Текст книги "Цунами"
Автор книги: Николай Щетников
Жанр:
Геология и география
сообщить о нарушении
Текущая страница: 2 (всего у книги 6 страниц)
Объемные продольные и поперечные волны возникают одновременно и распространяются независимо друг от друга, причем скорость продольных волн почти вдвое больше скорости поперечных, тем более поверхностных, распространяющихся еще медленнее, чем поперечные. Поэтому продольные волны, проходя через глубины Земли и достигая ее поверхности первыми, приносят информацию о происшедшем землетрясении. Основные параметры, характеризующие сейсмические волны, – это амплитуда колебания, период и скорость.
Если бы вещество Земли, где происходят сейсмические процессы, являлось идеально упругой и однородной средой, то волновая картина, возникающая при землетрясении, была бы значительно проще. В действительности же вследствие слоистости, неоднородности коры, а также в зависимости от гидрологических условий и значительной неровности земной поверхности сейсмические волны, отражаясь, преломляясь, рассеиваясь и поглощаясь, приобретают исключительно сложный характер распространения. В результате запись движения почвы при землетрясениях представляется в виде очень сложной кривой.
Сейсмические колебания по-разному проявляются в земных породах различной плотности и упругости. Энергия, которую несет сейсмическая волна и которая проявляется на поверхности Земли, зависит от произведения трех величин (квадрат скорости колебаний V, плотность пород р и скорость сейсмической волны С) в виде Е~ρCV2. Произведение ρС принято называть сейсмической жесткостью земных пород. Устойчивость построек к разрушению в значительной степени зависит от сейсмической жесткости грунта.
Действительно, при постоянной энергии колебаний их скорость должна быть тем большей, чем меньше сейсмическая жесткость грунта. В свою очередь, чем больше скорость колебаний, тем вероятнее разрушение стоящей на нем постройки.
С. В. Медведевым и Н. В. Шебалиным составлена таблица, в которой указаны интервалы скорости распространения волн, плотности и сейсмической жесткости для основных категорий грунтов (табл. 2).

Из таблицы видна зависимость сейсмической жесткости от типа грунта.
Таким образом, в силу неоднородности земной коры под действием сейсмических волн, особенно поверхностных, колебания недостаточно жесткого слоя (плывуны, песчаник, торфяник, искусственные насыпи и т. п.) происходят с большими амплитудами по сравнению с твердыми породами, поэтому на них возникают более опасные условия для любых построек.
Можно привести нижеследующее сравнение в виде соотношений между величинами амплитуд для различных грунтов при сильных землетрясениях: сейсмическая волна, вызывающая колебания грунта на скальных породах в 2–5 мм, создает колебания в землистых уже до 25 мм, а в насыпях и неустойчивых почвах даже до 100 мм и более.
Приведенный пример дает достаточно ясное представление об опасности строительства объектов на рыхлых грунтах.
Пояса разрушений
По земному шару землетрясения распределяются весьма неравномерно. Они приурочены к определенным зонам – поясам сейсмичности. Основными из них можно считать два: 1) Тихоокеанский и 2) Средиземноморско-Транс-азиатский. К второстепенным относятся Арктико-Атлантический, пояс западной части Индийского океана и др. Все они, в свою очередь, делятся на небольшие (по сравнению с сейсмическими поясами) сейсмические зоны.
Тихоокеанский пояс охватывает побережье почти всех стран Тихоокеанского бассейна. Здесь происходит почти 80 % всех землетрясений Земли. И если учесть, что этот сейсмический пояс одновременно богат еще и действующими вулканами, то станет ясно, почему нередко образно его называют «Огненным кольцом».
Средиземноморско-Трансазиатскпй пояс простирается широкой полосой, включая побережье стран Средиземного моря, Карпаты, Турцию, Иран, Кавказ, Среднеазиатские республики Советского Союза, Северную Индию, Алтай, северную часть Китая, Монголию, Прибайкалье, северо-восточную часть Китая и Приморский край, выходя к Сахалину. Захватывая немалую часть территории СССР, этот пояс, пожалуй, более всего доставляет забот и хлопот сейсмологам, строителям и населению этих районов.
Арктико-Атлантический – проходит примерно от устья р. Лены через подводный хребет Ломоносова под Северным Ледовитым океаном в направлении Исландии и, далее, по акватории Атлантического океана.
