Текст книги "Генетика человека с основами общей генетики. Учебное пособие"
Автор книги: Николай Курчанов
сообщить о нарушении
Текущая страница: 4 (всего у книги 16 страниц) [доступный отрывок для чтения: 4 страниц]
4.4. Взаимодействие генотипа и среды
Природа проявления действия генов намного сложнее, чем в описанных выше вариантах. Рассматривая действие генов и их аллелей, необходимо учитывать влияние внешней среды на проявление признаков, а также модифицирующее действие других генов.
Практически не встречается однозначное соответствие между геном и фенотипом. Справедливость этого положения подтверждает явление множественного действия генов – плейотропия, т. е. влияние гена на несколько признаков. Плейотропное действие гена часто зависит от того, на какой стадии онтогенеза он проявляется: чем раньше ген проявляется, тем более выражен его плейотропный эффект. Некоторые генетики считают, что все гены в той или иной степени являются плейотропными.
Другое явление, демонстрирующее сложность межгенных взаимодействий, – это наличие генов-модификаторов. Генетический анализ показал, что кроме «основных» генов, определяющих проявление признака, существуют гены-модификаторы, влияющие на его проявление. До конца не понятно, являются ли они специальной группой генов по отношению к данному конкретному признаку или их действие обусловлено плейотропным эффектом.
Одни геныпочти не проявляют вариабельности в своем фенотипическом проявлении, другие характеризуются высокой степенью изменчивости. Для характеристики проявления генов в фенотипе также используются специальные термины.
Пенетрантность – проявляемость гена в фенотипе. Количественно выражается вероятностью фенотипического проявления определенного признака, кодируемого доминантным геном или рецессивным геном в гомозиготном состоянии. Если пенетрантность аллеля А равна 100 %, значит он проявляется у всех особей-носителей аллеля А.
Экспрессивность – степень выраженности признака в фенотипе. Может быть выражена количественно (но не всегда) в зависимости от уклонения признака от какой-либо стандартной величины (обычно от признака аллеля дикого типа).
Пенетрантность и экспрессивность особенно наглядно демонстрируются студентам примерами из области медицинской генетики. Различные заболевания могут проявляться и не проявляться, а в случае проявления могут быть выражены в самой разной степени: от крайне тяжелой до практически неощутимой формы.
Все вышесказанное свидетельствует о том, что генотип – это система взаимодействующих генов, а фенотип – результат взаимодействия генов в конкретных условиях внешней среды. Пределы, в которых может изменяться фенотип при неизменном генотипе, различны для разных признаков. Именно генотип определяет спектр возможных фенотипов. Эту способность генотипа определяет такая важнейшая характеристика, как норма реакции.
Норма реакции – это диапазон проявлений генотипа. Некоторые признаки имеют однозначную норму реакции или варьируют незначительно. Жесткое генетическое закрепление признаков возникает в тех случаях, когда широкая норма реакции неадаптивна (например, строение глаза). Многие признаки имеют широкую норму реакции. К их числу относятся поведенческие признаки, что имеет особое значение для психологии, этологии, генетики поведения (рис. 4.2).
Рис. 4.2. Поведенческие признаки характеризуются особо широкой нормой реакции
Непонимание этой закономерности послужило не только причиной затянувшегося спора по природе поведения человека между гуманитариями и естественниками, но и причиной абсурдных попыток «переделки» человека, трагических «революций» в истории общества, приписывания несуществующих возможностей воспитанию. Да, поведение лабильно, способно видоизменяться, но только в пределах нормы реакции. Развитие поведенческих наук показало, что возможности влияния значительно меньше, чем представлялось ранее, а «власть» генотипа, наоборот, значительно больше, в том числе и в поведении человека. Решающий вклад в понимание природы поведения человека внесла этология, с основными положениями которой мы познакомимся ниже.
Другим важным понятием генетики поведения является наследуемость. Наследуемость – это степень фенотипической изменчивости признака, обусловленная генотипом. Термин «наследуемость» ввел американский генетик Дж. Лаш в начале 1940-х гг.
В связи с широким применением этого термина в генетике человека на нем следует остановиться особо. Поскольку мерой изменчивости признака служит дисперсия, наследуемость (иногда говорят – коэффициент наследуемости) представляет собой отношение генотипической дисперсии к фенотипической дисперсии:
H=VG /VP.
В свою очередь, фенотипическая дисперсия вычисляется по формуле:
VP =VG +VE,
где Н – коэффициент наследуемости; VP – фенотипическая дисперсия признака; VG – генотипическая дисперсия: изменчивость признака, связанная с изменчивостью генотипа; VE – средовая дисперсия: изменчивость признака, связанная с изменчивостью среды.
