Текст книги "Колумбы Вселенной (сборник)"
Автор книги: Ник Горькавый
Жанры:
Сказки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 18 страниц) [доступный отрывок для чтения: 7 страниц]
Начинает он её с курятника.
Именно в помещении курятника в 1923 году Игорь Сикорский строит свой первый американский самолёт и начинает историю своей авиационной фирмы.
Русский авиаконструктор создаёт первый в Америке двухмоторный самолёт, который мог перевозить, кроме экипажа, шестнадцать пассажиров. Но в США ещё не было авиакомпаний, которые могли бы заинтересоваться такой крупной машиной, поэтому самолёт был изготовлен и продан в единственном числе.
Вскоре возникла авиакомпания «Пан-Америкэн», которая заказала фирме Сикорского самолёты-амфибии, которые могли садиться и на воду, и на землю. В 1927 году Сикорский создаёт восьмиместную амфибию, пользовавшуюся большим успехом: больше сотни таких машин было быстро раскуплено.
Четыре года спустя Сикорский создаёт гидросамолёт S-40, который мог перевозить 28 пассажиров. Их было построено всего три штуки, но этот самолёт стал прообразом более крупных и вместительных машин. Авиаконструктор Сикорский и знаменитый лётчик Линдберг, обедая в летящем гидросамолёте, на обороте меню набросали эскиз гораздо более совершенной машины – так родился знаменитый S-42, или «Летающий клипер», который мог перевозить через океан 37 пассажиров – рекорд по тем временам. «Летающий клипер» стал легендарным самолётом компании «Пан-Америкэн».
И что вы думаете? Неугомонный Игорь Сикорский не стал почивать на лаврах конструктора трансатлантических самолётов, он решил… начать свою карьеру авиаконструктора заново – уже в третий раз.
Он решил строить вертолёты. Он всё ещё мечтал научиться летать медленно.
К тому времени мировое вертолётостроение достигло немалых успехов. Российский инженер Юрьев изобрёл автомат перекоса, который позволял управлять вертолётом, не давая силе Кориолиса проявлять свой нрав. Автомат перекоса позволял менять угол атаки вертолётного винта (то есть наклон самой лопасти) при его вращении. Винт, совершая один оборот вокруг оси двигателя, мог одновременно плавно менять свой угол атаки: например, если вертолёту нужно было наклониться вперёд, то лётчик давал команду автомату перекоса – и тот увеличивал угол атаки лопасти в тот момент, когда она двигалась возле хвоста вертолёта. Подъёмная сила лопасти в этот момент возрастала и наклоняла машину вперёд. Остроумный автомат Юрьева позволил скомпенсировать силу Кориолиса и сделал вертолет хорошо управляемой машиной.
– Вот как инженеры обманули силу Кориолиса! – понял Андрей. – А я столько раз видел вращение винта вертолёта и никогда не думал, что этот винт всё время меняет свой угол атаки!
– В 1922 году выходец из России, инженер Ботезат, построил в США первый в мире управляемый вертолёт. Но он был очень громоздким, четырёхвинтовым и взлетал лишь на несколько метров. Военных, финансировавших проект, вертолёт Ботезата не впечатлил, и они решили не усовершенствовать машину, а перевести деньги на создание автожиров ( смотри примечание), что было серьёзнейшей ошибкой.
– Они меня спросили бы! – фыркнул Андрей.
Сикорский начинает конструировать вертолёты. Прошло 30 лет с того времени, когда студент Сикорский построил свой первый и неуклюжий геликоптер. Сейчас за дело брался опытный инженер, с многолетним конструкторским опытом за плечами.
В 1939 году взлетает экспериментальный вертолёт Сикорского, который оказался столь удачен, что побил рекорд длительности полёта, налетав более полутора часов. Начался третий и самый впечатляющий этап в карьере авиаконструктора Сикорского.
