355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Автор Неизвестен » Судебная медицина » Текст книги (страница 20)
Судебная медицина
  • Текст добавлен: 26 сентября 2016, 00:43

Текст книги "Судебная медицина"


Автор книги: Автор Неизвестен



сообщить о нарушении

Текущая страница: 20 (всего у книги 23 страниц)

Вещественные доказательства сохраняют в темном сухом месте. Для пересылки их упаковывают так, чтобы они не могли быть утеряны, подменены заинтересованными лицами и чтобы на них не попали посторонние вещества. Каждый предмет в отдельности обертывают чистой бумагой, перевязывают бечевкой и опечатывают сургучными печатями, располагая их так, чтобы бечевку нельзя было снять без повреждения печатей. Пакет с соскобом или марлей, пропитанной веществом, подлежащим экспертизе, равно как и пакет с контрольной марлей, прошивают по краям ниткой, концы которой припечатывают сургучной печатью к отдельной бирке (кусок картона, плотная бумага). Затем все свертки и пакеты помещают в деревянный или фанерный ящик. Свободное пространство в нем заполняют мягким упаковочным материалом (бумага, вата).

Пересылать вещественные доказательства в мягкой упаковке (бумага, материя) нельзя, так как это не гарантирует от попадания на них различных веществ извне.

Если вещественные доказательства в лабораторию доставляет сам следователь, изложенные правила упаковки также должны быть соблюдены; при этом исключается лишь необходимость избегать общей мягкой упаковки.

Судебномедицинские эксперты имеют право не принимать необернутые и неопечатанные вещественные доказательства ( 17 Правил судебномедицинской экспертизы вещественных доказательств 1957 года).

При судебномедицинской экспертизе групповой принадлежности крови в следах на вещественных доказательствах в лабораторию обязательно направляют образцы крови потерпевших и подозреваемых (обвиняемых) лиц.

Получение следователем образцов для сравнительного исследования предусмотрено ст. 186 УПК РСФСР. Отсутствие того или иного образца крови допускается лишь в исключительных случаях.

Образцы крови представляют в жидком гквысушенном состоянии одновременно с вещественными доказательствами. Кровь должна быть взята судебномедицин-ским экспертом или врачом больницы (поликлиники) в присутствии следователя и понятых. Одну порцию крови (3 – 5 мл) помещают в стерильный сосуд – пробирку, склянку или флакон, снабженный этикеткой с соответствующей надписью, так, чтобы кровь заполнила весь сосуд. Отверстие его плотно закупоривают корковой, резиновой или притертой стеклянной пробкой, сосуд обертывают чистой бумагой и перевязывают ниткой. Другую порцию крови выливают на марлю и высушивают при комнатной температуре, после чего обертывают бумагой и помещают в конверт с надлежащей надписью. Следователь опечатывает образцы сургучной печатью (образцы высушенной крови опечатываются так же, как соскобы с предметов, стр. 305) и составляет протокол взятия крови. Образцы жидкой крови пересылает отдельно от вещественных доказательств, упаковывая их так же, как и вещественные доказательства. Отдельная пересылка обусловлена тем, что даже при правильной упаковке стеклянный сосуд в процессе транспортировки может разбиться, кровь вылиться, попасть на вещественные доказательства и тем самым фактически уничтожить их. Образцы крови в высушенном виде упаковываются вместе с вещественными доказательствами.

Документация. Одновременно с вещественными доказательствами в лабораторию направляют: 1) постановление о назначении экспертизы; 2) копию протокола осмотра и изъятия вещественных доказательств; 3) копию акта судебномедицинского исследования трупа или освидетельствования живого лица (в зависимости от существа дела); 4) при дополнительных или повторных экспертизах – копию или подлинный экземпляр акта первичной экспертизы вещественных доказательств.

Копии всех документов должны быть заверены следователем.

В постановлении о назначении экспертизы кратко излагают обстоятельства дела, в частности показания подозреваемых в отношении происхождения крови на изъятых у них предметах; перечисляют направляемые на экспертизу вещественные доказательства с указанием их принадлежности; точно формулируют вопросы, которые могут быть разрешены судебномедицинской экспертизой.

