). С течением времени в результате термоядерных реакций атомы, образующие звёзды-гиганты теряют электроны, протоны и, в конечном итоге, распадаются.
Звёздное вещество теряет простейшие атомы, такие, как водород, гелий и др. и всё больший процент в нём начинают составлять атомы тяжёлых элементов. Размер звезды уменьшается, она становиться всё более и более плотной, тяжёлой и степень влияния на мерность окружающего пространства становится всё более и более сильной. Если в начале своей эволюции звезда имела мерность окружающего её пространства, равную
3,00017 < λа< 3,020373236.
При своём сжатии она вызывает вторичное вырождение пространства на величину Δλ < 0. А это приводит к тому, что мерность окружающего её пространства становится равной:
3,00017 < (λа– Δλ) < 3,020373236
3,00017 < λb< 3,02037323,
где Δλ может колебаться, на первом этапе, в пределах
0 < Δλ< 0,020203236…
Постепенно вторичное вырождение мерности пространства, вызванное тяжестью звезды, становится всё более и более выраженным. И мерность окружающего звезду пространства начинает приближаться к мерности λ7.
По мере развития этого процесса канал между пространствами-вселенными с мерностями λ8и λ7 уменьшается. Всё меньшее и меньшее количество вещества перетекает из пространства с мерностью λ8 в пространство с мерностью λ7. При этом активность излучений такой звезды становится всё меньше и меньше, пока не прекращается совсем. Наступает смерть звезды. Звезда «тухнет»…
Если в начале своей эволюции звезда имела большую массу, но меньше десяти солнечных масс, то к концу своей жизни она вызывает вторичное вырождение мерности, когда мерность окружающего её пространства становится меньше мерности λ7.
Δλ ≈ 0.0102018…
Λ6 < λd < λ7; λd = λa – Δλ
Она производит прогиб в другую сторону. Возникает, так называемая, нейтронная звезда (см. Рис. 158). Если в начале своей эволюции звезда имела массу большую, чем десять солнечных, вторичное вырождение становится столь значительным, что вызывает смыкание пространств-вселенных с мерностями λ7 и λ6 (см. Рис. 159). При этом материя из пространства с мерностью λ7 начинает перетекать в пространство с мерностью λ6. Образуется «чёрная дыра». Таким образом, «чёрные дыры» возникают и в ходе эволюции звёзд.
А теперь рассмотрим также и природу образования планетарных систем.
В начале своей жизни звезда имеет баланс между её размером, каналом между пространствами с мерностями λ8 и λ7 и количеством вещества, перетекающего через эту звезду из пространства с мерностью λ8 (см. Рис. 160). В результате термоядерных реакций при потере простых атомов, размеры звезды уменьшаются, и она не в состоянии пропустить через себя всю массу материй, текущих из пространства с мерностью λ8 в пространство с мерностью λ7.
Рис. 160 – в ходе эволюции звезды возникают такие качественные состояния звезды, когда её поверхность не в состоянии пропустить через себя всю массу материй, движущихся через зону смыкания пространств. Часть массы материй начинает скапливаться в зоне смыкания пространств по одну сторону перехода.
λ6 – мерность пространства-вселенной, образованного слиянием шести форм материй.
λ7 – мерность пространства-вселенной, образованного слиянием семи форм материй.
λ8 – мерность пространства-вселенной, образованного слиянием восьми форм материй.
λc – мерность красного гиганта.
Этот дисбаланс со временем увеличивается и достигает в конечном итоге критического уровня. Происходит колоссальный взрыв, часть вещества звезды выбрасывается в окружающее её пространство. При этом уменьшается мерность этого окружающего звезду пространства и формируется канал, по которому перетекает такое количество материи, которое звезда в состоянии через себя пропустить (см. Рис. 161). Астрономы называют этот взрыв – взрывом сверхновой звезды.
Рис. 161 – взрыв сверхновой звезды, при котором происходит деформация окружающего её пространства и выброс огромных масс скопившейся материи. При взрыве сверхновой происходит выброс поверхностных слоёв звезды, которые состоят в основном из лёгких элементов. Выброс вещества звезды приводит к зарождению планет в зонах деформации пространства, возникшего в момент взрыва. Причём, более тяжёлые элементы «выпадают» ближе к самой звезде. В результате этого ближние планеты в большей степени состоят из тяжёлых элементов, в то время, как удалённые планеты – в основном из лёгких. Солнечная система – прекрасный пример этому.