После двух лет доработки, в январе 1942 года, в воздух поднялся двухместный вертолёт Сикорского, который стал первым вертолётом в мире, выпускаемым серийно. Была построена 131 машина.Более двадцати типов вертолётов создал Сикорский. Большинство из них выпускались серийно – сначала сотнями машин, а потом – тысячами.
Многие вертолёты Сикорского настолько совершенны, что, созданные в 50-е и 60-е годы, они выпускались без изменений в течение полувека.
На вертолётах Сикорского летают геологи и полицейские, спасатели и медики, обычные пассажиры и президенты США.
Игорь Сикорский стал национальным героем – уже не России – Америки.
Его называют «отцом вертолётов».
Он дал людям возможность летать медленно и быстро, взмывать без разбега и зависать в воздухе, садиться на лесные поляны и на крыши зданий.
Люди обрели власть над воздушной стихией.Примечания для любопытных
Автожир– летательный аппарат, помесь вертолёта и самолёта. Удерживается в воздухе с помощью винта вертолётного типа, а винт самолётного типа придаёт аппарату горизонтальную скорость. Перед взлётом разбегается, хотя разбег гораздо короче самолётного.
Леонардо да Винчи(1452–1519) – великий итальянский художник и учёный. Яркий представитель эпохи Возрождения. В его бумагах нашли чертёж геликоптера – и он произвёл на юного Игоря Сикорского большое впечатление.
Игорь Иванович Сикорский(1889–1972) – известнейший авиаконструктор и лётчик, разработчик первых в мире тяжёлых самолётов (1913), пассажирских гидропланов (1927) и разнообразных вертолётов (1939).
Гаспар-Гюстав Кориолис(1792–1843) – французский математик, описавший «эффект Кориолиса» – инерционную силу, возникающую при движении под ненулевым углом к оси вращения тела.
Чарльз Линдберг(1902–1974) – знаменитый лётчик, который первым пересёк Атлантический океан. 20 мая 1927 года он стартовал из пригорода Нью-Йорка на одномоторном самолёте и 21 мая приземлился в Ле-Бурже возле Парижа.
Борис Николаевич Юрьев(1889–1957) – учёный, генерал-лейтенант. В 1911 году изобрёл автомат перекоса вертолётных лопастей, который сделал вертолёты управляемыми. Георгий Александрович Ботезат(1882–1940) – авиаконструктор из России, построивший для армии США первый в мире управляемый вертолёт (1922), который совершил около сотни полётов на высотах до 9 метров.
Сказка о чудесной шерсти зелёного котёнка и докторе Флеминге
– Шотландские вересковые пустоши, может, и хороши летом, когда цветут, но зимой они просто ужасны. Ледяной ветер, разогнавшись по свободному пространству, свистит в ушах, забирается за шиворот, морозит руки…
Фермерский сын Алек идёт в школу ссутулившись, отвернувшись от ветра. Идти нужно целую милю.
В сильные холода мать вручает Алеку и его братьям по две горячие картофелины. Пока ребята идут в школу, печёные картофелины греют им руки и души.
А потом эту картошку можно с аппетитом съесть!
Алек всегда вспоминал с большой симпатией свою шотландскую школу. Наверное, горячие картофелины добавили немало тепла в эту память о детстве.
– Мама, а почему ты не печёшь нам картошку? – вдруг вскинулась Галатея.
– Завтра испеку! – улыбнулась мать и продолжила читать сказку. – Сын фермера Алек вырос и стал медиком и военным капитаном Александром Флемингом. Теперь ему в лицо дул свирепый ветер войны, который нёс запахи пороха, крови и смерти. Шла Первая мировая война. Несколько лет Флеминг лечил раненых солдат на Западном фронте.
Каждый день был кошмаром для военных врачей: солдаты умирали, получив совсем незначительные ранения! От инфекции и гангрены солдаты гибли в госпиталях чаще, чем в окопах. Флеминг убедился, что карболка, которой медики пытались обеззараживать раны, приносила больше вреда, чем пользы: она обжигала живые ткани, уничтожая и вредные микробы, и полезные лейкоциты, которые были естественными защитниками организма. Чтобы сохранить жизнь солдату, часто оставался единственный выход – ампутация раненой руки или ноги.