Вопросы, разрешаемые судебномедицинской экспертизой. Современное состояние науки позволяет судебно-медицинскому эксперту при исследовании следов крови разрешать такие вопросы:

1) образованы ли следы, обнаруженные на вещественном доказательстве, кровью;

2) кому принадлежит кровь – человеку или животному и какому именно животному (видовая принадлежность) ;

3) могла ли произойти кровь от потерпевшего или подозреваемого или принадлежность ее этим лицам исключается (групповая принадлежность).

Нередко возникает вопрос о региональном происхождении крови (из какой области тела она произошла) и о сроке, прошедшем с момента образования следов крови (давность). Однако для решения этих вопросов судеб-номедицинская экспертиза пока не располагает такими методами исследования, которые позволяли бы дать на них достаточно достоверные ответы.

Приблизительно можно определить количество жидкой крови, образовавшей следы на вещественном доказательстве.

Имеется возможность отличать кровь плода или младенца от крови взрослого человека.

В последние годы появились научные основания для определения половой принадлежности крови в пятнах.

Исследование крови важно при отравлении некоторыми ядами, так как состояние красящего вещества крови – гемоглобина – уточняет диагностику.

Установление наличия крови. Присутствие крови на вещественных доказательствах устанавливают при помощи микроспектрального анализа.

Из методов спектрального исследования в данном случае пользуются абсорбционным спектральным анализом. Электромагнитное излучение, как известно, состоит из волн света разной длины. Попадая на диспергирующий (преломляющий) элемент – призму или дифракционную решетку, это излучение разлагается на монохроматические составляющие. Образуется электромагнитный спектр, в котором имеются: видимая зона, воспринимаемая глазом в виде семи цветов – красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового; инфракрасная и ультрафиолетовая. Если на пути излучения между источником света и спектральным прибором поместить вещество, способное поглощать волны света определенной длины, то на фоне электромагнитного спектра возникают затемнения – либо сплошное, либо в виде вертикальных линий или полос (сплошной, линейчатый, полосатый спектры поглощения). Упомянутые затемнения располагаются в определенных участках спектра излучения, характерны и постоянны для того или иного вещества.

Рис. 38. Спектры крови (из книги М. А. Бронниковой и А. С. Гаркави, Методика и техника судебно-медицинской экспертизы вещественных доказательств, М, 1963)

К таким веществам относится красящее вещество крови – гемоглобин, содержащийся в красных кровяных тельцах – эритроцитах. Гемоглобину и его производным свойственны спектры поглощения в виде полос, образующиеся, в частности, и в видимой зоне спектра излучения (рис. 38).

При исследовании следов на вещественных доказательствах в целях экономии объекта пользуются не спектральным, а микроспектральным анализом, производимым при помощи микроспектроскопа, который вставляют в тубус микроскопа (в отечественной промышленности микроспектроскоп носит название "насадка АУ-16" или "СПО-1").

Рис. 39. Кристаллы гемохро-могена

Для этого исследования достаточно очень небольшого количества объекта – либо частицы высохшей крови ничтожной величины, либо частицы предмета-носителя, пропитанной или помаранной кровью.

Приступая к исследованию, судебномедицинский эксперт, во-первых, не знает, кровью ли образованы следы, имеющиеся на вещественном доказательстве, во-вторых, если это действительно кровь, неизвестно, в каком состоянии находится гемоглобин. Поэтому объект обрабатывают реактивами, которые в случае кровяного происхождения пятна переводят гемоглобин в состояние, свойственное значительно измененной крови, – в гемохромоген.

Если гемохромоген получить не удается, что может объясняться далеко зашедшим разложением крови, обработку производят другими реактивами с целью получения гематопорфирина.

Гемохромоген образуется при действии на кровь раствора едкой щелочи и восстановителя, а гематопорфи-рин – при действии концентрированной серной кислоты.

Применение некоторых реактивов, например реактива Такаяма, вызывает выпадение в препарате кристаллов гемохромогена (рис. 39).

Для гемохромогена характерен спектр поглощения, состоящий из двух полос в желто-зеленой области видимой зоны электромагнитного спектра (л)=565 – 554 [Греческая буква "ламбда" применяется для обозначения длины волн света] и 536 – 523mм), для гематопорфирина – спектр поглощения тоже из двух полос в оранжево-желтой и желто-зеленой части спектра (Л = 608 – 594 и 572 – 548 mм); между ними отмечается затемнение, сливающееся с полосой в желто-зеленой области, которое считают третьей полосой поглощения кислого гематопорфирина (А, = 584 – 572mм).