λ6 – мерность пространства-вселенной, образованного слиянием шести форм материй.
λ7 – мерность пространства-вселенной, образованного слиянием семи форм материй.
λ8 – мерность пространства-вселенной, образованного слиянием восьми форм материй.
При этом взрыве звезда теряет как свои верхние наиболее лёгкие слои, состоящие из водорода, гелия и других простых атомов, так и внутренние слои, содержащие тяжёлые атомы, только в значительно меньшей степени. При взрыве происходит деформация пространства и на относительно больших расстояниях (несколько астрономических единиц). И если ядро атома вызывает максимальное искривление (деформацию) пространства вблизи себя, то, по мере удаления от ядра, эта деформация становится всё меньше и меньше. При взрыве сверхновой звезды деформация пространства проявляется сильнее при удалении от этой звезды (см. Рис. 162).
Рис. 162 – распределение материи, выброшенной взрывом сверхновой звезды по зонам деформации мерности вокруг неё.
λ6 – мерность пространства-вселенной, образованного слиянием шести форм материй.
λ7 – мерность пространства-вселенной, образованного слиянием семи форм материй.
λ8 – мерность пространства-вселенной, образованного слиянием восьми форм материй.
Таким образом, выброшенные при взрыве верхние слои звезды образуют газопылевую туманность, из которой со временем образуются планеты. Причём, чем ближе к звезде возникает планета, тем больше её плотность и больший процент тяжёлых атомов в её составе. Чем дальше от звезды образуется планета, тем меньше её плотность и тем больший процент «лёгких» атомов её образуют: водород, кислород, углерод, вода и т. д. (см. Рис. 163 и Рис. 164).
Рис. 163 – образование планет из материи, выброшенной взрывом сверхновой в зонах деформации мерности пространства.
λ6 – мерность пространства-вселенной, образованного слиянием шести форм материй.
λ7 – мерность пространства-вселенной, образованного слиянием семи форм материй.
λ8 – мерность пространства-вселенной, образованного слиянием восьми форм материй.
Рис. 164 – гибель планеты ФАЭТОН и образование астероидного пояса солнечной системы.
λ6 – мерность пространства-вселенной, образованного слиянием шести форм материй.
λ7 – мерность пространства-вселенной, образованного слиянием семи форм материй.
λ8 – мерность пространства-вселенной, образованного слиянием восьми форм материй.
я) Суперпространства
Теперь вернёмся к системе, которую образуют между собой группа пространств-вселенных с разной мерностью.
Так как мерность матричного пространства, в котором они образуются неоднородна в разных направлениях, то возникают условия для постепенного вырождения мерности каждого из пространств-вселенных, различное в разных направлениях. Возникает квантование π-мерного матричного пространства.
В результате этого пространства-вселенные образуют замкнутую сбалансированную систему (см. Рис. 165), в которой одно пространство-вселенная по мере уменьшения мерности (вырождения) переходит в другое пространство-вселенную. В зонах, где уменьшение мерности становится критическим для всех пространств-вселенных, они сливаются в одно целое! И имеют в этих зонах одинаковую мерность λ2 = 2,878950584…
Рис. 165 – расположение пространств-вселенных друг относительно друга в нашей метавселенной.
1. границы метавселенной.
2. пространства-вселенные, образованные слиянием разного количества форм материй.
Нашу метавселенную формируют девять форм материй. Число перестановок (комбинаций) из них равно 459. Учитывая, что минимальное число взаимодействующих между собой форм материй должно быть не менее двух, эту цифру можно получить из формулы
ΣCmn = n!/m!(m-n) (11)
где:
n= 9; 2 ≤m≤9.
В то время, как в действительности нашу метавселенную образуют триста пространств-вселенных. Это значит, что существуют «незаполненные» зоны матричного пространства, что говорит о том, что процесс формирования нашей метавселенной не закончен, и что на структуру метавселенной могут оказывать влияние другие системы пространств. Наша метавселенная является лишь завершённой частью притом, очень маленькой частью, того, что называется Большим Космосом.