Война закончилась, и Флеминг вернулся в Лондон.
Военный медик видел так много смертей в своём госпитале, что был полон решимости найти способ спасения раненых от инфекции. В своей лаборатории он выращивал в чашках Петри самую опасную для раненых солдат бактерию – золотистый стафилококк.
Алек искал, искал и искал яд, который способен убить эту бактерию и не навредить человеку. И тогда отрава для микробов станет спасительным лекарством для людей.
– Мама, а почему этот противный микроб так красиво называется – «золотистый»? – спросила Галатея.
– Он действительно золотистый, потому что вырабатывает каротиноиды – вещества, которые дают овощам, например морковке, жёлтую или оранжевую окраску.
Первое открытие Флеминга произошло достаточно случайно. Однажды, когда Флеминг был простужен, он высеял слизь из собственного носа в одну из чашек Петри с бактериями. И вскоре обнаружил, что в местах высевания слизи бактерии вымирают!
– Мама, подожди, – осторожно сказал Андрей. – Слизью из носа ты называешь обыкновенные сопли?
– Ну… в общем-то, да.
– А вот это… случайное высевание… Означает ли это, что Флеминг попросту неловко высморкался, забрызгав свои чашки Петри?
– Сынок, запомни: сопли и случайности – это из жизни обычных людей. Для учёного-биолога сопли – это исключительно интересный концентрат белков и ферментов. Можете морщиться сколько угодно, но что бы делали медики, например, без анализа мочи? Обычный человек сморкается за свою жизнь миллион раз – и без всякой пользы для человечества. Флеминг добавил слизь из своей носоглотки в бактериальную культуру и сумел сделать из этого важные выводы. Он понял, что в соплях есть какое-то вещество, активно убивающее бактерии. Учёный стал искать это вещество и в 1922 году открыл лизоцим – фермент, который энергично разрушает оболочки некоторых видов бактерий. Лизоцим был обнаружен не только в слизи носоглотки, но и в слезах, грудном молоке и слюне. Поэтому слёзы защищают глаза от повреждений, слюна может обеззараживать небольшие царапины, а грудное молоко полезнее детям, чем коровье, где лизоцима гораздо меньше.
– Ладно хоть слёзы и слюни, а не только сопли… – проворчала Галатея.
– Чтобы исследовать лизоцим, Флеминг с коллегами брызгали себе в глаза сжатой лимонной коркой, а потом собирали пипеткой свои обильные слёзы. Позже лизоцим стал использоваться как прекрасное лекарство против некоторых заболеваний, а также как незаменимое средство, предохраняющее продукты от гниения. Например, икру перед упаковкой в банки промывают лизоцимом. Но против самых опасных бацилл – стафилококков – лизоцим оказался бессилен.
И Флеминг продолжил работу. Он был истинным подвижником науки и неистово трудился по шестнадцать часов в сутки. Нужно признать, что его лаборатория не отличалась аккуратностью: если другие исследователи после опыта мыли пробирки, то Флеминг неделями не убирал чашки Петри. Возможно, учёный делал это специально. Когда ищешь окна закономерности в море неопределённости, полезно оставлять открытой форточку для случайности.
В августе 1928 года Флеминг уехал с семьёй в отпуск, оставив на столе чашки с золотистым стафилококком.
Вернувшись из отпуска в начале сентября, учёный обнаружил, что на краю одной чашки, наполненной вкусным для бактерий агаром, распустилась зелёная плесень, пушистая как шерсть котёнка. Флеминг сразу заметил, что мутно-жёлтые капли колоний стафилококка избегают пушистой плесени и опасливо жмутся к самой дальней стороне чашки.
Учёный пришёл в восторг, заглянул под стол – нет ли там заблудившегося зелёного котёнка? – и показал чашку своему ассистенту Мерлину Прайсу. Тот посмотрел и утвердительно кивнул:
– Точно так же вы открыли лизоцим!