Пояс Индийского океана начинается от Аравийского полуострова и идет по поднятию дна и его средней части в направлении к Антарктиде.
Измерение сотрясений
Как и всякое физическое явление, сотрясение необходимо измерять. Что же является единицей измерения? Характеристиками сотрясения служат скорость движения частиц Земли, ускорение, отклонение от первоначального положения частиц (амплитуда смещения) и величина его, частота колебаний и т. д. Важно, чтобы в той или иной степени в такой единице измерения участвовали и отражались все указанные параметры. Было условно принято единицу измерения сотрясения называть баллом. Естественно, была дана оценка и самому слабому сотрясению, регистрируемому только приборами и не ощущаемому Человеком, в один балл. Что касается самого сильного, fro оно оценивалось в различных странах по-разному. Так, в Европе довольно долго применялась шкала Росси – Фореля, а затем несколько улучшенная шкала Меркалли, максимальное сотрясение по которой оценивалось в 10 баллов. В Японии и сейчас используется шкала, по которой максимальное сотрясение оценивается как семибалльное. В Советском Союзе с 1952 г. до последнего времени применялась 12-балльная сейсмическая шкала Института физики Земли Академии наук СССР, составленная С. В. Медведевым. По этой шкале сотрясение, возникающее в эпицентральной области при самом сильном землетрясении, оценивается в 12 баллов.
Существуют и другие шкалы. Такое разнообрази^ и разнотипность шкал создают большое неудобство для единой международной оценки сотрясаемости от землетрясений, возникающих на территориях различных стран, тем более что на земном шаре ежегодно происходит не так уж мало значительных по силе землетрясений. В среднем за год на Земле регистрируется 10–15 9-балльных землетрясений, 50—100 8-балльных, 300–500 7-балльных.
В течение последних 10–15 лет сейсмологи разных стран стремились выработать единую шкалу для измерения интенсивности сотрясений. На основе существовавших до 1964 г. различных шкал, дополненных материалами полевого изучения последствий землетрясений, была выработана временная шкала MSК-64 (см. Приложение). Межправительственное совещание ЮHЕСКО по сейсмологии и сейсмостойкому строительству в 1964 г. в Париже признало важность создания единой международной шкалы интенсивности и рекомендовало всем странам временное использование в этих целях выработанной шкалы MSK-64. Шкала дополнена соответствующими более подробными пояснениями и таблицами по каждому баллу. От применявшейся в СССР шкалы, составленной С. В. Медведевым, она отличается очень незначительно.
Понятно, что не только указанными признаками можно характеризовать силу землетрясения. Для более широкого ознакомления интересующиеся могут воспользоваться специальной сейсмологической литературой.
Оценка энергии землетрясений
Естественно, что от одного и того же землетрясения на различных расстояниях от эпицентра сотрясения на поверхности Земли не будут одинаковыми, так же как не бывает одинаковой величина предмета, рассматриваемого с различного расстояния. Не будут одинаковыми сотрясения и в том случае, если очаги равных по силе землетрясений располагаются на различной глубине.
Для оценки количества энергии, выделяющейся при землетрясении, или для объективной оценки силы землетрясения применяется другая шкала, носящая название шкалы магнитуд (коротко принято обозначать буквой М). В ней использована изменяющаяся от эпицентрального расстояния по определенному закону величина смещения почвы при землетрясении в поверхностных волнах. Шкала рассчитана таким образом, что разница магнитуд на единицу соответствует разнице амплитуд смещения почвы приблизительно в 10 раз.
За нулевой уровень магнитуды (М = 0) выбран энергетический уровень землетрясения столь низкой интенсивности, чтобы только сделать положительными магнитуды самых слабых из записанных землетрясений.
За максимально большой уровень магнитуды принята энергия возможного сильнейшего землетрясения, соответствующая величине, приблизительно равной 1025 эрг, что, в свою очередь, соответствует энергии разрыва самых прочных пород земной коры при землетрясении с нормальной глубиной очага. По шкале магнитуд это означает приблизительно М=9.
Ниже приводится табл. 3, показывающая, сколько в среднем землетрясений разной энергии происходит на Земле за год.

Существование поясов сейсмичности показывает, что землетрясения происходят далеко не по всей поверхности земного шара. Кроме того, в одном и том же месте очень сильные, особенно катастрофические, землетрясения случаются все-таки довольно редко. Однако, несмотря на это, ежегодно от землетрясений в мире гибнет не одна тысяча человек, не говоря уже о материальных потерях и колоссальных разрушениях, вызываемых ими.
