355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Печуркин » Энергия и жизнь » Текст книги (страница 4)
Энергия и жизнь
  • Текст добавлен: 19 марта 2017, 22:00

Текст книги "Энергия и жизнь"


Автор книги: Николай Печуркин


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 13 страниц)

Заканчивая рассмотрение особенностей жизни, мы можем еще раз подчеркнуть, что возмущающий поток энергии раскручивает циклы на всех уровнях организации живого вещества.

Тем самым жизнь не останавливается, не загоняется в тупик из-за нехватки вещества, а совершенствуется, ускоряя и умощняя свои циклы. «Хочешь жить – умей вертеться» – гласит лукавая пословица. Для оценки развития круговоротов (а не в приложении к одной популяции) она теряет большую часть метафоричности и довольно точно отражает одну из главных черт биотических циклов. Действительно, в физическом круговороте произошел отбор самого энергоемкого и подвижного носителя – молекулы воды. В биотическом круговороте и в структурах живого вещества она тоже играет одну из важнейших ролей.

Это удивительное вещество пронизывает всю биосферу. В атмосфере – это испарение и громадные переносы облаков по всей планете; в гидросфере – это аккумуляция тепла океаническими водами и глобальные течения; в литосфере – это теплоноситель отопительной системы, позволяющий выводить внутренние потоки тепла. И наконец, вода – основа всего живого. Все живое вещество состоит более чем на 2/3 из воды. Например, человек за свою жизнь в среднем прокачивает воды около 75 т (а это в тысячу раз больше его веса). А главное – вода участвует в энергодающих метаболических процессах, без которых жизнь невозможна.

Тесную взаимосвязь воды и жизни много раз отмечал В. И. Вернадский, говоря, что вода и жизнь генетически связаны, а известный немецкий физиолог прошлого века Эмиль Дюбуа-Реймон называл жизнь «одушевленной водой». Можно сделать некоторые выводы.

1. Поток энергии является источником движения в любой системе.

2. Под влиянием постоянной накачки энергией в любой ограниченной системе возникают циклические перемещения вещества вплоть до сложных динамических структур. Неравновесность является характерной чертой для систем с накачкой (а не с особым свойством жизни).

3. В системах с циклами имеет место отбор наиболее подвижного и энергоемкого носителя, примером которого на нашей планете может служить вода.

4. Ведущую роль в трансформации веществ на Земле играет биотический круговорот, составляющий основу жизни.

Глава 6. Два энергетических принципа биологического развития

В особой земной оболочке, которой является биосфера, характеризуемая необратимыми процессами, жизнь будет увеличивать, а не уменьшать с ходом времени свободную энергию этой оболочки.

В. И. Вернадский

6.1. Трудности измерения эволюции

Древнейшие натурфилософы-материалисты, особенно в Греции и Индии, не могли не обращать внимания на энергетические потоки в виде тепла, огня, света, считали их материальными носителями движения. Представители экспериментальной науки, начиная с XVII в., занимаясь вопросами энергетики в технике и физике, неоднократно сталкивались с вопросами энергетики и движущих сил жизни. К примеру, одной из первых единиц мощности была в буквальном смысле «живая» единица – лошадиная сила. Говоря об истории идей, относящихся к энергетическим аспектам жизни, В. И. Вернадский отмечал, что целый ряд мыслителей прошлого, философов и естествоиспытателей, независимо приходили почти к одинаковым представлениям.

Сам В. И. Вернадский придавал большое значение энергетической функции вещества. Второй биогеохимический принцип Вернадского непосредственно связывает вопросы направленной эволюции с энергетикой жизни. По В. И. Вернадскому [1960], преимущества в ходе эволюции получают те организмы, которые приобрели способность усваивать новые формы энергии или «научились» полнее использовать химическую энергию, запасенную в других организмах.