Флеминг начал работать с редкой пушистой плесенью, которая называлась по латыни Penicillium notatum. Её споры, видимо, были занесены сквозняком из соседней лаборатории, исследовавшей образцы плесени из домов больных-астматиков.
Флемингу удалось выделить из пушистого «гостя» активное вещество, которое уничтожало золотистые стафилококки.
Он назвал это вещество «пенициллин».
Но торжествовать было рано: лекарство содержало много примесей и легко теряло лечебные свойства.
Потребовалось несколько лет, чтобы превратить пенициллин в настоящее лекарство. Учёные Флори и Чейн разработали специальные методы очистки препарата.
В 1939 году началась Вторая мировая война, и в лицо Флемингу снова подул ледяной ветер смерти. В госпиталях снова умирали люди, которых можно было спасти.
Немцы начали бомбить Лондон. Чтобы спасти чудодейственную плесень от гибели, Флеминг и ещё двое учёных из Оксфорда пропитали подкладки своих пиджаков коричневой жидкостью со спорами Penicillium notatum. Если хотя бы один из учёных спасётся, решили они, из этой ткани можно будет вырастить новую культуру плесени.В 1940 году пенициллин впервые вылечил лабораторных мышей.
С 1942 года пенициллин стал использоваться в армейских госпиталях. Раненым перед операцией делали укол нового лекарства, и у большинства солдат раны заживали без осложнений и повышения температуры. Пенициллин казался полевым хирургам настоящим чудом!
Этот антибиотик стал важнейшей победой в войне людей против микробов. Политики и газеты много говорят о войнах между людьми, но от бактерий чумы и вирусов оспы погибло гораздо больше людей, чем от всех войн.
В Средние века из-за инфекционных болезней каждый второй ребёнок не доживал до взрослого возраста. Шла непрерывная война с микроорганизмами, в которой люди несли страшные потери. До двадцатого века на кладбищах половина могил были детскими.
В Первую мировую войну на фронтах погибло десять миллионов солдат, а в это же время в тылу от инфекционных болезней и голода умерло двадцать миллионов обычных людей. Сразу после мировой войны разразилась эпидемия вируса гриппа – так называемой «испанки». В испанском городе Барселоне умирало каждый день двенадцать сотен человек – дети, женщины, мужчины, целые семьи. За двадцать пять недель эпидемии гриппа в мире умерло двадцать пять миллионов человек. За полтора года число жертв «испанки» на планете приблизилось к ста миллионам.
Только учёные, разработавшие прививки и антибиотики, смогли остановить волны невидимой смерти, которые в течение всей истории обрушивались на человечество. В двадцатом веке в войне между микробами и людьми произошёл перелом – люди стали побеждать, и Флеминг, открывший пенициллин, внёс в эту победу важнейший вклад.
Чашку с разросшимся плесневым грибом учёный хранил до конца жизни.
После пенициллина были найдены многие другие антибиотики, которые вырабатываются плесневыми грибками, растениями и даже самими бактериями. Учёные научились кормить плесень так, что она начинала вырабатывать более мощные антибиотики.
Особенно много антибиотиков учёные находят в разных почвах. Дело в том, что в земле живёт множество микроорганизмов и грибков. Они беспрерывно воюют друг с другом, вырабатывая антибиотики – одно из главных оружий микроорганизмов в этой войне. Так война микробов помогает людям. А один антибиотик нашли в бактериях из ран маленькой девочки Маргарет Траци – и назвали это лекарство в её честь – «бацитрацин». Процесс поиска новых препаратов не останавливается ни на минуту. Ведь золотистый стафилококк и другие бактерии не сдаются: они мутируют, превращаются в новые разновидности, которые нередко оказываются неуязвимыми для известных лекарств и вызывают новые вспышки заболеваний.
Александр Флеминг не стал патентовать пенициллин, чтобы сделать его максимально доступным всем людям.