Обнаружение обоих спектров поглощения или одного из них с полной достоверностью свидетельствует о происхождении исследуемого следа от крови.

Определение видовой принадлежности. Установить наличие крови на предмете, подлежащем экспертизе, весьма важно для следствия. Однако следы крови могут и не иметь отношения к преступлению.

Если экспертизе подвергают вещественные доказательства, изъятые в связи с убийством или нанесением человеку телесных повреждений, необходимо выяснить, является ли обнаруженная кровь человеческой.

При расследовании дел о браконьерстве, например незаконном отстреле лося, требуется определить, не от лося ли произошла кровь, выявленная на том или ином предмете, и т. д.

Таким образом, при производстве экспертизы обязательно определяют видовую принадлежность крови. С этой целью широко применяют один из иммунологических методов, а именно метод белковой преципитации. Реакцию преципитации у нас именуют реакцией Чисто-вича-Уленгута, за рубежом реакцией Уленгута.

Принцип метода преципитации заключается в том, что при взаимодействии раствора белка, в том числе и белка крови, со специально приготовленной для обнаружения данного белка сывороткой образуется осадок (преципитат).

Исходя из требований практики, выпускают сыворотки, преципитирующие (осаждающие) белок человека, рогатого скота, лося, лошади, свиньи, собаки, кошки и птицы, а также сыворотки, позволяющие дифференцировать белок крупного и мелкого рогатого скота.

Кроме того, могут быть приготовлены сыворотки, преципитирующие белки и других представителей животного мира, в том числе рыб.

Преципитирующие сыворотки изготовляют путем иммунизации (повторные инъекции) кроликов нормальной сывороткой крови. Для получения сыворотки, преципитирующей белок человека, кролику вводят сыворотку человеческой крови, для приготовления сыворотки, преципитирующей белок лошади, сыворотку крови лошади и т. д.

Чтобы выяснить видовую принадлежность крови, вырезают маленький кусочек материала вещественного доказательства со следом крови и кусочек из расположенного рядом участка материала без крови (контроль, позволяющий убедиться в том, что в материале отсутствует белок не кровяного происхождения). Эти кусочки размельчают ножницами, помещают в отдельные пробирки, куда приливают незначительное количество физиологического раствора хлорида натрия, и оставляют на определенный срок (от нескольких часов до нескольких суток, в зависимости от растворимости крови) в рефрижераторе при температуре от +4° до +8°. Полученные вытяжки отделяют от материала (отсасывают пастеровскими пипетками), центрифугируют или фильтруют, до полной прозрачности. При помощи пробы с азотной кислотой, проводимой в целях экономии объекта капиллярным способом, устанавливают, перешел ли в раствор белок из следа крови, и в положительном случае разводят эту вытяжку физиологическим раствором до содержания белка приблизительно 1:1000; вытяжку из контрольного участка предмета-носителя не разводят. К обеим вытяжкам, а также к физиологическому раствору, которым производили экстрагирование объектов, добавляют сыворотку, преципитирующую белок человека, к другим порциям тех же ингредиентов – сыворотку, преципитирующую, например, белок лошади, к третьим порциям – сыворотку, преципитирующую белок другого животного (свиньи, собаки и т. д.). Если осадок в виде диска белого цвета образуется только при взаимодействии вытяжки из следа крови и сыворотки, преципити-рующей белок человека, а в жидкостях, находящихся во всех остальных пробирках, осадки отсутствуют, эксперт делает вывод, что кровь в следе на вещественном доказательстве произошла от человека. Выпадение осадка лишь в пробирке с вытяжкой из следа крови, куда была добавлена сыворотка, преципитирующая белок лошади, свидетельствует о том, что кровь принадлежит лошади, и т. д.

Рис. 40. Реакция преципитации в геле (агаре):

а) вытяжка из пятна крови, 6) вытяжка из контрольного участка, в) сыворотка, преципи-тирующал белок человека

Перед применением преципитирую-щих сывороток проверяют титр (крепость) и специфичность (действие, в пределах определенного срока и разведений, только с белком человека или животного того или иного вида) каждой из них.