Наибольшее развитие в приложении к анализу живых систем энергетический подход получил в работах исследователей экологического направления. Одной из первых попыток можно считать гипотезу А. Лотки о том, что эволюция экосистемы направлена на увеличение суммарного потока энергии через нее, а в стационарном состоянии этот поток достигает максимума. Эта закономерность проявляется в широко известной (и в ряде случаев поражающей воображение) способности живого к распространению, к развитию, во «всюдности» жизни согласно первому биогеохимическому принципу Вернадского.

Не останавливаясь на конкретных вариантах трактовки, можно сделать вывод о том, что к настоящему времени основные трудности развития и применения этих принципов заключаются не в недостаточности идей и теоретических обобщений. Главная трудность состоит в сложностях строгой экспериментальной проверки этих принципов и в недостаточной точности, а иногда и невозможности измерений на природных биологических системах. Таким образом, не выполняется одно из основных методологических требований естественных наук: экспериментальная проверяемость результатов, при которой теория должна опираться на эксперимент. Это условие очень важно для обобщений в биологии, где большое разнообразие явлений может приводить к неменьшему разнообразию их истолкований; поэтому здесь тем более справедливо замечание Ю. Одума [1975, с. 149]: «Утвердиться в науке и оказаться полезным на практике может лишь тот принцип, который поддается не только качественному, но и количественному анализу».

Таким образом, необходимость строгих дискриминационных экспериментов очевидна, а их отсутствие является «узким местом», сдерживающим накопление количественного знания. Нужно иметь хорошо воспроизводимые стационарные состояния систем и переходы между ними с измерением потоков энергии и вещества.

Однако трудности количественной экспериментальной (тем более натурной) работы с экосистемами или их отдельными звеньями невообразимо велики. Трудно себе представить стационарные состояния таких систем со строгим измерением и контролем параметров среды и живого вещества, еще более трудно провести надежные измерения эволюционных переходов в них. Поистине не от «хорошей жизни» измерения трансформации энергии проводились на отдельных изолированных организмах, хотя узость и ограниченность такого подхода хорошо осознавал и резко критиковал В. И. Вернадский [1978, с. 141] еще в начале нашего века: «Благодаря тому, что в огромной массе проблем биологии зависимость организма от внешней среды исчезает из поля нашего зрения, вместо живого организма изучается в ней искусственно отделенное от внешней среды тело, не отвечающее реальному объекту Природы».

Таким образом, задача кажется неразрешимой и трудно представить, как выйти из этого «порочного круга»: в экологии можно правильно поставить задачу, но нельзя провести строгих измерений (например, только для одного эволюционного эксперимента могут понадобиться десятки поколений исследователей), а в возможных (но далеко не простых!) экспериментах по изучению роста и развития отдельных организмов теряется основа для корректной постановки задачи.

И все же дело не столь безнадежно, если обратиться к объему, удивительным образом сочетающему в себе достоинства обоих упомянутых подходов, а именно к популяциям микроорганизмов. Вновь процитируем В. И. Вернадского [1978, с. 141]: «Во всех вопросах микробиологии мы для получения нужных результатов, для изучения изменения среды под влиянием организмов идем одним путем. Мы изучаем не влияние отдельного организма, а проявление массового воздействия их совокупности». Представления В. И. Вернадского о живом веществе как о совокупности живых организмов, производящих на земной поверхности химическую работу и являющихся носителями свободной энергии, идейно тесно смыкаются с представлениями об энергетических потоках, развиваемых в данной работе.

Итак, что же может предложить современная микробиология (вернее, ее кинетический и популяционный разделы) для решения поставленных задач?