В последние годы жизни первооткрыватель пенициллина был удостоен двадцати пяти почётных степеней, двадцати шести медалей, восемнадцати премий, включая Нобелевскую, тринадцати наград и почётного членства в восьмидесяти девяти академиях наук и научных обществах, а также дворянского звания.
Но это всё ничто по сравнению с той благодарностью, которую испытывают простые люди всего мира к человеку, который своим лекарством спас их детей и родных. Эксперты полагают, что в двадцатом веке пенициллин Флеминга сохранил жизни двухсот миллионов человек!
Трудно найти семью на Земле, которая не была бы лично обязана этому человеку. В испанском городе Барселоне ещё при жизни бактериолога Флеминга была установлена мемориальная доска с его именем.
11 марта 1955 года Александр Флеминг умер от инфаркта миокарда. Его похоронили в соборе Святого Павла в Лондоне – рядом с самыми почитаемыми британцами. В Греции, где бывал учёный, объявили национальный траур.
В день смерти Александра Флеминга к мемориальной доске с его именем все барселонские цветочницы высыпали из своих корзин целые охапки цветов. Эти простые цветы были драгоценнее золотых наград.Примечания для любопытных
Александр Флеминг(1881–1955) – шотландский медик и биолог, открывший пенициллин. Вместе с Флори и Чейном получил в 1945 году Нобелевскую премию за открытие пенициллина и его целебных свойств.
Говард Флори(1898–1968) – британский биохимик, лауреат Нобелевской премии 1945 года по физиологии и медицине.
Эрнст Борис Чейн(1906–1979) – британский биохимик, лауреат Нобелевской премии (1945).
Чашка Петри– плоская чашка с крышкой, используемая в биологии. Изобретена в 1877 году немецким бактериологом Юлиусом Петри (1852–1921).
Карболка– карболовая кислота, или фенол C6H5OH. Слабые растворы фенола используются в медицине как обеззараживающее средство (антисептик). Лейкоциты– белые кровяные клетки, защищающие организм от вредных микробов и инородных тел. Гной – это скопление погибших лейкоцитов.
Золотистый стафилококк(Staphylococcus aureus) – шаровидная бактерия, которую часто находят в носу и на коже людей. Порядка 20 % населения Земли являются постоянными носителями этой бактерии. Стафилококк золотистый вызывает кожные угри, а также ряд смертельно опасных заболеваний, включая раневые инфекции. Обнаружен в 1880 году доктором Огстоном в гное из воспалённых ран.
Бактерии– микроорганизмы, обычно одноклеточные, размером около микрона (тысячной доли миллиметра). Открыты Левенгуком в 1676 году. Описано около десяти тысяч видов бактерий, но неоткрытых видов одноклеточных микроорганизмов – в тысячи раз больше. В каждом грамме озёрной воды содержится около миллиона бактерий, в грамме почвы – около сорока миллионов. Против болезнетворных бактерий применяют антибиотики.
Вирусы– микрочастицы, которые способны заражать организм и размножаться в нём. Открыты в конце XIX века и сфотографированы впервые в 1931 году с помощью электронного микроскопа. Вирусы в десятки и сотни раз меньше бактерий и имеют размер, сравнимый с крупной белковой молекулой. Одни учёные полагают, что вирусы – неживые микрочастицы, другие считают их живыми, третьи полагают, что вирус становится живым лишь внутри клетки-хозяина. Вирусы обычно состоят из белковой оболочки, часто похожей на симметричный кристалл, внутри которой содержится одна молекула нуклеиновой кислоты (например, ДНК), хранящая генетическую информацию вируса. Вирусы гораздо более многочисленны, чем бактерии: в грамме морской воды содержится 250 миллионов вирусов. Открыта и изучена лишь ничтожная часть видов вирусов, живущих в воде и земле. Типичное занятие вирусов – уничтожать бактерии и клетки, размножаясь в них до полной гибели хозяина. Антибиотики на вирусы не действуют; против вирусов обычно применяют прививки, которые усиливают защитную реакцию организма на вирусную инфекцию. Вирусы выполняют важную роль в природе, перенося генетическую информацию и способствуя формированию генома различных организмов, включая человека.
