355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Горькавый » Космические сыщики » Текст книги (страница 4)
Космические сыщики
  • Текст добавлен: 7 октября 2016, 16:31

Текст книги "Космические сыщики"


Автор книги: Ник Горькавый



сообщить о нарушении

Текущая страница: 4 (всего у книги 10 страниц) [доступный отрывок для чтения: 4 страниц]

Сказка о философском камне и гувернантке, получившей две Нобелевские премии

Философский камень – так в Средневековье называли гипотетическое вещество, которое превращало свинец в золото. Ему приписывали и многие другие волшебные свойства, но умение трансформировать дешёвые металлы в драгоценное золото было самым привлекательным. Поэтому аристократы того времени часто финансировали работы придворных алхимиков, обещавших изготовить философский камень и принести своему господину несметные богатства.

– Они их обманывали! – засмеялась Галатея.

– Это не исключено, но многие алхимики искренне верили в возможность создания такого вещества и тратили на его поиски всю жизнь. Нельзя сказать, что поиски были бесплодными: попутно алхимики сделали немало замечательных открытий, которые стали основой современной химии, но, увы, создать философский камень им не удалось. Способ преобразования химических элементов был открыт заметно позже и не оправдал надежд на получение дешёвого золота.

– Неужели всё-таки нашли способ превращать обычные металлы в золото? – удивилась Галатея.

– Да, но давайте я расскажу обо всём по порядку, – сказала Дзинтара. – Эта история началась, когда одна бедная польская гувернантка приехала в Париж, чтобы стать физиком.

– Мама! – воскликнула девочка. – Ты уверена, что рассказываешь по порядку? Я уже ничего не понимаю!

– Ага, – призадумалась Дзинтара. – Тогда начнём историю пораньше. В семье варшавского учителя гимназии росли сын и четверо дочерей. Девушки мечтали учиться в университете, но семья была небогата, и, кроме того, в Польше, которая в конце XIX века являлась провинцией Российской империи, возможностей для получения женщинами университетского образования практически не было.

– Ужасная несправедливость! – пробурчала Галатея, большая поборница справедливости и равенства.

Дзинтара отметила:

– Младшая сестра Мария закончила в Варшаве подпольные женские курсы, называвшиеся «Летучий университет».

– Подпольные? – переспросил Андрей. – То есть они учились, нарушая закон?

– Скорее, нарушая традиции. Дипломы таких курсов никто не признавал. Чтобы преодолеть нехватку средств на обучение, две сестры – Мария и Бронислава, которая была старше Марии на два года, заключили дружеское соглашение: получить образование по очереди, финансово поддерживая друг друга. Мария стала работать гувернанткой и помогала деньгами Брониславе, давая ей возможность получить среднее образование в Варшаве, а потом уехать в Париж, чтобы там учиться медицине. Получив профессию медика и выйдя в Париже замуж за польского врача-эмигранта, Бронислава, в свою очередь, пригласила сестру в столицу Франции, пообещав помочь деньгами.

В 1891 году Мария Склодовская, уже опытная гувернантка в возрасте 24 лет, приехала в Париж, чтобы поступить в знаменитый парижский университет – Сорбонну.

– Теперь стало гораздо понятнее! – облегчённо вздохнула Галатея.

– Паровоз, пыхтя белым паром, подкатил пассажирские вагоны к длинному перрону парижского вокзала. Мария вышла из вагона, и для неё началась совсем другая жизнь. Париж покорил молодую полячку – это был огромный город со знаменитыми театрами, дворцами и университетами. Она поступила в Сорбонну и поселилась неподалёку в маленькой холодной мансарде Латинского квартала – традиционном месте обитания столичных студентов. Из мансарды открывался прекрасный вид на крыши и заросли каминных труб квартала.


Мария всегда отличалась трудолюбием и прилежанием к учебе и в Сорбонне проявила эти качества во всей полноте. Пренебрегая едой и сном, она училась так интенсивно, что закончила Сорбонну одной из лучших, получив сразу два диплома – физика и математика. Успехи Марии были настолько впечатляющими, что её оставили в университете для самостоятельной научной работы. Мария Склодовская стала первой в истории Сорбонны женщиной-преподавателем.