Приведем в очень кратком изложении ряд наиболее характерных примеров таких землетрясений, происшедших на суше с 1887 по 1957 г.
Верненское, 9 июля 1887 г.
Эпицентр землетрясения располагался в 10–12 км южнее г. Верного (ныне Алма-Ата) в виде полосы шириной 5 км и длиной 35 км. Сила оценивалась в 10 баллов. Сотрясения были так велики, что люди не могли устоять на ногах. Погибло более 300 человек. Разрушены 3000 зданий (из 1799 кирпичных уцелело лишь одно). Убыток определялся в 2 млн. золотых рублей.
Японское, 28 октября 1891 г.
Наиболее сильно пострадали провинции Мино и Свари. Землетрясение сопровождалось сбросом вдоль тектонической линии, протянувшейся примерно на 100 км: через гористые районы о-ва Хонсю. Относительное горизонтальное смещение доходило до 4 м. Смещения по вертикали местами достигали 7 м. Вся местность вблизи линии сброса площадью до 10 тыс. км2 подверглась разрушению. Ощущалось на площади до 1 млн. км2. Погибли более 7000 человек и более 17 тыс. ранены. Разрушены около 20 тыс. зданий, повреждены 10 тыс. мостов.
Ассамское, 12 июня 1897 г.
Землетрясение произошло к северу от Бенгальского залива и г. Калькутты в провинции Ассам (Индия). Оно вызвало разрушения на площади около 350 тыс. км2 и ощущалось на площади почти 4 млн. км2. Амплитуда колебания почвы доходила до 30 см. На поверхности рыхлой почвы наблюдались «земляные волны». Местами образовались фонтаны песка и мелких камней. Отдельные здания погрузились в мягкий грунт до крыш. Некоторые реки изменили течение. Образовались новые водопады. В эпицентральной области отмечены сбросы до 12 м. После этого землетрясения, которое считается одним иэ сильнейших в мире, зарегистрированы более 5000 повторных толчков значительной силы».
Сан-Францисское, 18 апреля 1906 г.
Землетрясение явилось следствием внезапного горизонтального смещения вдоль крупного сброса Сан-Андреас. Длина трассы образовавшегося сдвига достигала 350 км. Амплитуда сдвига местами доходила до 7 м. Ощущалось на площади в 1 млн км2. От развалившихся горячих печей и замыкания электропроводов возникли пожары, которые было трудно тушить из-за отсутствия воды (лопнули все водопроводные магистрали). От пожара пострадала значительная часть города Сан-Франциско. Убытки составили около 400 млн. долларов. Погибли предположительно 700 человек.
Китайское, 16 декабря 1920 г.
Особенно тяжелые бедствия обрушились на провинции Ганьсу и Шаньси. Пострадавшая местность покрылась мощной толщей лёсса, который от сильного сотрясения стал «течь». Под оползнями и обвалами оказались погребенными многие прибрежные селения. Погибли около 100 тыс. человек. Разрушения отмечались на площади около 1 млн. км2.
Гималайское, 15 августа 1950 г.
Это землетрясение – одно из сильнейших с момента записи колебаний почвы приборами. Его магнитуда оценивается в 8,7. Сотрясения почвы отмечены на площади более 25 тыс. км2. В горах, обильно насыщенных влагой во время муссонов, произошло множество оползней. По приблизительным подсчетам общий вес перемещенных горных пород составил около 2 млрд. т. Страшный гул, шедший из недр Земли, перерос в оглушительный грохот, небо потемнело от взметнувшейся вверх пыли. На глазах пограничников, которые находились вблизи эпицентра, образовавшаяся 6-метровая трещина поглотила четырех человек. В долине Брахмапутры, значительно южнее Гималайских гор, колебания почвы были настолько сильными, что многие жители испытывали приступы морской болезни. Трехсотметровый участок железнодорожного полотна опустился почти на 5 м, дороги были полностью разрушены. Сравнительно малое количество жертв объясняется отсутствием населенных пунктов вблизи эпи-Центральной области.
Гоби-Алтайское, 4 декабря 1957 г.