Со второй половины нашего столетия начали активно развиваться методы непрерывного культивирования микроорганизмов, что привело к разработке уникальных экспериментальных моделей популяционной динамики в открытых системах. Наконец-то появилась экспериментальная возможность на живых надорганизменных системах получать стационарные состояния, измерять переходы между ними и даже изучать эволюцию этих состоянии. Быстрое развитие техники непрерывного культивирования усовершенствовало разнообразные методы экспериментального исследования: при низких и высоких скоростях роста популяций; с различной степенью и характером ограничения роста (лимитирование по различным веществам, ингибирование метаболитами и внешними соединениями типа загрязняющих веществ); рост без внешнего лимитирования; в пространственно неоднородных и гомогенных средах; в монокультурах и различного рода ассоциациях одного или нескольких трофических уровней вплоть до малых экосистем с разными уровнями замыкания по веществу, т. е. круговорота; в стабилизированных, переходных или меняющихся по какому-либо заданному закону условиях среды. При этом целый ряд количественных показателей не только находится под контролем, но также может автоматически измеряться и регистрироваться [Печуркин, 1978].

Для иллюстрации действия энергетических принципов, обсуждаемых в этой главе, мы будем использовать некоторые данные, полученные в экспериментах с микробными популяциями и ассоциациями в открытых системах [Печуркин, 1982].

В этой главе мы обсудим два энергетических принципа: экстенсивного и интенсивного развития жизни. Первый связан с захватом энергии биологическими системами, а второй – с эффективностью ее использования.

6.2. Энергетический принцип экстенсивного развития (ЭПЭР)

Обозначим через Нпад поток падающей энергии, т. е. поток энергии, который потенциально может быть использован некоторой биологической системой. Примерами Нпад являются поток солнечной энергии для автотрофов, количество органической пищи (в калориях), доступной для использования гетеротрофными звеньями в единицу времени. Не весь падающий поток энергии может быть захвачен и использован системой:

Нисп = Нпад Ннеисп. (1)

Сам поток энергии, захваченной системой, складывается из двух частей: доли, связанной с запасением энергии в биомассе – В, и потерь на организацию, поддержание и активность, т. е. расход энергии системой, – R:

Нисп = µ В – R[2]2
  Опечатка в книге? Наверное: Нисп = µ В + R


[Закрыть]
. (2)

где µ показатель прироста биомассы (или обновления в стационарном состоянии открытой системы).

Объединив (1) и (2), получим общее соотношение для потоков энергии в систему и ее трансформации в этой системе:

Нпад Ннеисп = Нисп = µ В + R (3)

Дадим формулировку энергетического принципа: в процессах развития надорганизменных систем (эволюции, экологических сукцессиях и перестройках) использованный биологической системой поток энергии Нисп возрастает, достигая локальных максимальных значений в стационарных состояниях.

Подчеркнем еще раз, что в формулировке данного принципа речь идет о стационарных состояниях, которые достигаются в процессе развития открытых биологических систем популяционного и более высоких уровней структурной организации, а также их эволюции.

Представим схематически наиболее предпочтительный тип изменения потоков энергии во времени, использованных системой (рис. 10,а). Здесь показаны и рост Нпад, т. е. рост захваченной энергии, и уменьшение Ннеисп, т. е. снижение потерь. Штриховкой обозначено, что при этом происходит увеличение рассеяния энергии внутри системы Д с уменьшением трат на образование биомассы (это относится уже ко второму энергетическому принципу и будет обсуждаться позже). Естественно, что монотонное линейное увеличение Нпад или снижение Ннеисп не может иметь места в реальных системах. Гораздо типичнее скачкообразные переходы, связанные с качественными изменения в самой системе (рис. 10, б—г). Условия роста (или по крайней мере не убывания) потока использованной энергии Нисп остаются для каждого момента времени.

Рис. 10. Возможные изменения потоков энергии при развитии открытых биологических систем надорганизменного уровня. Везде отмечается рост Нисп. (Объяснение в тексте)


6.3. Экспериментальные эволюционные машины (ЭЭМ)

В предыдущем параграфе мы упоминали о том, что непрерывный рост микробных популяций в проточных системах позволяет экспериментально изучать микроэволюционные переходы, т.е. шаги эволюции.