– Раньше там преподавали только мужчины? – не поверила своим ушам Галатея.

– Да, в конце XIX века во Франции образованию женщин тоже уделялось мало внимания, – сказала Дзинтара. – В это время Мария познакомилась с Пьером Кюри, который заведовал лабораторией в Школе промышленной физики и химии. Они поженились и стали работать вместе.

Когда супруги Кюри узнали об опытах Беккереля, Мария выбрала радиоактивность темой для своей диссертации. Она решила проверить, насколько одинаковой радиоактивностью обладают образцы урана из разных месторождений. В то время уже было известно, что излучение урана вызывает ионизацию воздуха и увеличивает его проводимость, которую можно измерить с помощью простого электрического прибора – электроскопа, чей заряд убывал при радиоактивном облучении.

– Это проще, чем всё время проявлять фотопластинки! – отметил Андрей.

– Верно, это облегчало работу. Но её всё равно было очень много. Измерив ионизацию от разных образцов урановой руды, Мария Кюри убедилась, что руда, доставленная из чешского месторождения Йоахимсталь (ныне – Яхимов), в четыре раза активнее, чем образцы из других месторождений. Супруги Кюри предположили, что в этой руде, кроме урана, присутствует ещё какой-то активный элемент. В 1898 году они открыли его и назвали полонием в честь Польши – родины Марии. Через несколько месяцев супруги Кюри обнаружили в урановой руде ещё один радиоактивный элемент. Спектральные исследования показали, что это новый элемент, который назвали радием. С 1898 по 1902 год в плохо приспособленном сарае, расположенном на улице Ломон, супруги Кюри переработали восемь тонн урановой руды – и в итоге получили образец радия, который обладал такой радиоактивностью, что светился в темноте.

В это же время было открыто и биологическое воздействие радиации. Произошло это так: Анри Беккерель попросил у супругов Кюри образец радиоактивного вещества для своего публичного выступления. Пробирку с образцом он положил в кармашек жилета и вечером обнаружил, что на коже под карманом образовалось покраснение. Пьер Кюри решил повторить опыт на себе и привязал на несколько дней пробирку к предплечью. В результате на предплечье образовалась язва, которая не заживала два месяца. Супруги Кюри стали замечать, что в процессе работы с радиоактивными препаратами руки тоже покрывались язвочками. Их это не остановило, и они продолжили исследования.


Супруги Кюри не стали патентовать свои открытия, желая сделать их достоянием всего человечества. За свои открытия Мария и Пьер вместе с Беккерелем получили Нобелевскую премию в области физики 1903 года «за выдающиеся заслуги в совместных исследованиях явлений радиации». На полученные деньги они купили необходимое оборудование для своей лаборатории и – наконец-то! – ванну для своей квартиры.

Когда Огюст Конт рассуждал о непостижимости химического состава звёзд, он, очевидно, полагал, что проблема изучения звёзд заключается в их невероятной удалённости. Работы Фраунгофера, Герца и Рентгена заложили основу для дистанционного химического анализа звёзд – по слабому свечению, улавливаемому на Земле. Но, как показали работы супругов Кюри, вещество звёзд можно потрогать и своими руками.

Известный физик Вайскопф так описал связь исследований супругов Кюри с космосом: «Когда Мария и Пьер Кюри выделили радий в знаменитом сарае в Школе промышленной физики и химии, когда их охватил трепет при виде сверхъестественного свечения этого вещества в темноте, они оказались созерцателями явления, выходящего за пределы обычного атомного мира окружающей нас среды. Теперь мы знаем, что супруги Кюри увидели нечто, дошедшее до нас из тех времен, когда земное вещество находилось в совсем иных условиях, внутри взрывающейся звезды. Естественные радиоактивные вещества являются последними свидетелями, последними ещё тлеющими угольками, оставшимися от тех полных событиями времён, когда образовывались химические элементы».

По мнению Вайскопфа, работы Марии Склодовской-Кюри открыли новый этап в развитии науки: «Она сама, её сотрудники и преемники исследовали космические процессы на Земле: они воспроизвели подобные процессы в земных условиях… Физика вышла на новый рубеж, и это можно назвать прыжком в космос».