Возникло в северной ветви Гобийского Алтая. Было настолько сильным, что ощущалось по всей Монголии, а также на смежных территориях СССР и Китая. Ущерб от этого землетрясения был невелик лишь из-за слабой заселенности местности и преобладания легких (войлочных) жилищ, хотя сила его в эпицентре приближалась к 12 баллам. 4 декабря, после основного толчка, произошли еще 120 довольно значительных. Вблизи эпицентральной области отмечено бесчисленное множество трещин протяженностью от нескольких метров до 700 км! Ширина трещин была самой различной – от нескольких сантиметров до 20 м. Отмечены горизонтальные сдвиги до 3,5 м и вертикальные смещения до 12 м. Наблюдались грандиозные обвалы, особенно в горах Ихэ-Богдо. Здесь по си-стеме широтных трещин низвергнулась масса горного грунта объемом около 200 млн. м3. Гора Хурень-онь была срезана обвалом почти наполовину, образовав вертикальный обрыв высотой минимум 300 м.
Нет необходимости удлинять этот список описанием других катастрофических землетрясений, однако небезынтересно привести некоторые фотоснимки (см. вклейку), свидетельствующие о силе разрушений в результате бушующей стихии.
ЧТО ТАКОЕ ЦУНАМИ
Само явление цунами старо, как Океан. Рассказы очевидцев о страшных волнах, передававшиеся из уст в уста, со временем становились легендами, а примерно 2000–2500 лет назад появились и письменные свидетельства. Согласно одному из них погибла Атлантида. В числе вероятных причин исчезновения острова исследователи называют и цунами.
Время свершения этого грандиозного события относите к глубокой древности – 2500 лет назад. Понятно, что ни о каком научном рассмотрении явления тогда не могло быть и речи. Изучение цунами стало возможно лишь после возникновения и развития сейсмологии, так как цунами, как правило, является следствием землетрясения В свою очередь, рождением науки сейсмологии можно считать время изобретения (начало текущего века) русским ученым академиком Б. Б. Голицыным электродинамического сейсмографа – прибора, с помощью которого сравнительно точно и просто определяется эпицентр землетрясения.
В настоящее время высказываются различные взгляды на причины, порождающие цунами. Наряду с основной причиной – землетрясением, к таковым относят нагоны воды в бухты, вызванные тайфунами, штормами, сильными приливами. Это, по-видимому, объясняется происхождением слова «цунами» (в переводе с японского – «волна в гавани»).
Существуют также различные взгляды и на механизм образования очага цунами, возбужденных землетрясениями. В частности, предполагают, что само по себе землетрясение не возбуждает цунами, а служит лишь спусковым механизмом. Причиной же являются мутьевые (суспензионные, турбидитные) потоки осадкового вещества, обладающего тиксотропными свойствами (при определенных условиях способного к разжижению) и скапливающегося в каньонах цунамигенных зон и участков. Это вещество при землетрясениях даже небольшой силы поручает как бы толчок к быстрому разжижению и движению и создает предпосылки для возникновения очага цунами.
Не входя в дискуссию о правильности высказываемых взглядов, обратимся к наиболее распространенному определению цунами и причин, их порождающих. Под «цунами» понимают длиннопериодные морские гравитационные волны, внезапно возникающие в морях и океанах именно в результате землетрясений, очаги которых расположены под дном морей и океанов. Цунами может возникать и от взрывов подводных вулканов, подводных и береговых обвалов и оползней, образующихся, в свою очередь, вследствие землетрясений.
Эти волны обладают большой скоростью распространения и огромной кинетической энергией, что способствует их глубокому проникновению на сушу. При подходе к берегу они деформируются и, накатываясь на берег, иногда производят громадные разрушения. При этом следует оговориться, что значительной разрушительной силой обладают лишь цунами, порожденные землетрясениями большой энергии, с магнитудой, приблизительно равной или большей 8,0.
Проведенные в последнее время предварительные исследования показывают, что цунами могут быть вызваны землетрясениями и значительно меньшей магнитуды (например, М≥5,0). Но они проявляются чаще всего в виде незначительного подтопления, которое можно обнаружить только с помощью соответствующих приборов. Очаги цунами обычно приурочены к эпицентральным областям землетрясений.
Известно, что наибольшее количество землетрясений происходит на Тихоокеанском побережье. Естественно предположить, что и цунами чаще всего случаются в Тихом океане. Приблизительные подсчеты показывают следующее распределение (в %) цунами в различных морях и океанах:
Тихий океан (в основном по периферии) 75
Атлантический океан 9
Индийский океан 3
Средиземное море 12
Прочие моря
В Советском Союзе воздействию цунами подвержены, по существу, только дальневосточные берега: Камчатка, Курильские и Командорские острова и, частично, Сахалин.