Если признак можно выразить количественно, то измерение фенотипической дисперсии через сумму квадратов отклонений от среднего значения по стандартной формуле дисперсии обычно не представляет трудностей.
Труднее определить величину генотипической дисперсии. На модельных объектах у животных приблизительную величину генотипической дисперсии определяют, сравнивая инбредную (VP1 ≈ VЕ) и гетерогенную популяции (VP2 = VG + VE). Тогда VG = VP2 – VP1. Многочисленные факторы влияют на показатели наследуемости, что обусловливает введение различных методик расчета.
Необходимо отметить, что наследуемость измеряет не степень обусловленности признака генотипом, а степень фенотипической изменчивости, обусловленную генотипической изменчивостью. Чем гомогеннее популяция, тем ниже в ней коэффициент наследуемости, а значит, менее перспективен отбор по изучаемому признаку.
Показатели наследуемости справедливы только для определенной среды, в которой они были получены, и в иных средах эти показатели будут другими. Разными будут показатели наследуемости и для разных генотипов в одной среде. Свойство генотипа определять параметры изменчивости фенотипа в различных внешних средах получило название ГС-взаимодействие («генотип-среда»-взаимодействие). Наглядным примером могут служить многочисленные эксперименты на животных по обучению прохождения лабиринта на скорость. Линии «умных» и «глупых» крыс, демонстрируя четкое различие показателей в обычной среде, давали почти одинаковые результаты в «хорошей» и «плохой» среде.
ГС-взаимодействия применительно к человеку будут рассмотрены далее.
4.5. Генетика пола и сцепленное с полом наследование
Генетический механизм определения пола в природе обусловлен генами, локализованными на особых половых хромосомах, имеющихся в кариотипе. Пол, у которого в кариотипе одинаковые половые хромосомы, называется гомогаметным, а пол, у которого в кариотипе разные половые хромосомы, – гетерогаметным. Неполовые хромосомы кариотипа называются аутосомами.
Морфологически различающиеся половые хромосомы представляют собой пару гомологов, поскольку имеют гомологичный участок, что позволяет им конъюгировать в мейозе. Однако гомологичный участок половых хромосом гетерогаметного пола обычно очень мал, поэтому большинство их аллелей присутствуют в генотипе в единственном числе. Наличие только одного аллеля в генотипе диплоидного организма называется гемизиготой.
В природе встречаются разные варианты хромосомного определения пола. Чаще гетерогаметным полом является мужской, а гомогаметным – женский, что наблюдается у млекопитающих (рис. 4.3).
У птиц (рис. 4.4) гетерогаметным полом является женский (WZ), а гомогаметным – мужской (ZZ). У некоторых насекомых самцы и самки могут различаться числом половых хромосом (либо две одинаковые, либо одна). Наконец, у пчел самки диплоидны, а самцы – гаплоидны (возникают путем партеногенеза из неоплодотворенных яйцеклеток).
Рис. 4.3. У млекопитающих гетерогаметным полом является мужской, а гомогаметным – женский
Кариотип человека включает 44 аутосомы и 2 половые хромосомы – у женщин XX, у мужчин ХY. Однако половой кариотип не исчерпывает вопрос детерминации пола. Этот вопрос далее рассмотрен отдельно.
Половые хромосомы всегда несут различные гены, не связанные с формированием пола (например, цвет глаз у дрозофилы). Наследование генов, локализованных на половых хромосомах, получило называние сцепленного с полом наследования. Такие гены обычно обозначают в виде верхнего индекса соответствующей половой хромосомы(ХА, ХВ, Yс+ и т. д.).
Рис. 4.4. У птиц гетерогаметным полом является женский, а гомогаметным – мужской
У млекопитающих Х-хромосома имеет довольно много генов, а Y-хромосома, наоборот, мало. Так, у человека, по различным данным, Х-хромосома несет более 700 генов, а Y-хромосома – около 80. У самцов рецессивные гемизиготные гены Х-хромосомы могут проявлять свой фенотипический эффект. У самок также одна из двух Х-хромосом подвергается гетерохроматизации в раннем эмбриогенезе и инактивируется. Биологический смысл этого явления получил объяснение в гипотезе М. Лайон через механизм «дозовой компенсации», приводящий в соответствие дозы генов Х-хромосом у разных полов. Процесс гетерохроматизации Х-хромосом носит случайный характер, поэтому в разных клетках женского организма инактивированы разные Х-хромосомы(либо отцовская, либо материнская), а значит, могут функционировать разные аллели гомологичных генов.