– То есть уран и радий тоже образовались в космосе? – спросила Галатея.

– Да, в момент взрыва сверхновой звезды элементарные частицы и ядра обычных, нерадиоактивных, элементов сталкивались с такой скоростью, что сливались, образуя все возможные тяжёлые химические элементы – включая уран, радий и другие химические элементы тяжелее железа. Эти элементы часто радиоактивны, потому что они отдают энергию, поглощённую в момент взрыва сверхновой.

– Значит, звёзды и оказались тем самым философским камнем, который искали алхимики? – спросил Андрей.

– По существу, ты прав: звёзды являются философским камнем, превращающим звёздное железо в земное золото, рассеянное в минералах и собранное в золотых жилах. Но я имела в виду нечто другое, то, о чём ещё не успела рассказать, – сказала Дзинтара.

– Так рассказывай же! – поторопила её Галатея.

– После получения Нобелевской премии Мария продолжила работу с радиоактивными элементами, к 1910 году выделив чистый металлический радий и доказав, что он является самостоятельным химическим элементом. В это время Марию Склодовскую-Кюри выдвинули кандидатом во Французскую академию наук. По этому поводу среди академиков разгорелись яростные споры.

– Почему? – удивилась Галатея. – Ведь она уже получила Нобелевскую премию!

– Французская академия наук была очень консервативной организацией, в неё никогда не избирались женщины.

– Ах, вот в чём дело, – протянула Галатея. – Но ведь когда-то надо начинать!

– К сожалению, кандидатура Марии Склодовской-Кюри была провалена на выборах в академию, не добрав всего пары голосов.

– Безобразие! – возмутилась Галатея. – Она была умнее многих этих академиков!

– Более того, в следующем, 1911, году Мария получила вторую Нобелевскую премию, уже по химии – «за выдающиеся заслуги в развитии химии: открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента». Мария Склодовская-Кюри стала первой и до сих пор единственной женщиной в мире, дважды ставшей Нобелевским лауреатом.

– Тем самым она посадила в глубокую лужу своих противников, – с удовлетворением отметил Андрей.

– Академия сама себя посадила в лужу, не выбрав столь достойного учёного в свои ряды, – пожала плечами Дзинтара. – История супругов Кюри не заканчивается на Пьере и Марии. Старшая дочь Марии Кюри – Ирен – родилась за год до открытия радия и из-за активной научной работы матери выросла под присмотром дедушки-врача, Эжена Кюри. Ирен тоже закончила Сорбонну – с перерывом на несколько месяцев, когда помогала матери в работе над двадцатью фронтовыми рентгеновскими аппаратами, созданными Марией Склодовской-Кюри. Шла Первая мировая война, и эти мобильные установки оказывали хирургам огромную помощь в поиске шрапнели и осколков у раненых бойцов, спасли много жизней. Однако они были небезопасны: работая с рентгеновскими установками, а также изготавливая лечебные радиоактивные препараты, Мария и Ирен получили значительные дозы радиации, которые впоследствии вызвали у них лейкемию.

– Они были героинями, спасали раненых и сражались с врагами! – выпалила Галатея.

– Позже Ирен стала работать ассистентом в Радиевом институте. Здесь она познакомилась с другим ассистентом – Фредериком Жолио. Они поженились в 1926 году и начали работать вместе, выступая в науке и жизни как супруги Жолио-Кюри. Двойную фамилию носили оба.

– Полное равноправие! – удовлетворенно отметила Галатея. – Я тоже… – и она замолчала, решив не делиться своими планами на будущее.

– Супруги Жолио-Кюри сделали немало интересных открытий, но самая выдающаяся их работа стала современным вариантом философского камня.

– Наконец-то мы добрались до сути! – хлопнула в ладоши Галатея.

– К этому времени учёные научились видеть отдельные элементарные частицы…

– Мама, ты шутишь?! – засмеялась Галатея. – Даже мне ясно, что это невозможно. Элементарные частицы такие маленькие! Никто не может увидеть электрон.