Перед тем, как перейти к следующей пространственной системе, хотелось бы отметить следующее: пространства-вселенные, образованные синтезом двух и трёх форм материй, имеют максимальную нестабильность, но в то же время большую активность структур, а пространства, образованные синтезом девяти форм материй, максимально устойчивы и максимально инерционны. Поэтому большинство «вакантных» мест – для пространств с мерностью λ2 и λ3…
Глава 11. Матричное пространство. Образование суперпространств
Матричное пространство – что это такое?!.. Прежде, чем продвигаться дальше в познание макрокосмоса, давайте с вами определимся с этим понятием… Для того чтобы возникли условия для слияния очередной формы материи нашего типа, необходимо изменение мерности пространства на некоторую характерную именно для этого типа материй большого Космоса, величину, равную
Δλ = 0,020203236…
Очередное изменение мерности на эту величину Δλ приводит к слиянию ещё одной формы материи, которая точно укладывается в «прокрустово ложе» этого коэффициента квантования мерности пространства.
При последовательном изменении (квантовании) мерности пространства на величину Δλ, происходит последовательное слияние форм материй и образование разных типов пространств-вселенных (частично этот вопрос рассматривался в Главе 10). Таким образом, имеется группа материй данного типа, синтез вещества из которых возможен при изменении мерности пространства на величину Δλ для каждой из этих форм.
При этом образуется система пространств, образованных синтезом материй данного типа. Коэффициент Δλ может принимать самые разные значения. Даже изменение его на ничтожную величину приводит к тому, что материя нашего типа не может слиться в веществе (выродиться). При другом значении Δλ возникают условия для слияния воедино материй другого типа, отличного от нашего. Это приводит к образованию качественно другой системы пространств – образуется другое матричное пространство.
В результате этого мы имеем целую систему матричных пространств, которые отличаются друг от друга коэффициентом квантования мерности пространства и типом материй их образующих. Это проявляется в качественном отличии веществ, возникающих при слиянии разных типов материй и разного количества форм материй, образующих каждый из этих типов веществ.
Каждое матричное пространство неоднородно по мерности. Эти колебания мерности матричного пространства приводят к тому, что в некоторых его областях происходит смыкание с другими матричными пространствами, имеющими в этих областях такую же мерность. Возникают зоны перетекания из матричного пространства с одним коэффициентом мерности γ в матричное пространство с другим коэффициентом.
И если в случае образования звёзд и «чёрных дыр» всё определялось лишь количеством материй, образующих пространства-вселенные в зоне замыкания (см. главу 10) и материи были одного типа, т. е. квантовались коэффициентом мерности γ = 0,020203236…, то при смыкании матричных пространств возникают зоны перетекания материй, имеющих различный коэффициент γi материй разных типов, которые не могут быть совместимыми ни при каких условиях.
Что же происходит в этих зонах смыкания матричных пространств?!. В зонах смыкания происходит распад вещества как одного, так и другого типа, и образуются «свободные» материи как одного, так и другого типов. Но, что же происходит дальше?! На процессы, происходящие в этих зонах, влияют три условия:
1) количество форм материй данного типа, образующих каждое матричное пространство в зоне их смыкания. Чаще всего количество форм материй, образующих каждое из матричных пространств, различное. Это, в свою очередь, создаёт разный поток вещества по совокупному составу, перетекающего из одного матричного пространства в другое и обратно. Возникают два встречных потока, что приводит к образованию мощных вихревых потоков форм материй двух типов в зоне их пересечения. При этом более мощный поток развернёт слабый вспять, и возникнет мощный вихревой фонтан материй двух типов.
2) на мощность потоков материй из матричных пространств оказывает влияние мерность зоны смыкания двух матричных пространств. Естественно, эта мерность не может быть гармоничной с типом мерности каждого из матричных пространств, но она может быть более близкой к типу мерности одного или другого типа.
|λ′1 – λ′12| < | λ′2 – λ′12| (12)
Другими словами, возникает перепад мерности в матричных пространствах в зоне смыкания, различный для каждого из матричных пространств. А также имеет значение знак этого перепада – положительный или отрицательный. Отрицательный перепад означает более благоприятные условия для вытекания материй из данного матричного пространства.