В генетике пола выделяют также такое понятие, как наследование, ограниченное полом. Оно обусловлено генами, локализованными на аутосомах, но фенотипически проявляющимися у разных полов по-разному.
Формирование половых признаков, полового поведения – это сложный, многоступенчатый процесс, происходящий во время онтогенеза. Подробно он рассматривается в курсе биологии развития.
Глава 5. Изменчивость
Храбреца не разыгрывай перед судьбой,
Каждый миг она может покончить с тобой.
Твой доверчивый рот, услаждая халвою,
Что ей стоит подсыпать отравы любой?
Омар Хайям (1048–1123), персидский философ и поэт
Всем живым организмам свойственна изменчивость, под которой понимают свойство приобретать новые признаки. Изменения в генетическом материале организмов служат основой разнообразия жизни на Земле.
В отечественной традиции принято рассматривать генотипическую (наследственную) и модификационную (ненаследственную) изменчивость в едином разделе генетики. Среди генотипической изменчивости выделяют мутационную и особую комбинативную изменчивость – процесс формирования новых комбинаций генов.
В западной литературе эти явления чаще рассматриваются в самостоятельных разделах: «мутации», «рекомбинации», «модификации». Понятие «изменчивость» употребляется обычно при анализе эволюционной теории.
5.1. Мутации
Теория мутаций составляет одну из основ генетики. Ее основные положения были разработаны голландским ученым Г. де Фризом еще в начале XX в.
Мутации – это наследственные изменения генетического материала. Они характеризуются как редкие, случайные, ненаправленные события. Большая часть мутаций приводит к различным нарушениям нормального развития, некоторые из них летальны. Однако вместе с тем именно мутации являются исходным материалом для естественного отбора и биологической эволюции.
Частота мутаций возрастает под действием определенных факторов – мутагенов, способных изменять материал наследственности. В зависимости от их природы мутагены делятся на физические (ионизирующее излучение, УФ-излучение и др.), химические (большое число различных соединений), биологические (вирусы, мобильные генетические элементы, некоторые ферменты). Весьма условно деление мутагенов на эндогенные и экзогенные. Так, ионизирующее излучение, помимо первичного повреждения ДНК, образует в клетке нестабильные ионы (свободные радикалы), способные вторично вызывать повреждения генетического материала. Многие физические и химические мутагены являются также канцерогенами, т. е. индуцируют злокачественный рост клеток.
Частота мутаций подчиняется распределению Пуассона, применяемому в биометрии, когда вероятность отдельного события очень мала, а выборка, в которой может возникнуть событие, велика. Вероятность мутаций в отдельном гене довольно низкая, однако число генов в организме велико, а в генофонде популяции – огромно.
В литературе можно встретить различные классификации мутаций: по проявлению в гетерозиготе (доминантные, рецессивные), по инициирующему фактору (спонтанные, индуцированные), по локализации (генеративные, соматические), по фенотипическому проявлению (биохимические, морфологические, поведенческие, летальные и др.). На мой взгляд, эти показатели представляют собой скорее рабочие характеристики конкретных мутаций, а не основу для классификации.
Классифицируются мутации по характеру изменений генома. По этому показателю выделяют 4 группы мутаций, каждая из которых имеет многочисленные разновидности.
Генные мутации представляют собой изменения нуклеотидного состава ДНК отдельных генов. Мутационные изменения генов могут происходить в одной точке (односайтовые мутации) либо в нескольких разных точках (многосайтовые мутации). Термин «сайт» в генетике подразумевает определенное место в цепи молекулы ДНК. Современные методы молекулярной генетики позволили определить два основных процесса формирования генных мутаций: замена нуклеотидов и сдвиг рамки считывания, каждый из которых имеет свои варианты (рис. 5.1).
Транзиции – при замене сохраняется месторасположение пуриновых и пиримидиновых нуклеотидов (АТ → ГЦ, ГЦ → АТ и т. п.).
Трансверсии – при замене пуриновые и пиримидиновые нуклеотиды меняются местами (АТ → ЦГ, АТ → ТА и т. п.).
Мутации вследствие сдвига рамки считывания встречаются более часто. Они проявляются в двух вариантах: инсерция (вставка) и делеция (утеря) одного или нескольких нуклеотидов. Необходимо отметить, что вставка сдвигает рамку считывания в одном направлении, а делеция – в противоположном.
Рис. 5.1. Генные мутации
Механизм возникновения генных мутаций наиболее детально изучен у вирусов и бактерий. Согласно концепции американского генетика Р. фон Борстела, генные мутации возникают в результате ошибок «трех Р»: репликации, репарации и рекомбинации.