– Не совсем так. В 1897 году шотландский физик Вильсон заметил, что в перенасыщенном водяном паре вокруг ионов образуются капельки воды – проще говоря, туман, который видим обычному глазу. На основе этого эффекта учёный сконструировал прибор, названный «камерой Вильсона». Он был настолько ценен, что в 1927 году Вильсон (вместе с Комптоном) получил за него Нобелевскую премию по физике: камера позволяла видеть движение отдельных элементарных частиц!

– Ух ты! – воскликнула Галатея.

– Элементарная частица влетала в камеру Вильсона, наполненную перенасыщенным водяным паром, и вызывала ионизацию молекул вдоль траектории своего движения – до тех пор, пока не расходовала всю энергию и не останавливалась. Расположенные вдоль траектории ионы начинали собирать на себе капельки воды, и в результате в камере появлялась туманная линия. Если камеру Вильсона помещали в магнитное поле, траектория иона загибалась, а то и закручивалась в спираль. Направление изгиба говорило о знаке заряда частицы, а кривизна траектории – о скорости и отношении её заряда к массе.

Таким образом, камера Вильсона позволяла увидеть траектории движения отдельных элементарных частиц. И хотя сами они, конечно, оставались невидимыми, камеру Вильсона назвали «открытым окном в атомный мир».

– Хочу посмотреть в камеру Вильсона! – заявила Галатея.

– Фредерик Жолио-Кюри разработал усовершенствованную и очень чувствительную камеру Вильсона, что позволило провести тонкие опыты с использованием мощного источника излучения, сделанного из полония. В одном из опытов, когда супруги Жолио-Кюри облучали алюминиевую фольгу альфа-частицами или ядрами гелия, они обнаружили интересный эффект: после облучения обычный алюминий становился радиоактивным. Анализ показал, что, присоединив к себе альфа-частицу, алюминий превратился в радиоактивный фосфор. Так был открыт «философский камень», или способ превращения одних элементов в другие, то есть метод создания искусственных элементов.

– Так можно создавать и золото? – спросила Галатея.

– Да, но это слишком дорогой способ, чтобы с его помощью можно было набить карманы. Однако для науки, в том числе для медицины, метод превращения одних элементов в другие оказался бесценным. Ирен и Фредерик Жолио-Кюри создали много искусственных изотопов – радиоактивных разновидностей стабильных химических элементов и в 1935 году получили Нобелевскую премию по химии с формулировкой «за выполненный синтез новых радиоактивных элементов».

Ирен, будучи девочкой, присутствовала на вручении Нобелевской премии её матери, а потом и сама стала лауреатом.

– Значит, бедная гувернантка, приехав в Париж, через 12 лет получила одну премию, а через 20 лет – другую. А потом и её дочь получила Нобелевскую премию. Редкая удача! – сказал Андрей.

– Не удача, а трудолюбие и талант. Мария Склодовская-Кюри и её дочь Ирен Жолио-Кюри были пионерами атомного века, первыми открыли дверь в неизведанное и на себе испытали все сопряженные с этим опасности. Их работа принесла не только важные открытия, но и бесценный опыт работы с опасными веществами, позволивший следующим поколениям учёных-атомщиков работать, не подвергая своё здоровье смертельной опасности.

В честь супругов Кюри назвали радиоактивный химический элемент «кюрий» и единицу радиоактивности, Университет Пьера и Марии Кюри, научно-исследовательский Институт Кюри и станцию парижского метро (7-я (розовая) линия, «Pierre et Marie Curie»). Мария Склодовская-Кюри стала символом, вдохновляющим женщин всего мира на научную работу и борьбу за равноправие.

Примечания для любопытных

Алхимик – средневековый естествоиспытатель, который пытался создать философский камень или открыть средство для бессмертия.

Философский камень – гипотетическое вещество, которое должно было превращать обычные металлы в золото.

Пьер Кюри (1859–1906) – известный физик, вместе с женой Марией Склодовской-Кюри получивший Нобелевскую премию по физике (1903).

Мария Склодовская-Кюри (1867–1934) – великий физик и химик, за работы по радиоактивным элементам получила две Нобелевские премии: по физике (1903), вместе с мужем Пьером, и по химии (1911). Умерла от лейкемии.

Полоний – химический элемент с обозначением Po и номером 84 в Периодической таблице Менделеева. Мягкий металл серебристого цвета, активнее урана. Открыт супругами Кюри.