Суть непрерывного процесса заключается в постоянной подаче питания в зону развития популяции и одновременном отборе избыточной части из рабочего пространства. Природная популяция, таким образом, осуществляя непрерывный обмен веществом с внешней средой и получая энергию извне, развивается в открытой системе, что является главной чертой ее динамики. В лабораторных условиях такой обмен осуществляется с помощью непрерывного потока питающей среды в рабочий объем ферментера и соответствующего оттока культуральной жидкости.

В классических периодических процессах нелимитированный рост популяции отмечается лишь во время экспоненциальной фазы, которая сменяется фазой замедления, т. е. торможения роста. При непрерывном культивировании можно застабилизировать рост популяции в любой точке на восходящей ветви S-образного роста популяции, в том числе и в экспоненциальной фазе. Для этого, как уже говорилось, необходимо непрерывно подавать свежую питательную среду для популяции и удалять избыточную часть популяции из рабочего объема. Для поддержания плотности популяции в заданной точке фазы нелимитированного роста применяются различные способы управления скоростью протока. Основное их свойство – наличие обратной связи между приростом концентрации биомассы и удалением части популяции из ферментера. Эти величины должны быть равными и это равенство, а с ним и концентрация биомассы – поддерживаются с помощью автоматических измеряющих и следящих устройств. Среди таких способов первым был турбидостат, в котором концентрация клеток поддерживается на определенном уровне за счет регулирования оптической плотности культуры. Применение его ограничено работой с оптически однородными средами.

Для процессов культивирования, в которых имеется прямая связь между приростом биомассы и изменением рН-культуры (например, при потреблении физиологически кислого источника азота), разработан и используется рН-статный способ управления скоростью протока. При этом скорость протока с помощью автоматических устройств уравнивается со скоростью изменения рН растущей популяцией, а следовательно, и со скоростью роста, что обеспечивает поддержание концентрации биомассы на заданном уровне.

Рис. 11. Блок-схема процессов непрерывного роста микробных популяций.

1 — культиватор; 2 — датчик-измеритель; 3 — самописец с регулятором; 4 — система управления насосами-дозаторами; 5 — система дозирования; 6 — сосуд с питательной средой; 7 — сборник урожая [Печуркин, 1982]. (Штриховой линией отмечена блок-схема хемостата.)

Наиболее просто и надежно система поддержания концентрации биомассы (клеток) и управления скоростью протока работает в импульсном режиме (рис. 11). Основу схемы составляет датчик-измеритель. Для турбидостата это – датчик оптической плотности, для рН-стата – электродная пара рН. Измеренное значение параметра в виде электрического сигнала подается на схему управления протоком (блоки 3 и 4). Если величина параметра достигает заданной, то в системе управления вырабатывается управляющий сигнал, который передается в систему дозирования. Происходит долив порции свежей питательной среды и одновременно такой же по объему слив части суспензии из ферментера. Разбавление культуры свежей питательной средой приводит к снижению величины управляющего параметра, и проток выключается. Продолжающийся рост популяции снова вызывает возрастание величины управляющего параметра до уровня срабатывания следящей системы и т. д. На самописце 3 вырисовывается «пила», частота и размер зубцов которой определяются особенностями схемы управления и скоростью роста популяции.

В отличие от описанного выше турбидостатного культивирования в нелимитированных условиях, когда для поддержания устойчивого состояния требуются регуляторы, хемостат характеризуется обязательным внешним ограничением роста. Такое ограничение является устойчивым регулятором стационарности параметров среды и популяции. Как правило, это – лимитирование недостатком одного из компонентов питания или ингибирование роста продуктами метаболизма. Основа хемостата – подача питательной среды с постоянной скоростью протока. Популяция, утилизируя субстрат, «загоняет» себя в условия лимитирования по одному из компонентов среды, потребляя его до низких остаточных значений. Хемостат получил широкое распространение, так как простота аппаратурного оформления сочетается в нем с широкими экспериментальными возможностями.