3) к какому типу квантования мерности матричных пространств оказывается ближе мерность зоны смыкания матричных пространств:
|λ′1 – λ′12| / λ′1 < 0
|λ′2 – λ′12| / λ′2 > 0 (13)
или
|λ′1 – λ′12| / λ′1 > 0
|λ′2 – λ′12| / λ′2 < 0
Мерность зоны смыкания может быть ближе к типу мерности λ′1 или λ′2. При этом если различие в мерности условно Δλ′12, а коэффициент квантования γ и происходит распад материй типа мерности λ′2
|Δλ′12 – aγ′1| → 0
Если:
|Δλ′12 – bγ′2| → 0
Происходит распад материй типа мерности λ′1.
Если:
(Δλ′12 – bγ′2)<0
Происходит синтез материй типа мерности λ′2. И соответственно наоборот, если:
(Δλ′12 – aγ′2) < 0
Происходит синтез материй типа мерности λ′1;
Где a и b обозначает, какое количество раз коэффициент γi «помещается» в зоне деформации мерности пространства.
Другими словами, в зоне смыкания может возникнуть синтез форм материй какого-нибудь из двух типов мерностей матричных пространств за счёт расщепления материй другого типа. При этом синтезе может поглощаться материя промежуточного типа мерности и выделяться материя промежуточного типа, что в свою очередь вызывает неустойчивость в матричном пространстве с типом квантования мерности γ1 или γ2, в зависимости от направления перетекания материй.
Не правда ли, очень напоминает по своей природе экзотермические и эндотермические реакции на уровне микрокосмоса, при которых поглощалось или выделялось тепло из окружающей среды (см. Главу 10). Вернёмся к процессам, происходящим в зоне смыкания двух матричных пространств…
В зависимости от того, как взаимодействуют перечисленные выше три условия, в зоне смыкания двух матричных пространств может возникнуть зона синтеза материй данного типа или зона распада этих материй. В одном случае возникает центр образования пространств-вселенных с данным типом квантования мерности пространства (супераналог звезды) (см. Рис. 166). В другом случае возникает центр распада пространств-вселенных с данным типом квантования мерности пространства (супераналог «чёрной дыры»).
Рис. 166 – смыкание двух матричных пространств, имеющих разные коэффициенты квантования мерности.
λ′1 – мерность первого матричного пространства.
λ′2 – мерность второго матричного пространства.
λ′12 – мерность зоны смыкания матричных пространств.
Δλ1 – диапазон колебания мерности первого матричного пространства.
Δλ2– диапазон колебания мерности второго матричного пространства.
При этом синтезированные формы материй данного типа квантования мерности начинают скапливаться в зоне смыкания матричных пространств, и если масса вытекающих из зоны смыкания материй меньше массы синтезируемых материй, в этой зоне возникает избыточная концентрация материи в зоне смыкания матричных пространств.
Со временем, избыточная концентрация становится критической и начинает мешать втеканию материй в эту зону, что приводит к возникновению неустойчивости мерности этой зоны. Происходит супервзрыв, при котором избыток синтезируемых форм материй выбрасывается из зоны смыкания, и при этом возникают колебания мерности внутри каждого из матричных пространств (см. Рис. 167).
Рис. 167 – выброс материй через зону смыкания матричных пространств при супервзрыве, когда зона смыкания не может пропустить через себя всей массы движущейся материи.
λ′1 – мерность первого матричного пространства.
λ′2 – мерность второго матричного пространства.
λ′12 – мерность зоны смыкания матричных пространств.
Δλ1 – диапазон колебания мерности первого матричного пространства.
Δλ2– диапазон колебания мерности второго матричного пространства.
В этих зонах внутреннего колебания мерности матричного пространства начинается процесс образования пространств-вселенных, из которых формируются системы пространств-вселенных (метавселенные) в зонах внутреннего колебания мерности пространства (см. Рис. 168).
Рис. 168 – при взрыве происходит возмущение мерности пространства, окружающего зону смыкания и образуются зоны неоднородности мерности, в которых начинает оседать материя, выброшенная этим взрывом. Происходят процессы аналогичные взрыву сверхновой звезды, только на другом качественном уровне. Разница – только в масштабах. В одном случае рождаются планетарные системы, а в другом – вселенные. В последнем случае деформация при взрыве слоёв тождественной мерности приводит к смыканию их между собой и рождению галактик.
λ′1 – мерность первого матричного пространства.
λ′2 – мерность второго матричного пространства.
λ′12 – мерность зоны смыкания матричных пространств.
Δλ1 – диапазон колебания мерности первого матричного пространства.
Δλ2– диапазон колебания мерности второго матричного пространства.