Радий – химический элемент с обозначением Ra и атомным номером 88. Блестящий серебристо-белый металл, активнее урана. Открыт супругами Кюри. В начале XX века радий был самым дорогим металлом: цена одного грамма радия равнялась стоимости 200 кг золота.

Виктор Вайскопф (1908–2002) – известный физик-теоретик. Родился в Австрии, работал с Бором в Дании, участвовал в американском «Проекте Манхэттен» по созданию атомной бомбы.

Ирен Жолио-Кюри (1897–1956) – известный физик, дочь Марии Склодовской-Кюри. Вместе с мужем Фредериком Жолио-Кюри получила Нобелевскую премию по физике (1935). Умерла от лейкемии.

Фредерик Жолио-Кюри (1900–1958) – известный физик. Лауреат Нобелевской премии по физике (1935), вместе с женой Ирен.

Изотопы – разновидности химического элемента, одинаковые по заряду ядра (количеству протонов в нём), но отличные по массе (количеству нейтронов в ядре). Изотопы имеют одинаковое строение электронных оболочек, близки по химическим свойствам и занимают одно и то же место в Периодической системе Менделеева. Термин предложен Ф. Содди в 1910 году: от греческого isos – одинаковый и topos – место. Изотопы кардинально отличаются по радиоактивности ядер: стабильный изотоп имеет определённое соотношение протонов и нейтронов в ядре, а нестабильный изотоп того же химического элемента имеет меньше или больше нейтронов.

Чарльз Вильсон (1869–1959) – известный шотландский физик, создавший камеру Вильсона для наблюдения траекторий движения элементарных частиц. Выходец из крестьянской семьи. Лауреат Нобелевской премии по физике (1927) «за метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара».

Альфа-частицы – вид радиоактивного излучения, состоящего из положительно заряженных ядер гелия.

Сказка о Планке, который в свете электролампы нашёл свою кривую и свою постоянную

Однажды в кабинет Филиппа фон Жолли, профессора Мюнхенского университета, аккуратно постучавшись, вошёл аккуратный молодой человек:

– Я недавно поступил в этот университет и хочу заниматься теоретической физикой.

– Теоретической физикой? – удивился профессор. – Не советую. В этой науке все открытия уже сделаны, осталось подчистить пару дыр.

Шёл 1874 год, и профессора можно было понять: теоретическая физика в то время достигла практически безукоризненного совершенства, прочно базируясь на механике Ньютона, электродинамике Максвелла, а также термодинамике.

Молодой человек скромно ответил:

– Я не собираюсь делать открытия, я просто хотел бы понять уже достигнутое в области теории.

– Ну что ж, я не буду вас больше отговаривать, можете посещать мои лекции. Как вас зовут?

– Макс Планк.

Молодой человек был выходцем из старинного дворянского рода, давшего Германии многих военных, юристов и учёных. Его семья жила в Мюнхене, а отец Планка занимал профессорскую должность в университете. В те времена в Германии лишь принцам да баронам оказывалось большее уважение, чем профессорам. Их семьи жили под сенью этого почёта. Стоило супруге профессора, которую уважительно называли «фрау профессор», зайти в магазин, как приказчик оставлял других посетителей и уделял ей всё своё внимание. Женщины из высшего общества Мюнхена часто встречались в кафе – посудачить и полакомиться сластями. Когда фрау профессор входила, дама во главе стола немедленно уступала ей место, даже если была гораздо старше её.

– Видимо, это объясняет, почему тогдашняя Германия обладала самой передовой наукой в мире, – мудро изрёк Андрей.

Дзинтара согласно кивнула.

– Ещё в школе Макс полюбил физику. Однажды учитель сказал: «Представьте себе рабочего, который поднимает тяжёлый кирпич на верх строящегося дома. Затраченная им энергия не пропадает. Возможно, однажды, спустя много лет, кирпич расшатается и упадёт вниз на голову случайного прохожего».

Макс Планк был потрясен такой иллюстрацией закона сохранения энергии. Это потрясение выросло в глубокую заинтересованность теоретической физикой.