Для нас здесь необходимо подчеркнуть два важных свойства турбидо– и хемостата. Первый соответствует росту популяций в нелимитированных условиях, что в природе может встречаться на ранних фазах экологической сукцессии, например при заселении новой экологической ниши. Второй – с глубоким лимитированием роста – является аналогом большинства природных ситуаций, где повсеместно встречается ограничение роста.

С точки зрения функционирования открытых систем хемостат и турбидостат – это термодинамические системы, способные находиться в устойчивых стационарных состояниях. Причем хемостат соответствует случаю постоянных потоков, а турбидостат – случаю постоянной организации (или постоянных реакционных сил). Других условий стационарности в открытых системах просто не бывает. Таким образом, в руках экспериментаторов имеются открытые системы двух основных типов развития (и для экологии, и для термодинамики). Если в таких системах будут происходить эволюционные изменения, переход от одного стационарного состояния к другому в результате изменения качественных свойств систем (например, в результате процессов мутирования и отбора), то главные характеристики этих сукцессионных перестроек, или шагов эволюции, можно измерить, не теряя общности подхода с точки зрения как биологии, так и физики. Естественно, что основу такого единства составляет энергетический подход.

Накоплено достаточно много данных по работе «эволюционных машин» обоих типов. Кинетика накопления активных мутантов, вытесняющих исходную форму из ферментера в результате процессов автоселекции, выглядит очень разнообразной (см. [Печуркин, 1978, 1982]). Здесь мы только перечислим наиболее интересные варианты.

В турбидостате это – мутанты с повышенной максимальной удельной скоростью роста; более «резистентные» мутанты, т. е. способные расти с повышенной скоростью в условиях ингибирования роста. Для хемостата характерны мутанты с повышенным сродством к лимитирующему субстрату; более экономичные формы; более жизнеспособные мутанты, т. е. с пониженной скоростью отмирания, и т. д.

В турбидостате микроэволюционный переход сопровождается увеличением скорости протока, а следовательно, и Нпад (в соответствии с рис. 10, б); в хемостате процесс автоселекции приводит к более полному использованию лимитирующего субстрата, т. е. к снижению Ннеисп (в соответствии с рис. 10, в). И для обоих случаев характерно увеличение потока использованной энергии, т. е. Нисп. Таким образом, энергетические принципы однозначно указывают направление эволюционных перестроек, несмотря на кажущееся внешнее разнообразие эволюционных переходов.

Оказалось, что в хемостате и турбидостате можно хорошо экспериментировать с более сложными взаимодействиями, например изучать сосуществование видов, а также трофические отношения типа хищник – жертва, паразит – хозяин. При длительном развитии таких систем в проточных условиях наблюдалась хорошо выраженная тенденция к стабилизации их развития и коэволюции, причем Нисп возрастал.

Эволюционные эксперименты по типу турбидостата были проведены в лаборатории доктора С. Спигелмана (США) не с живыми клетками, а с макромолекулярными системами, способными к воспроизведению. Действию отбора в ряду последовательных разведений (переносов в пробирки с приготовленной для размножения средой) подвергался носитель наследственности – молекула РНК бактериофага или ее укороченные варианты. Репликация РНК осуществлялась с помощью фермента РНК-полимеразы, выделенной из зараженной фагом культуры кишечной палочки.

Остановимся подробнее на одном из экспериментов по накоплению и идентификации мутантов, резистентных к этидийбромиду. В качестве исходной формы в опыт бралась малая реплицирующаяся молекула РНК (MDV), состоящая из 218 нуклеотидов, расположенных в известной последовательности. Реакционная смесь в каждой из 25 пробирок содержала 15 мкмоль ингибитора – этидийбромида, который способен обратимо снижать скорость удлинения цепи молекулы. В каждой пробирке, начиная с первой, реакция инкубировалась в течение 10 мин, а для переноса в последующую пробирку использовалась малая доля (10-5) материала предыдущей. В данных условиях эксперимента происходило экспоненциальное размножение РНК в каждой пробирке, так что действие отбора было направлено на увеличение скорости репликации, которая и возросла почти в 2 раза.