Реакцию преципитации осуществляют в специальных пробирках с коническим нижним концом; преципитирующую сыворотку опускают пастеровской пипеткой на дно пробирки с вытяжкой, т. е. подслаивают под последнюю.

Помимо описанной реакции преципитации в жидкой среде имеется ее модификация – реакция в гелеобразной среде. На стекло тонким слоем наносят растительное студневидное вещество – агар; по застывании в нем делают три лунки, куда помещают вытяжку из следа крови, вытяжку из контрольного участка материала вещественного доказательства и сыворотку, преципитирующую тот или иной вид белка. Если применена сыворотка, преци-питирующая белок человека, а след на вещественном доказательстве был образован человеческой кровью, между лунками с вытяжкой из следа и преципитирую-щей сывороткой через определенный срок появится осадок в виде полосы (иногда несколько полос) белого цвета (рис. 40). То же произойдет при взаимодействии вытяжки из следа крови свиньи и сыворотки, преципити-рующей белок свиньи, и т. д. Вместо вытяжек из следа крови и контрольного участка предмета-носителя в лунки можно помещать непосредственно соответствующие кусочки материала вещественного доказательства, добавляя к ним капли физиологического раствора.

Реакция преципитации в геле менее чувствительна, чем реакция в жидкой среде, но в некоторых случаях обладает преимуществами. Она может быть проведена с мутными объектами и дает перспективы успешного и более доступного дифференцирования крови филогенетически близких животных, например крупного и мелкого рогатого скота; лося и быка.

Для определения видовой принадлежности крови существуют и другие реакции, но они не получили распространения в отечественной судебномедицинской практике, требования которой, как правило, полностью удовлетворяются применением реакции преципитации (преципитирующие сыворотки, изготовляемые в нашей стране, обладают высокими качествами, а схема реакции преципитации хорошо разработана).

Установление групповой принадлежности. Выяснение происхождения крови на вещественном доказательстве от человека или животного имеет большее значение, чем просто констатация факта присутствия неизвестно от кого произошедшей крови. Однако в настоящее время судебномедицинская экспертиза располагает еще большими возможностями: имеются научные данные, позволяющие разрешить вопрос, может ли принадлежать кровь тому или иному человеку потерпевшему, подозреваемому или она произошла не от них. Разрешение его основано на данных об антигенной дифференцировке человеческого организма. Уже в начале XX столетия стало известно о существовании определенной закономерности во взаимодействии крови различных людей: сыворотка одних агглютинирует (соединяет в гроздевидные конгломераты) эритроциты других. Вначале были открыты четыре группы крови. Вещества, обусловливающие реакцию агглютинации, получили названия агтлютиногены (антигены) – в эритроцитах, агглютинины (антитела) -в сыворотке. Первые обозначают прописными латинскими буквами, вторые – малыми буквами греческого алфавита. Приняты международные обозначения групп: Осф, Ар, Ва, АВО. В нашей судебномедицинской практике буквенные обозначения до сих пор дополняют цифровыми (эту цифровую классификацию предложил Янский) –Оар(1), Ар(П), Ва(Ш), АВО (IV). Агглютинация происходит в том случае, когда во взаимодействие вступают одноименные агглютиногены и агглютинины: А и а, В и р. Символ "о" в группе АВ указывает на отсутствие в сыворотке крови этой группы агглютининов аир. Агглю-тиноген "О" обнаруживается специальными сыворотками анти-О(Н), изготовляемыми путем иммунизации коз дизентерийной спиртовой вакциной Григорьева-Шига, или экстрактами из семян некоторых растений, содержащими фитагглютинин (лектин) анти-Н. Выяснено, что реагенты, выявляющие агглютиноген 0, агглютинируют не только эритроциты группы 0(1), но и в подавляющем большинстве случаев эритроциты групп А (II) и В (III), а также нередко и эритроциты группы AB(IV). Таким образом, в группах А(П), В(III) и AB(IV) наряду с основными агглютиногенами – А и В может присутствовать еще агглютиноген, который обозначают прописной латинской буквой Н или именуют сопутствующим агглю-тиногеном 0.