Итак, в результате каких процессов происходят цунами? Наблюдения показывают, что это главным образом: а) внезапное смещение участка поверхности моря или океана в вертикальном направлении (или близком к вертикальному) за счет аналогичного смещения вниз или вверх соответствующего участка морского дна; б) резкий сдвиг воды в горизонтальном (или близком к нему) направлении вследствие аналогичного смещения больших блоков земной коры с крутыми склонами вблизи глубоководных впадин; в) надводные или подводные обвалы и оползни; г) взрывы или крупные извержения подводных вулканов; д) вибрация дна и др.
При этом нужно иметь в виду, что цунами возникает только в случае быстрого, почти мгновенного свершения указанных процессов. Когда происходят мощные цунами, можно говорить по крайней мере о четырех условиях, им благоприятствующих: 1) очаг землетрясения располагается под дном моря, океана (бывает, правда редко, несовпадение очагов землетрясения и цунами) или в сравнительной близости от тех крупных блоков земной коры, которые, смещаясь вследствие землетрясения в горизонтальном направлении в сторону океана, соприкасаются непосредственно с большими водными толщами; 2) над эпицентральной областью землетрясения находится слой воды значительной мощности; 3) глубина очага землетрясения невелика (10–60 км); 4) землетрясение должно быть большой силы (или если речь пойдет об оползне или обвале, то масса пород, участвующих в образовании цунами, должна иметь достаточно большой объем).
Наибольшей разрушительной силой обладают, как правило, цунами с очагами в глубоководных зонах.
В открытом океане волны цунами невысоки (при самых сильных землетрясениях предположительно не превышают 2–3 м), имеют значительную (иногда достигающую 200–300 км) длину волны и скорость распространения, соизмеримую со скоростью современного пассажирского реактивного самолета.
Скорость движения волны определяется по формуле. Лагранжа: v = √gH, где g – ускорение силы тяжести и Н – глубина бассейна в месте определения скорости.
При подходе к берегу в зависимости от прибрежного рельефа дна и конфигурации береговой линии цунами могут «вырастать» от 1–2 м высоты в открытом океане до нескольких десятков метров на берегу. Но, пожалуй, главное, с чем связано увеличение высоты волн, это – уменьшение глубины океана. Последнее может быть вычислено по формуле Эри – Грина:
hм = hг 4√Hг/Hм
где hм – высота волны на мелководье глубиной Hм; – высота волны на глубине Нг.
Преобразование и рост волны начинают заметно проявляться у границы материковой отмели (глубина 200 м а меньше) и происходят наиболее интенсивно с глубины 10–15 м. Попадая в мелководную прибрежную зону, волна деформируется – растет ее высота с одновременным увеличением крутизны переднего фронта. С приближением к берегу она начинает опрокидываться, создавая пенящийся, бурлящий, большой высоты водяной поток, который и производит разрушения на берегу.
Разрушительная сила волн цунами зависит от интенсивности породивших их землетрясений, расстояний от места возникновения до берега, протяженности очага цунами и первоначальной высоты волны, а также от особенностей рельефа дна на пути распространения волны и конфигурации береговой линии.
При очень крутых уклонах дна и прямолинейных берегах, а также на участках с достаточно высокими берегами цунами вырастает несильно и не причиняет сколько-нибудь значительных разрушений. Особую опасность представляют собой суживающиеся, с уменьшающимися глубинами бухты и проливы, в которых происходит значительное увеличение высоты, а стало быть, и разрушительное действие волн. При этом в случае низменного побережья волна захватывает большие участки суши, сметая все на своем пути. Крайнюю опасность представляют устья рек, по которым цунами может проникнуть в глубь территории на расстояние до нескольких километров. Уменьшается высота волн только в закрытых расширяющихся бухтах с узким входом.
Большинство людей имеет хорошее представление о характере и параметрах обычных ветровых волн и весьма слабое – о цунами. Для сравнения приведем таблицу некоторых характерных параметров ветровых волн и волн цунами (максимальные значения).
Из табл. 4 видно, в частности, что в открытом море высота волн цунами не превышает 3 м. Имея в то же время очень большую длину, они становятся безопасны для любого плавсредства, находящегося в океане на значительном удалении от побережья.