Изучение последовательности нуклеотидов в мутантной РНК показало, что три нуклеотида отличаются от нуклеотидов «дикого» (исходного) типа. Каждая из трех единичных мутаций происходила в разное время. Химическая основа резистентности, по-видимому, заключается в элиминации сайтов, связывающих этидий, благодаря специфическим изменениям в последовательности нуклеотидов. Это выражалось в том, что мутантная РНК связывала меньше этидия, чем молекулы «дикого» типа.

Эти эксперименты стимулировали теоретические исследования уже упоминавшегося нами М. Эйгена [1973] по эволюции самовоспроизводящихся структур типа гиперциклов замкнутых цепочек из ферментов и нуклеиновых кислот. Он рассматривал конкуренцию таких единиц в открытых системах при двух типах селекционных ограничений: постоянные потоки (аналог хемостата) и постоянная организация (аналог турбидостата). Близость его результатов к расчетам по кинетике эволюционных переходов в микробных популяциях оказалась удивительной. Если же дополнить его расчеты, введя поток богатых энергией мономеров, которые служат источником энергии и вещества для синтеза исследуемых полимеров, то действие энергетического принципа экстенсивного развития становится совершенно очевидным для обоих случаев селекционных ограничений [Печуркин, 1982]. Таким образом, и на неживых системах с автокатализом и внешним ограничением «работа» энергетических принципов может быть достаточно легко продемонстрирована.

К сожалению, получить данные со строгими измерениями кинетики и эволюции сложных экологических систем гораздо труднее. Трудно замерять и динамику потоков энергии. Однако некоторые результаты экологических сукцессий и эволюционных перестроек достаточно хорошо иллюстрируют действие энергетических принципов.

Мы уже говорили, что энергетические принципы и биогеохимические принципы Вернадского очень хорошо соответствуют друг другу. «Всюдность» жизни определяется «всюдностью» потока энергии, и можно только удивляться подгонке локальных круговоротов вещества к захвату солнечной энергии. В этом разделе мы рассмотрим ряд примеров, иллюстрирующих действие энергетических принципов в трех основных звеньях круговорота: автотрофах-продуцентах, гетеротрофах-консументах и разлагателях-редуцентах.

Общеизвестно, что при изменении (даже очень резком) условий среды может произойти практически полная смена видов, особенно доминирующих в экосистеме, но функция круговорота страдает менее всего. Например, при сукцессионных перестройках в экосистемах работает правило, сформулированное А. Лоткой еще в 1925 г.: максимизируется энергия в биологических системах. Сукцессия сопровождается удлинением жизненных циклов, ростом степени замкнутости круговоротов вещества и в конечном счете переходом к стабилизированному состоянию, где весь прирост биомассы в автотрофном звене компенсируется ее расходом в последующих звеньях. Такой «гомеостаз» системы может быть ярко выражен. Около 40 лет назад было отмечено, что содержание хлорофилла на 1 м2 в разных сообществах бывает примерно одинаковым [Гесснер, 1949; цит. по: Одум, 1975]. То есть в целых сообществах содержание зеленого пигмента гораздо более равномерно распределено, чем в отдельных растениях или их частях. В сложившихся сообществах самые разнообразные растения – старые, молодые, освещенные, затененные, многолетние, однолетние – представляют собой единое целое и по-своему приспособлены к захвату поступающей солнечной энергии. Растения, адаптированные к слабому свету, содержат меньше хлорофилла на единицу действующей поверхности, чем растения верхнего яруса. Степень поглощения светового потока хорошо определяется невооруженным глазом в глухом таежном лесу, в старой дубраве и в многоярусных джунглях: даже в яркий день там царит полумрак.