В дальнейшем в крови человека открывали все новые и новые антигены и антитела. На смену учению о группах крови пришло учение об изосерологических системах. Четыре описанные группы вошли в эритроцит-арную изосерологическую систему АВО, три группы: М, N и MN, ранее известные под названием "типы крови", – в систему MNSs и т. д. В настоящее время насчитывается еще несколько эритроцитарных изосерологических систем: Р, Rh (резус), Ласерен, Даффи, Келл, Кидд, Диего и т. д., в которые входит много антигенов. Кроме того, оказалось, что в сыворотке крови содержатся особые антигены, которые позволили разделить человеческую кровь еще и на сывороточные изосерологические системы – -Cm,-Ос, Нр и др. Одна система Льюис является как бы промежуточной: входящие в нее антигены свойственны сыворотке, но одновременно фиксированы и на эритроцитах. Возможность различных сочетаний групповых факторов стала исчисляться сотнями тысяч, и появилась реальная перспектива достигнуть в будущем индивидуальной диагностики крови.

Групповые антигены изосерологической системы АВО, MNSs и Rh содержатся не только в крови, но и в фиксированных клетках тканей тела.

Таковы достижения гематологии и иммунологии, но не все они имеют одинаковое значение для судебноме-дицинской экспертизы вещественных доказательств в силу различных причин: затруднения в получении тех или иных стандартных сывороток для выявления соответствующих групповых антигенов; чрезмерно большая или, наоборот, малая частота встречаемости какого-либо антигена в крови населения данной страны; неустойчивость его в высохшей крови и пр.

Основное место в судебномедицинских исследованиях занимает изосерологическая система АВО; иногда в следах крови определяют группы систем Р, Льюис (в распоряжении экспертов имеются необходимые для этого стандартные сыворотки отечественного производства), Gm и др.

Судебномедицинский эксперт начинает проведение экспертизы с исследования образцов жидкой крови, для чего применяет реакцию агглютинации. Каждый образец крови разделяют на эритроциты и сыворотку. К исследуемым эритроцитам добавляют стандартные сыворотки а и р., а к исследуемой сыворотке – стандартные эритроциты групп А и В. Реакцию осуществляют в пробирках с применением центрифугирования и последующей микроскопической проверкой полученных результатов (таблица 1). Эритроциты дополнительно исследуют гетероиммунными сыворотками анти-А и анти-В, т. е. сыворотками, изготовленными путем иммунизации животных человеческими эритроцитами группы А или В, а также сывороткой анти-О(Н). Вместо последней нередко пользуются растительными экстрактами анти-Н.

Таблица 1

Схема определения групп изосерологической

Исследуемые Исследуемая эритроциты сыворотка + стандартные стандартные сыворотки эритроциты групп Группы крови

в а А В

– – + + 0а в (I) – + – + Ав (II) + – + – Ва (III) + + – – АВ0 (IV)

системы АВО в жидкой крови

Затем исследуют образцы крови, высушенные на марле, и контрольную марлю. Детальное изучение образцов крови потерпевших и подозреваемых необходимо для выяснения их особенностей, правильного выбора в каждом конкретном случае стандартных реагентов, методики и техники исследования, что обеспечивает успех экспертизы.

Далее определяют группы в следах крови на вещественных доказательствах, исследуя при этом контрольные участки предмета-носителя, взятые из мест, расположенных рядом со следами крови. Последнее делают для предотвращения ошибочных выводов, так как материалы вещественных доказательств, особенно загрязненные, могут неблагоприятно действовать на стандартные реагенты и имитировать наличие в крови того или иного группового фактора.

Основным методом обнаружения агглютиногенов в высохшей крови является метод абсорбции. Принцип его заключается в связывании агглютинина одноименным агглютиногеном. Делают три одинаковые навески материала из пятна крови и три таких же навески из соответствующего контрольного участка предмета-носителя. К одной из них добавляют сыворотку р или анти-В, к другой – сыворотку а или анти-А, к третьей – сыворотку анти-О(Н) или растительный экстракт анти-Н. Ингредиенты оставляют на 18 – 24 часа в рефрижераторе при температуре от + 4° до + 8°. Затем сыворотки (экстракт), находившиеся в контакте с исследуемыми объектами, т. е. абсорбированные, отделяют от материала и титруют стандартными эритроцитами: сыворотки |3 и анти-В эритроцитами группы В, сыворотки а и анти-А эритроцитами группы А, сыворотку анти-О(Н) и экстракт анти-Н эритроцитами группы 0.