Следует привести исключительно интересный, своего рода уникальный случай чрезвычайно высокой волны. 9 июля 1958 г. в результате землетрясения на Аляске масса льда и земных пород объемом около 300 млн. м3 ледника Литуйя с высоты, близкой к 900 м, обрушилась в узкую и длинную бухту Литуйя, вызвав на противоположной стороне бухты колоссальный волновой заплеск, достигший на отдельных участках побережья почти 600-метровой высоты. В это время в бухте находились три небольших рыболовецких судна. «Несмотря на то что катастрофа происходила в девяти километрах от места стоянки кораблей, все выглядело ужасно. На глазах потрясенных людей вверх поднялась огромная волна, которая поглотила подножие северной горы. После этого она прокатилась по заливу, сдирая деревья со склонов гор, разрушая недавно покинутую лагерную стоянку альпинистов; обрушившись водяной горой на о-в Кенотафия, она поглотила старую хижину… и, наконец, перекатилась через высшую точку острова, возвышавшуюся на 50 м над уровнем моря.
Волна закрутила судно Ульрича, которое, потеряв управление, со скоростью галопирующей лошади понеслось к судам Суонсона и Вагнера, все еще стоявшим на якоре. К ужасу людей волна разорвала якорные цепи и потащила оба судна, словно щепки, заставив их преодолеть самый невероятный путь, который когда-либо выпадал на долю рыбацких судов. По словам Суонсона, внизу под кораблем они рассмотрели верхушки 12-метровых деревьев и скалы величиной с дом. Волна буквально перебросила людей через остров в открытое море»[4].
Подобного рода случаи весьма редки и не могут рассматриваться в качестве эталона. Однако история знает немало примеров цунами, которые уступают по силе описанному, но не менее тяжелы своими последствиями.
6 октября 1737 г.
Землетрясение близ восточных берегов Камчатки. Высота возбужденных волн цунами достигала 25–30 м. Очень большие разрушения почти во всех прибрежных поселках восточной Камчатки. Благодаря слабой заселенности в то время жертв среди населения было немного.
1 ноября 1755 г.
Землетрясением и цунами (эпицентр юго-западнее г. Лиссабона, в Атлантическом океане) разрушен и смыт Лиссабон. Уничтожены 15 тыс. из 20 тыс. строений. Погибли около 50 тыс. человек. Высота волн достигала 25–30 м.
27 августа 1883 г.
Взрыв вулкана Кракатау (Зондский пролив, между островами Ява и Суматра). В результате взрыва возникла серия очень больших волн цунами, не только прокатившихся по берегам Индийского и Тихого океанов, но пришедших в Атлантический, достигнув побережья Франции и Панамы. У берегов Явы и Суматры высота волн достигала 30–40 м. Голландский корабль был выброшен волной на сушу и оказался в 4 км от берега на высоте 10 м над уровнем моря. Колоссальные разрушения на островах: смыты жилые поселки с низколежащих берегов западной Явы и южной Суматры, уничтожены прибрежные леса и посевы. Около 36 тыс. человеческих жертв.
15 июня 1896 г.
Землетрясение Санрику (общее название для Тихоокеанского побережья префектур Аомори, Ивате, Мияги). Эпицентр в 240 км от берегов Японии. Цунами на берегу в отдельных местах достигало высоты 30 м. Смыты около 11 тыс. жилых помещений и общественных зданий. Погибли 27 тыс. человек.
3 марта 1933 г.
Сильное землетрясение в Японии. На побережье Санрику обрушились волны высотой более 30 м. Уничтожен город Камаиси, где были смыты 1200 домов. Выло снесено большое число деревьев. Погибли около 4000 человек. Причинен очень большой материальный ущерб.
1 апреля 1946 г.
Эпицентр землетрясения вблизи о-ва Унимак (Алеутские острова) в районе Алеутской впадины. Несмотря на большое удаление Гавайских островов от очага цунами (3700 км), даже там зафиксированы волны высотой 11 м (о-в Оаху) и 16 м (о-в Гавайи). Цунами достигло берегов Аляски, Северной и Южной Америки. Наибольшая волна наблюдалась на о-ве Унимак: маяк, стоявший на м. Скотч-Кап, в 34 м над уровнем моря, был смыт, и весь его обслуживающий персонал (5 человек) погиб. В общей сложности жертвами этого цунами стали около 200 человек. Убытки исчисляются суммой в 25 млн. долларов.