Содержание хлорофилла иногда предлагается считать за одну из основных продукционных характеристик природных экосистем (точнее ассимиляционное число, т. е. продуктивность на 1 г хлорофилла, выраженная в граммах кислорода за час). И для водных, и для наземных экосистем этот показатель является одним из наиболее устойчивых.

Может быть, еще ярче проявляется эта важнейшая особенность биосистем – функциональное сходство при различиях видового состава – при изучении суммарной биологической активности почв. Несмотря на явные различия в составе организмов, результирующая активность определенного горизонта, слоя или даже типа почвы остается примерно одинаковой. То же можно отнести и к дыханию, т. е. выделению углекислоты. И все это имеет место, несмотря на сложную пространственную микроочаговость почвенных ценозов. Такой микроочаг (0,05–5 мм в диаметре) иногда включает и автотрофный компонент; тогда он служит реальной природной структурой, соответствующей представлению о простейшей микробной экосистеме. Таким образом, в природной обстановке уже в пределах 3–5 мм складываются сложные сообщества, осуществляющие круговорот! И такие сообщества относительно устойчивы по функционированию.

Крупные экосистемы воды и суши с точки зрения структурной организации и наличия имеющихся видов трудно объединить по сходству. Возможно, что ни одного вида, общего для таких экосистем, и не удастся отыскать. Но с точки зрения функционирования, сукцессионной динамики и эволюции они во многом схожи. По крайней мере эволюция в пределах разных групп экосистем может количественно характеризоваться ростом эффективности использования солнечной энергии.

Из-за низкой плотности и рассеянности потока квантов солнечного излучения даже в сбалансированных ценозах используется на фотосинтез около 1% падающего потока, а в целом по биосфере – ниже 0,5%. Это кажется очень малым, но мы теперь уже знаем, как непросто живым экосистемам в условиях нехватки вещества производить его всевозможные циклы. Мы уже описывали одно из удивительнейших чудес природы – растение, которое способно на огромную высоту навстречу солнечному лучу поднимать растворы необходимых солей, чтобы добыть энергию себе и последующим звеньям, поставляющим эти соли растению в круговороте.

Зато с каждым последующим звеном коэффициент использования энергии повышается, травоядные животные используют 10—15% от их кормовой базы, а хищники – до 30%. Поскольку консументы берут около 10% энергии растений, то, как отмечает С. С. Шварц [1980], часто делается вывод о том, что не энергетические ресурсы лимитируют развитие. Однако более тонкие наблюдения говорят, что такие выводы надо использовать с осторожностью. Оказывается, энергетический баланс животных очень напряжен. Поддержание энергетического баланса может рассматриваться как основа адаптаций.

Однако нельзя отводить растениям слишком пассивную роль. Живая природа более изобретательна, чем мы склонны считать. Одним из ярких примеров этому может служить увеличение захвата энергии растениями в эволюции. Если первичный бактериальный фотосинтез был связан с энергетически низкой длинноволновой частью спектра солнечного излучения, то современные зеленые растения используют наибольший возможный поток солнечной энергии. Считающийся более древним бактериохлорофилл имеет максимум поглощения между 800 и 900 нм, где поток солнечной энергии существенно меньше.

Говоря о действии ЭПЭР в биосфере, обратимся к выводам теоретиков. В обстоятельном труде «Самоорганизация в неравновесных системах» Г. Николис и И. Пригожин [М., 1979] затрагивают аспекты эволюции экосистем. Рассматривая вопросы устойчивости системы против структурной флуктуации с новой функцией (что-то типа активного мутанта в популяции), авторы приходят к выводу, что «в качестве движущей силы эволюции следует рассматривать энергетическую диссипацию» и что «процессы эволюции приводят к усилению эксплуатации окружающей среды» (с. 456). Обсуждавшийся нами энергетический принцип достаточно полно и точно соответствует этим выводам.


    Ваша оценка произведения:

Популярные книги за неделю