Агар,или агар-агар, – желеобразная смесь полисахаридов, получаемая из водорослей. Растительный аналог желатина, применяется для получения мармелада. В конце XIX века, по совету своей жены, которая готовила из агара фруктовое желе, немецкий микробиолог Хессе стал использовать агар для приготовления питательных сред для разведения бактерий. Вирусы так не развести – они сами ничего не едят.
Сказка о химике Белоусове, который придумал жидкий маятник
– Сегодня я расскажу вам историю про виртуоза, – сказала Дзинтара.
– Виртуоза-скрипача? – высказала Галатея логичное предположение.
Мать отрицательно покачала головой:
– Среди музыкантов и композиторов, живущих в мире мелодий, немало виртуозов, которые понимают душу скрипки и саксофона, виолончели и рояля. В слаженных звуках оркестра опытные музыканты слышат гораздо больше обычных людей.
Но виртуозы встречаются не только среди скрипачей и пианистов.
Жил-был человек, который был виртуозом-химиком и с удовольствием жил в загадочном и интереснейшем мире химических реакций. Этот человек понимал душу металлов и кислот, катализаторов и энзимов. Он знал, как они друг к другу относятся, как враждуют и дружат, как соединяются и расходятся. Он понимал их устремления и способности, красоту и темперамент.
Звали этого человека Борисом Белоусовым. Судьба ему выпала такая, что никакой писатель-фантазёр не смог бы выдумать.
В двенадцать лет он стал революционером, который вместе со своими старшими братьями изготавливал бомбы для рабочих, восставших в 1905 году в России. Братьев Белоусовых арестовали и приговорили к ссылке или эмиграции. Так Борис попал в Швейцарию.
Цюрихскую квартиру братьев Белоусовых посещали многие видные русские революционеры, включая Ульянова-Ленина, с которым Борис Белоусов играл в шахматы.
В Цюрихском университете Борис прослушал полный курс химии и познакомился с Альбертом Эйнштейном. Диплом Белоусов не стал получать, потому что за него нужно было заплатить слишком много денег, а у Бориса денег было не слишком много, а очень даже мало.
Вернувшись в 1914 году из швейцарской ссылки в Россию, Борис Белоусов стал работать вместе со знаменитым химиком, академиком Ипатьевым. Есть химики, которые разрабатывают боевые отравляющие газы, но Борис Белоусов был из тех военных химиков, которые делают не яд, а противоядие: он работал над созданием противогазов и лекарств, спасающих солдат на поле боя.
Многие люди лично знакомы с результатами работы Белоусова. Кому из вас прижигали ссадины «зелёнкой», или бриллиантовой зеленью?
– Мне! – сказал Андрей.
– Так вот промышленный выпуск этого препарата был налажен благодаря работе Белоусова в конце 1930-х годов.
Борис Белоусов много лет преподавал химию в военной академии и получил звание генерала.
– Химики могут быть генералами? – удивилась Галатея. Дзинтара кивнула:
– Во время Второй мировой войны генерал Белоусов работал начальником отдела в научном институте.
Учёные живут среди умных формул и обычных людей. После войны бюрократы оживились, повылезали из тихих щелей и отправились всем жизнь портить. Пришли они и к химику Белоусову и предложили показать его диплом о высшем образовании. Нечего было показывать профессору и генералу Белоусову: не было у него, политэмигранта, в своё время денег, чтобы выкупить заслуженный диплом Цюрихского университета.
Обрадовались бюрократы и заявили, что без диплома Белоусов не может занимать должности выше старшего лаборанта.
Посмотрел брезгливо Белоусов на бюрократов и перешёл на зарплату старшего лаборанта, оставаясь при этом начальником отдела, – других учёных с такой высокой квалификацией в отделе не было, хотя химиков с дипломами – сколько угодно. В конце концов начальству института стало стыдно, и оно добилось письменного разрешения Сталина на возвращение зарплаты учёному.