В университете Планк подготовил диссертацию по термодинамике. После университета у него не было постоянной работы, но это не могло удержать его от занятий наукой. Он читал статьи видных физиков Гельмгольца и Кирхгофа, самостоятельно занимался наукой и писал статьи. Благодаря этому Гельмгольц заметил талантливого молодого учёного, и Планк стал быстро продвигаться по карьерной лестнице, в 30 с небольшим лет став профессором теоретической физики в Берлинском университете.

Молодой профессор Планк не был похож на обычных маститых профессоров с бакенбардами и бородами. Однажды, вскоре после приезда в Берлинский университет, он забыл, в какой аудитории должен читать лекцию. Планк зашёл в канцелярию и обратился к пожилому человеку, ведавшему канцелярией:

– Скажите, пожалуйста, в какой аудитории профессор Планк сегодня читает лекцию?

Старик похлопал его по плечу и сказал:

– Не ходите туда, юноша. Вы ещё слишком молоды, чтобы понимать лекции нашего мудрого профессора Планка.

В это время электрическая компания попросила профессора Планка выяснить, как при минимальных затратах энергии достичь максимальной светимости электрической лампочки. Планк откликнулся на просьбу и начал работу, из которой выросла новая эпоха в науке.

Давно было ясно, что от температуры тела (например, раскалённой проволочки в электролампе) зависит интенсивность его свечения, а также цвет излучения (или длина его волны).

– Верно! – закричала Галатея. – Свечка горит жёлтым, а пламя очень горячей электросварки – синее.

– Для массового производства электроламп важен точный ответ, который позволит миллионам лампочек, горящих по всему миру, быть максимально яркими. Профессор Планк взялся за проблему определения спектра свечения раскалённых тел и за изучение вопроса, как этот спектр зависит от температуры. К тому времени были известны два закона для свечения тел как функции длины волны. Один – эмпирический закон физика Вина – хорошо описывал зависимость длины волны, на которую приходится максимум свечения, от температуры тела, а также яркость свечения в области коротких волн. Однако в длинноволновой части закон Вина сильно отличался от экспериментальных данных. Другой закон – теоретический закон Рэлея-Джинса – наоборот, совпадал с экспериментальными данными для длинных волн, но в области коротких волн безнадёжно врал, утверждая, что основная энергия излучения будет содержаться в самых коротких волнах.

Для начала Планк решил получить формулу, которая хорошо соответствовала бы наблюдаемой зависимости свечения от длины волны, не заботясь о её теоретическом основании. Может, физик-теоретик Планк пошёл по пути получения эмпирической формулы именно потому, что свечение ламп было практическим вопросом: производителей лампочек не интересовала теория – им требовалась работающая в реальности формула.


Планку удалось вывести математический закон, который давал правильные, совпадающие с экспериментом выражения для излучения лампы, как в длинных, так и в коротких длинах волн. Он рассказал об этой формуле на заседании Германского физического общества 19 октября 1900 года. На докладе присутствовал физик Генрих Рубенс, который проводил опыты с чёрным телом. Когда лекция закончилась, Рубенс отправился в свою лабораторию и большую часть ночи провёл за сравнением формулы Планка и экспериментальных данных. Формула работала прекрасно, о чём Рубенс утром сообщил профессору.

Планк был очень доволен. Оставалось понять, является ли полученная формула математическим трюком, не имеющим глубокого обоснования, или её можно вывести из первых принципов физики. Планк начал искать обоснование своему закону, опираясь на работы знаменитого Больцмана, который глубже всех современников понял термодинамику. После долгих усилий учёный выяснил, что его формула не получается из обычных принципов, зато прекрасно выводится, если предположить, что элементарный осциллятор может испускать волны только порциями, пропорциональными частоте волны v.

– Что такое осциллятор и почему он такой непонятный, хотя и элементарный? – озадаченно спросила Галатея.