В процессе репликации возможна замена нуклеотидов вследствие некоторой неоднозначности принципа комплементарности. Азотистые основания нуклеотидов ДНК могут существовать в нескольких таутомерных формах. Таутомеризация – это изменение положения водорода в молекуле, меняющее ее химические свойства. Некоторые таутомеры нуклеотидов меняют способность формировать водородные связи с другими нуклеотидами. У аналогов нуклеотидов таутомерия происходит значительно чаще, чем у типичных форм, что объясняет их мутагенный эффект. Примером может служить аналог тимидина 5-бромурацил, который способен в некоторых таутомерных формах вступать в связь с гуанином. Вследствие вырожденности генетического кода замены нуклеотидов могут иметь различные фенотипические проявления. Они могут не вызвать замены аминокислот или привести к появлению аминокислоты, близкой по своим свойствам, но могут привести к замене на аминокислоту с другими физико-химическими свойствами или к образованию стоп-кодона.
Большинство мутаций со сдвигом рамки считывания обнаружены в участках ДНК, состоящих из одинаковых нуклеотидов. Существует гипотеза возникновения этих мутаций вследствие диссоциации и неправильного восстановления нитей в данных участках.
Резкий рост мутаций при нарушении системы репарации и взаимосвязь мутационного и рекомбинационного процессов продемонстрированы в многочисленных исследованиях. Процессы репарации и рекомбинации мы рассмотрим ниже.
Хромосомные мутации (аберрации) – это изменения структуры хромосом: внутрихромосомные или межхромосомные перестройки, возникающие при разрывах хромосом. Хромосомные перестройки обычно приводят к различным фенотипическим проявлениям. Выделяют следующие виды аберраций (рис. 5.2).
Дупликация – дублирование участка хромосомы.
Амплификация – многократное повторение участка хромосомы.
Повторы генетического материала не оказывают такого отрицательного влияния на организм как делеции и дефишенси. Показана значительная роль дупликаций в эволюции генома, поскольку они создают дополнительные участки генетического материала, доступные для мутирования, изменения функций генов и естественного отбора.
Рис. 5.2. Хромосомные мутации
Явление амплификации можно наблюдать при культивировании клеток с различными повреждающими агентами, но оно встречается и в природе как закономерный процесс онтогенеза, когда необходимо резко увеличить экспрессию каких-либо генов. В последнем случае возможны два варианта: либо амплифицированная ДНК остается связанной с хромосомой, образуя многочисленные репликативные вилки (например, в фолликулярных клетках дрозофилы); либо синтезированная ДНК отделяется от материнской и многократно реплицируется (как ДНК, содержащая геныр-РНК ооцитов амфибий).
Инверсия – поворот участка хромосомына 180°. Инверсия приводит к изменению линейной последовательности генов. Она встречается в двух вариантах: перицентрическая инверсия (центромера входит в инвертированный участок) и парацентрическая инверсия (центромера не входит в инвертируемый участок). Негативный эффект инверсии зависит от локализации точек разрывов, их близости к жизненно важным генам. Необходимо отметить, что инверсии встречаются в природных популяциях чаще других хромосомных перестроек. Они представляют собой распространенный путь преобразований генетического материала в эволюции, являясь факторами изоляции и дивергенции новых форм в пределах вида. Реципрокные транслокации – обмен участками хромосом между негомологичными хромосомами. В результате такой транслокации изменяется характер сцепления генов – гены, принадлежащие к разным хромосомам, могут наследоваться как одна группа сцепления. Характер конъюгации при транслокации меняется – вместо бивалентов образуется квадривалент в виде «фигуры креста» (рис. 5.3).
Рис. 5.3. Синапсис хромосом при реципрокной транслокации в профазе мейоза. На каждой хромосоме отмечена центромера
Гетерозиготы по реципрокным транслокациям обладают пониженной плодовитостью, так как продуцируют дефектные гаметы. Только у двух видов гамет из шести возможных при разных способах расхождения хромосом имеются полные комплекты генов. Остальные несут дупликации и нехватки и не могут дать жизнеспособного потомства. У животных реципрокные транслокации встречаются редко, обычно с негативным эффектом, но они широко распространены у растений. Благодаря специальным механизмам, транслокация обеспечивает изоляцию новых форм.
Участок хромосомы может менять свое положение и без реципрокного (взаимного) обмена, оставаясь на той же хромосоме или включаясь в другую. Такое явление называется транспозицией. Транспозиции будут рассматриваться ниже как важный самостоятельный раздел современной генетики.