Естественно, амплитуда внутреннего колебания мерности матричного пространства увеличивается с удалением от зоны смыкания матричных пространств. А это приводит к тому, что в этих зонах могут слиться воедино разное количество форм материй данного типа. Причём, чем дальше от центра зоны смыкания матричных пространств, тем большее количество форм материй могут слиться и образовать вещество (см. Рис. 169).
Рис. 169 – образование метавселенных в зонах неоднородности мерности пространства.
1. Зона, где нет условий для слияния материй.
2. Зона, где могут слиться две формы материй.
3. Зона, где могут слиться три формы материй.
4. Зона, где могут слиться четыре формы материй.
5. Зона, где могут слиться пять форм материй.
6. Зона, где могут слиться шесть форм материй.
7. Зона, где могут слиться семь форм материй.
8. Зона, где могут слиться восемь форм материй.
9. Зона, где могут слиться девять форм материй.
10. Зона смыкания матричных пространств.
11. Метавселенные.
12. Зоны деформации мерности.
Слившиеся воедино две формы материй в первой зоне от центра образуют метавселенную из одного пространства-вселенной. Три слившиеся формы материй формируют в следующей зоне метавселенную из трёх пространств-вселенных. При слиянии четырёх форм материй, образуется метавселенная из семи пространств-вселенных. Слияние пяти, соответственно, даёт двадцать пять. Слияние шести – шестьдесят шесть.
При слиянии семи – сто девятнадцать, восьми – двести сорок шесть, девяти – четыреста пятьдесят девятьпространств-вселенных, формирующих метавселенную в соответствующей зоне внутреннего колебания мерности данного матричного пространства. Количество возможных пространств-вселенных, входящих в метавселенную, определяется по формуле количества комбинаций из материй, которые образуют вещество пространств-вселенных.
∑ ∑ Cmn = n! / m!(n-m)! (14)
n m
где: 2 ≤m≤n.
n – максимальное количество материй данного типа квантования мерности, с коэффициентом квантования γi, которые образуют пространства-вселенные в данной зоне внутреннего колебания мерности матричного пространства.
Чаще всего количество пространств-вселенных, образующих данную метавселенную, меньше максимального. И чем дальше от центра зоны смыкания матричных пространств, тем больше отличие между возможным и реальным количеством пространств-вселенных, образующих данную метавселенную. Чем дальше от центра, тем больше «свободных мест».
Дело в том, что условия квантования мерности данной зоны колебания мерности являются лишь необходимыми условиями для образования пространств-вселенных. Достаточным это условие становится только тогда, когда в эту зону внутреннего колебания мерности матричного пространства попадает необходимая масса материй для синтеза этих пространств-вселенных. Хотя масса материй «выброшенных» из зоны смыкания матричных пространств во время сверхвзрыва огромная, но всегда – конечная величина. Этой массы хватает для образования конечного числа пространств-вселенных.
После сверхвзрыва зона смыкания матричных пространств уменьшается, что приводит к уменьшению массы приходящей материи. Со временем этот процесс приходит к некоторому определённому балансному уровню. В результате сверхвзрыва, образуется система метавселенных, которая получила условное название суперпространство первого порядка, которое образуется слиянием девяти форм материй (см. Рис. 170 и Рис. 171).
Рис. 170 – суперпространство первого порядка.
1. Зона смыкания матричных пространств.
2. Метавселенные.
Рис. 171 – суперпространство первого порядка. Вид сверху и сбоку.
1. Зона смыкания матричных пространств
2. Метавселенные, образованные слиянием девяти форм материй.
3. Метавселенные, образованные слиянием восьми форм материй.
4. Метавселенные, образованные слиянием семи форм материй.
5. Метавселенные, образованные слиянием шести форм материй.
6. Метавселенные, образованные слиянием пяти форм материй.
7. Метавселенные, образованные слиянием четырёх форм материй.
8. Метавселенные, образованные слиянием трёх форм материй.
9. Метавселенные, образованные слиянием двух форм материй.
Следует отметить, что возникшие в зонах внутреннего колебания мерности матричного пространства метавселенные сами оказывают влияние на мерность окружающего их матричного пространства. Искривление, возникающее при смыкании двух матричных пространств, неодинаково в разных направлениях. А это означает некоторое отличие как формы, так и качественного состава возникающих в этих зонах метавселенных.