– Герц открыл, что контур, в котором туда и обратно двигается поток электронов, излучает радиоволны. Если упростить контур Герца до предела, мы получим элементарный, то есть самый простой из всех возможных, осциллятор – электрический заряд или электрон, колеблющийся под воздействием какой-то внешней силы. Термин «осциллятор» произошёл от латинского слова oscillo – «качаюсь» и означает любую систему, которая совершает колебания, периодически повторяя во времени своё положение. Например, электрически заряженный и качающийся маятник часов будет неплохим примером такого осциллятора. Условие, которое Планк был вынужден положить в основу своей формулы, утверждало, что осциллятор не может испускать волны как захочет, а должен испускать энергию лишь отдельными порциями, квантами. Планк записал энергию такой порции в виде:

E = hv,

где h – постоянная, которую впоследствии стали называть постоянной Планка.

Это было очень странное условие, которое не следовало из обычных законов.

– В чём его странность? – заёрзала Галатея.

– Качающиеся или осциллирующие заряженные тела или частицы всегда испускают электромагнитные волны. Теория Максвелла не накладывала ограничений на такое излучение, а Планку пришлось «приказать» осцилляторам испускать энергию только порциями, и никак иначе.

Планк опубликовал свою теорию в 1900 году, но ни он сам, ни его коллеги не спешили признавать реальность странного условия. Усилиями Эйнштейна и других учёных теория световых квантов стала завоёвывать своё место в физике, но этот процесс был очень неспешным.

Всё изменилось в 1913 году, вскоре после того как молодой датчанин приехал в английский город Манчестер, чтобы поработать в лаборатории новозеландца Резерфорда. Он доказал, что кванты являются главным фундаментом строения материи, и с этого момента началась новая эпоха в науке. Об этом я расскажу в следующей сказке…

Главное, что аккуратный Макс Планк, который не собирался делать никаких открытий в физике, совершил открытие, полностью изменившее современную физику.

– Профессор Жолли был бы в ужасе! – засмеялся Андрей.

– Да, он не мог ожидать, что молодой человек, однажды постучавший в дверь его кабинета, полностью изменит здание мировой теоретической физики, которое было таким красивым и казалось профессору Жолли почти завершённым.

В 1918 году Планк получил за свои работы Нобелевскую премию. В настоящее время десятки научных учреждений Германии, которые занимаются фундаментальной наукой, объединены в Общество имени Макса Планка – как научные институты Германии, специализирующиеся на оптике и прикладных исследованиях, объединились в Общество Фраунгофера. Высшей наградой Германии за занятия теоретической физикой является медаль Макса Планка. Самое впечатляющее свидетельство его вклада в мировую науку – то, что среди пяти мировых фундаментальных констант: скорости света, заряда и массы электрона, гравитационной постоянной и постоянной Планка – лишь одна носит имя своего открывателя. Такая честь несопоставима даже с Нобелевской премией.


– Мама, – осторожно спросила Галатея, – а есть ещё какая-нибудь неизвестная и… неназванная мировая константа?

Дзинтара улыбнулась:

– Думаю, что есть. Но о существовании такой константы первым узнает тот, кто её откроет.

Галатея облегчённо вздохнула и заулыбалась.

Примечания для любопытных

Филипп фон Жолли (1809–1884) – физик-теоретик, профессор Мюнхенского университета. Его лекции слушал Макс Планк.

Макс Планк (1858–1947) – знаменитый немецкий физик, открывший квантование энергии. В его честь названа фундаментальная постоянная – постоянная Планка. Лауреат Нобелевской премии по физике (1918).

Вильгельм Вин (1864–1928) – известный немецкий физик, лауреат Нобелевской премии по физике (1911).

Генрих Рубенс (1865–1922) – известный немецкий физик-экспериментатор, активно исследовавший тепловое излучение.

Лорд Рэлей (Джон Уильям Стретт) (1842–1919) – знаменитый британский физик. Открыл рассеяние Рэлея, ответственное за голубой цвет неба. Лауреат Нобелевской премии по физике (1904).

Джеймс Джинс (1877–1946) – известный британский физик и астроном. Открыл гравитационную неустойчивость среды (неустойчивость Джинса).

Людвиг Больцман (1844–1906) – знаменитый австрийский физик, математик и философ, собиравший на свои лекции толпы народа. Развил статистическую механику атомов и молекул, которая легла в основу современной термодинамики и кинетической теории. Уравнение Больцмана – одно из самых известных уравнений статистической механики.


    Ваша оценка произведения:

Популярные книги за неделю