Вероятно, все типы хромосомных перестроек имеют единый механизм и обусловлены лабильностью генома.
Причиной изменения фенотипа при различных хромосомных перестройках часто является изменение расположения гена. Этот феномен получил название эффект положения гена. Он показан для многих генов и обычно влияет на их регуляторную систему. Например, при перемещении гена из эухроматина в гетерохроматиновую область его активность утрачивается, хотя сам ген не изменяется.
Геномные мутации – это изменения числа хромосом. Среди геномных мутаций также выделяют несколько разновидностей (рис. 5.4).
Рис. 5.4. Геномные мутации
Робертсоновские перестройки – слияния и разделения хромосом в области центромеры. Названы они по имени В. Робертсона, который предложил свою гипотезу механизма таких мутаций. Центрические слияния (робертсоновские транслокации) представляют собой слияния двух негомологичных акроцентрических хромосом с образованием одной субметацентрической хромосомы. При разделении, наоборот, одна субметацентрическая хромосома делится на две акроцентрические хромосомы. При этом должна образоваться новая центромера, иначе хромосома без центромеры будет потеряна при митозе.
Робертсоновские перестройки приводят к изменению числа хромосом в кариотипе, не влияя на общее количество генетического материала в клетке. Оба варианта перестроек представлены в природе, но робертсоновские транслокации встречаются значительно чаще. Они являются одним из магистральных путей эволюции кариотипов.
Анеуплоидия – изменение числа хромосом, не кратное гаплоидному набору. Как правило, представляет собой добавление или потерю одной или двух хромосом диплоидного набора. У животных анеуплоидия обычно приводит к тяжелым аномалиям или летальности. Однако у растений трисомия (наличие трех гомологичных хромосом) может служить фактором генетического разнообразия. Причиной анеуплоидии является нерасхождение хромосом в мейозе и образование несбалансированных гамет.
Моноплоидия (гаплоидия) – гаплоидное состояние диплоидного организма. Эта мутация интенсивно изучается у растений, так как позволяет видеть проявление рецессивных аллелей. У животных моноплоидия обычно приводит к летальному исходу.
Автополиплоидия – наличие в клетке более двух одинаковых гаплоидных наборов. Эта разновидность мутации довольно широко представлена в природе у протистов, грибов и растений. Плоидность макронуклеуса инфузорий может достигать нескольких сотен. У животных встречается редко и обычно приводит к летальному исходу на ранних стадиях эмбриогенеза. У культурных растений сбалансированные полиплоиды (т. е. кариотипы с четным числом гаплоидных наборов – 4n, 6n, 8n и т. п.) получают искусственным путем из-за их более крупных размеров. Несбалансированные полиплоиды (3n, 5n, 7n и т. п.) растений часто имеют пониженную фертильность вследствие нарушений мейоза. Тем не менее некоторые растения-триплоиды (3n) обладают большими размерами и продуктивностью по сравнению с диплоидными (2n) и тетраплоидными (4n).
Аллополиплоидия – объединение в клетке разных геномов посредством гибридизации. В природе для многих цветковых растений описаны полиплоидные ряды различной степени плоидности. Эти ряды возникают путем гибридизации разных видов и последующего удвоения родительских гаплоидных наборов. Так преодолевается барьер бесплодия при скрещивании разных видов.
Цитоплазматические мутации – это изменения неядерных генов. Генетическая информация органелл (в отличие от хромосомной) представлена в зиготе в разном объеме от каждого из родителей. Чаще всего преобладает вклад материнского организма, но у некоторых видов наследуются внеядерные геномы от обоих родителей. Мутации генома органелл обычно представлены точечными мутациями и делециями. Основными носителями внеядерной генетической информации в клетках высших эукариот являются хлоропласты и митохондрии.
В хлоропластах фенотипическое проявление мутаций выражается нарушением фотосинтеза, изменением чувствительности к температуре и устойчивости к антибиотикам. Генетика хлоропластов разработана хуже, чем генетика митохондрий.
У позвоночных митохондрии служат единственным хранилищем внеядерного генетического материала. Источником митохондрий в зиготе, вероятно, служит только яйцеклетка. Хотя 95 % митохондриальных белков кодируется в ядре, мутации мт-ДНК происходят в 10 раз чаще, чем в ядерных генах, поэтому их вклад ощутим.
Фенотипическое проявление мутаций мт-ДНК во многом зависит от уровня потребления АТФ той или иной тканью. Поскольку наиболее энергозависимыми являются нервная и мышечная системы, такие мутации наиболее часто проявляются в форме различных нейропатий и миопатий.