Деньги Белоусова волновали мало – он слишком был занят своими химическими реакциями.
В ходе многолетних поисков лекарств, которые могут спасти живые клетки от радиации, химик-виртуоз наткнулся на следы терра инкогнита – неоткрытой земли в мире химических реакций.
Дело в том, что многие биологические процессы цикличны: наше сердце ритмично бьётся, а лёгкие равномерно дышат.
– А Галатея любит циклично качать ногой! – сердито сказал Андрей. – Меня это очень раздражает.
– Разве ты не понял, что цикличность естественна? – хихикнула Галатея.
Дзинтара продолжила:
– Полоски на шкуре тигра и жирафа, узоры на крыльях бабочки и на чешуе тропических рыб тоже отражают биологические периодические процессы. В популяциях рысей и зайцев охотники тоже заметили колебания звериного поголовья, а математики даже составили уравнения для периодических изменений числа хищных щук и травоядных карасей.
В основе биологических процессов, среди которых так много периодических, лежат химические превращения, но химии периодических или колебательных реакций не существовало.
В середине двадцатого века поиск периодической химической реакции выглядел как кощунство. Уголь сгорает, а железо ржавеет необратимо, невозможно представить себе химическую реакцию, которая периодически меняет своё направление. Для обычных людей это выглядело как издевательство над законами термодинамики!
– Да, я бы с удовольствием посмотрел на дрова, которые горят циклично! – заявил Андрей. – Сначала из дров получаются угли, потом зола снова превращается в дерево – и оно снова загорается! И топливо подносить не надо.
Дзинтара сощурила глаза в усмешке:
– Между прочим, во время горения дров происходит немало волновых колебаний продуктов реакции. Я сама часто любуюсь периодическими волнами пламени на горящей древесине.
Что невозможно представить обычному человеку, то возможно совершить виртуозу. Белоусов понимал, что в мире химических взаимодействий должна найтись Страна Периодических Реакций, которые и должны стать основой для циклических процессов в клетках живых организмов.
Знания, опыт и интуиция подсказывали человеку-виртуозу – где нужно искать эти периодические реакции.
В 1937 году немецкий химик Кребс открыл цикл окисления лимонной кислоты.
– Которая содержится в лимоне? – уточнила Галатея.
– Да. Открытие важное – недаром за неё Кребс получил Нобелевскую премию. Цикл Кребса – это ключевая реакция, лежащая в основе кислородного дыхания, энергоснабжения и роста клетки.
– А можно поподробнее про этот цикл? – спросил Андрей.
– Нельзя, – покачала головой Дзинтара. – Этот цикл очень непрост и используется организмом в самых разных случаях, например, при уничтожении ядовитых продуктов распада алкоголя. Его изучать надо по учебникам, внимательно отслеживая все химические реакции внутри цикла. Займись этим завтра сам.
Белоусов, конечно, знал сложный цикл Кребса как свои пять пальцев. Химик-виртуоз напряженно размышлял: можно ли получить более простой, в идеале – неорганический – аналог органического цикла Кребса? Это позволило бы сложную биохимию живой клетки проиллюстрировать гораздо более простой химической реакцией, которую легче изучить и понять.
Белоусов перебрал сотни химических веществ, сделал сотни опытов. Он приезжал с работы домой, съедал лёгкий ужин и снова садился за рабочий стол, заваленный научными книгами – на русском, английском, французском и немецком языках.
Что будет, если подействовать на лимонную кислоту раствором бертолетовой соли? А если добавить в раствор ещё и соли церия? Ведь нужен окислитель, но такой, который действует в присутствии катализатора…
– Какой он был умный, этот человек! – восхищённо вздохнула Галатея. Дзинтара согласилась:
– Прежде чем химик начнёт сливать растворы вместе, он должен проделать немало расчётов, сопоставлений и прикидок. Действовать вслепую – зря терять время. Нужна хорошо обдуманная гипотеза, которую потом можно проверить в пробирке.