5 ноября 1952 г.
Это цунами является сильнейшим для Дальневосточного побережья СССР, особенно по своим последствиям, поэтому ему следует уделить больше внимания, тем более что жителями Дальнего Востока оно не забыто до наших дней. Материалы по этому событию опубликованы в Бюллетене Совета по сейсмологии АН СССР (1958, № 4). В ночь с 4 на 5 ноября 1952 г. около 4 час. по местному времени жители Северо-Курильска были разбужены 7-балльным землетрясением.
Через 45 мин. после начала землетрясения послышался громкий гул со стороны океана, и уже через несколько секунд на город обрушилась огромная волна, двигавшаяся с большой скоростью и имевшая наибольшую высоту в центральной части города, где она катилась по долине речки.
Через несколько минут волна отхлынула в море, унося с собой все разрушенное. Отступление первой волны было столь интенсивным, что дно пролива обнажилось на протяжении нескольких сотен метров. Наступило затишье.
Через 15–20 мин. на город обрушилась вторая, еще большая волна, достигавшая 10-метровой высоты. Она нанесла особо сильные разрушения, смывая все постройки на своем пути, сохранились лишь цементные фундаменты домов.
Прошедшая через город волна достигла склонов окружающих гор, после чего начала скатываться обратно в котловину, расположенную ближе к центру города. Здесь образовался огромный водоворот, в котором с большой скоростью вращались всевозможные обломки строений и мелкие суда. Откатываясь, волна ударила с тыла в береговой вал перед портовой территорией и в обход горы прорвалась в Курильский пролив. Участок берегового вала и гора на несколько минут стали островом. На перемычке между этим островом и горой волна нагромоздила груду бревен, ящиков и т. и. и даже принесла из города два дома.
Через несколько минут после второй волны пришла более слабая, третья волна, которая вынесла на берег много обломков. Все это было разбросано по территории города и по берегам пролива. В 9 час. утра наблюдались сильные колебания уровня океана, которые, слабея, повторялись в течение всего дня 5 ноября.
В проливе во время прохождения волн происходило образование водоворотов и сулоев – стоячих волн и вертикальных всплесков, образующихся в результате столкновения течений, идущих из Тихого океана и Охотского моря навстречу друг другу.
Так развивались события во время цунами в Северо-Курильске. Оно охватило почти 700-километровую зону Дальневосточного побережья. Самые высокие волны при этом отмечены в бухтах Пираткова (10–15 м) и Ольга (10–13 м) на Камчатке.
22 мая 1960 г.
Вблизи Вальдивии (побережье Чили) катастрофическое землетрясение возбудило цунами, охватившее побережье всех стран Тихого океана. Большинству государств оно причинило огромный материальный ущерб. Имелись человеческие жертвы. Высота волн у берегов Чили достигала 20 м. Количество жертв только в Чили исчислялось 2000 человек. 50 тыс. домов превратились в развалины. Общий ущерб составил несколько сот миллионов долларов.
28 марта 1964 г.
В результате очень сильного землетрясения в заливе Принс-Вильям (Аляска) цунами отмечалось по побережью всего Тихоокеанского бассейна. Высота волн в отдельных районах достигала 10 м. В разных местах от цунами погибли более 120 человек. Общий ущерб от землетрясения и цунами составил несколько сот миллионов долларов.
Наукой раскрыты многие великие «секреты» природы и поставлены на службу человеку: электричество и магнетизм, атомная энергия и лазерное излучение, законы движения космических тел и генетический код живой клетки и др. Однако многое еще надо познать, открыть, изобрести. По-видимому, пройдет немало десятилетий, пока человек научится предсказывать некоторые грозные явления природы, а затем и управлять ими.
Что же можно сделать в ближайшем будущем для защиты человека и различных хозяйственных объектов от вышеописанных природных катастроф? Поскольку цунами – явление вторичное, зависящее от землетрясения, то и вопрос этот следует рассматривать в комплексе. Бывают случаи, когда для конкретного района даже самое сильное землетрясение не представляет абсолютно никакой опасности (очаг землетрясения расположен за многие тысячи километров), однако возникающая при этом волна, покрыв огромные расстояния, может оказаться виновницей больших разрушений.