Много вариантов реакции исследовал Белоусов – и нашёл всё-таки дорогу в свою терра инкогнита.
Вот маршрут, вернее – рецепт. Если соединить в одной колбе и в нужных пропорциях раствор серной кислоты, бромат натрия, лимонную кислоту, сульфат церия и индикатор фенантролин-железо, то возникнет чудо: раствор начинает менять цвет с голубого до оранжевого и обратно с периодом колебания от долей секунды до десятков минут.
Если вылить этот раствор в плоскую чашку, то по мелкому слою поползут волны разного цвета. После нескольких десятков колебаний нужно подлить свежие растворы, чтобы поддержать химическую реакцию, – совершенно так же, как нужно питать живой организм.
Периодическая реакция, открытая Белоусовым, явилась в каком-то смысле простым аналогом жизни, неравновесной химической пульсацией, похожей на сердцебиение.
В комнату Белоусова, в которой «тикали» жидкие химические часы, или, если угодно, билось химическое сердце, потянулись друзья и сотрудники. Борис Павлович носил колбу даже домой, показал её домашним и своему племяннику.
Потом Белоусов сел писать статью о своём открытии.
Химик Белоусов занимался практическими задачами, печатных трудов и патентов имел много, но в академических журналах не публиковался и с нравами тамошних рецензентов знаком не был. Увы, среди рецензентов научных журналов виртуозы встречаются редко. Это неформальное звание редко кому удаётся заслужить.
В 1951 году статья Белоусова об открытии удивительной реакции ушла в журнал Академии наук. И… быстро вернулась с отказом в публикации. Болван-рецензент завернул статью, категорически утверждая, что такая химическая реакция невозможна!
Обычно немногословный Белоусов с горечью сказал, что нынешние учёные утратили уважение к фактам. Рецензенту оказалась чужда мысль Левенгука: «Следует воздержаться от рассуждений, когда говорит опыт».
Борис Павлович Белоусов взялся за дальнейшее исследование новой реакции. Пять лет он улучшал свою работу, проводил новые измерения и анализы.
А в это время научный мир не стоял на месте.Английский математик Алан Тьюринг в 1952 году высказал предположение о том, что сочетание химических реакций с процессами диффузии может объяснить целый класс биологических и химических явлений, в частности, периодическое чередование полосок на шкуре тигра. Бельгийский физик Илья Пригожин в 1955 году пришёл к выводу, что в неравновесных термодинамических системах, к которым относятся и все биологические системы, возможны химические колебания.
Ни Тьюринг, ни Пригожин не подозревали, что обсуждаемый ими феномен уже открыт, но статья о нём всё ещё не опубликована.
Наконец Белоусов отправляет в печать новый вариант своей работы – уже в другой журнал.
Но статья снова вернулась с отказом в публикации! Рецензент посчитал, что автор неправильно написал статью, и предложил ему сократить её до пары страниц.
Такой наглости неумных рецензентов Белоусов не выдержал, навсегда прекратил общение с академическими журналами, а статью выбросил в мусор.
– Ну зачем он это сделал! – горестно воскликнула Галатея. Дзинтара вздохнула:
– Племянник Белоусова, уже ставший студентом-химиком, предлагал дяде принести колбу в редакцию – пусть сами увидят химический маятник в действии!
Генерал Белоусов сердито отказался: «Что я им – клоун?»
Прошло восемь лет после открытия колебательной реакции – по-прежнему о ней никто, кроме сотрудников и друзей Белоусова, не знал. Но… по Москве уже поползли слухи о необычном стакане, в котором бьётся цветное «химическое сердце». Биофизик из Московского университета Симон Шноль, услышав об этой реакции, загорелся и стал искать её открывателя – но безуспешно. У Шноля даже вошло в привычку, выступая на каждом научном семинаре, расспрашивать присутствующих химиков о неизвестном авторе колебательной реакции.