Если в пятне крови содержится агглютиноген А, то он свяжет агглютинин а (анти-А) и абсорбированная сыворотка а (анти-А) либо вовсе перестанет агглютинировать стандартные эритроциты группы А, либо титр ее окажется значительно сниженным, а сыворотка |з (анти-В) останется неизмененной, т. е. будет продолжать агглютинировать стандартные эритроциты группы В так же или почти так же, как и ранее. Когда в крови наряду с основным агглютиногеном А присутствует агглютиноген Н, абсорбированная сыворотка анти-О(Н) или абсорбированный экстракт анти-Н тоже в той или иной мере утратят способность агглютинировать эритроциты группы бит. д. (таблица 2).

Неблагоприятные воздействия контрольных участков материала вещественного доказательства на реагенты (сыворотки и экстракты) в процессе реакции абсорбции эффективно преодолевают методом "нагрузки" агглютининами и лектинами, т. е. повторной реакцией абсорбции с навесками объектов, уже подвергнутых первому исследованию.

Схема обнаружения агглютиногенов изосерологической системы АВО в

высохшей крови путем реакции абсорбции

Объект исследования Сыворотки Экстракт анти-Н Обнаруженные

агглюти-ногены

Р (анти-В) а (анти-А)

Пятна крови исходная абсорбированная исходная абсорбированная исходный абсорбированный

№1 + + + + + – 0 №2 + + + – + – А, Н №3 + – + + + – В, Н №4 + – + – + + А, В

В последние годы разрабатываются методы ("смешанная агглютинация", абсорбция-элюция), позволяющие обнаружить групповые антигены в чрезвычайно малых следах, например в пропитанных или помаранных кровью ниточках материи длиной 2 – 3 мм.

Исследование агглютиногенов сопровождают выявлением в крови агглютининов, для чего применяют метод покровного стекла по Латтесу или способ экстрагирования.

Определение групп изосерологических систем Р и Льюис осуществляют только методом абсорбции, поскольку естественные агглютинины анти-Р и анти-Льюис не присутствуют в крови человека так регулярно, как агглютинины а и (3. Дифференцируют две группы системы р. р + и P – (р) и три группы системы Льюис: Le(a + b – ), Le(a – b + ) и Le(a – b – ). Обе эти системы представляют для судебномедицинской экспертизы крови меньший интерес, чем система АВО, так как группа Р+ очень распространена у населения большинства стран, в том числе и СССР, а на результаты определения групп системы Льюис весьма неблагоприятно влияют загрязненные материалы вещественных доказательств.

Для судебной медицины большое значение имеют группы сывороточных изосерологических систем, в первую очередь системы Gm, но введение их в практику тормозится затруднениями в получении необходимых стандартных сывороток.

Установление групповой принадлежности в следах крови на вещественных доказательствах и в образцах крови потерпевших и подозреваемых позволяет:

1) исключить происхождение крови на предметах, подлежащих экспертизе, от потерпевшего или подозреваемого;

2) предположить, что кровь на вещественных доказательствах могла произойти от потерпевшего (или подозреваемого), равно как и от любого другого человека с кровью той же группы.

Второй вариант вывода обусловливается тем, что су-дебномедицинские эксперты пока оперируют группами крови, каждая из которых присуща многим людям, но он все же имеет значение для расследования преступления в совокупности с другими доказательствами по делу. При этом следует учитывать, что достоверность предположения, содержащегося во втором варианте вывода, возрастает по мере увеличения числа подвергнутых исследованию изосерологических систем.

Определение групп различных изосерологических систем в жидкой крови (ABO, MNSs, P, Rh и др.), как правило, применяют при разрешении вопросов о спорном отцовстве (крайне редко о спорном материнстве), о замене детей в медицинских учреждениях или краже ребенка (чрезвычайно редкие случаи), о неправильном переливании крови.

Экспертиза спорного отцовства основывается на определении групп крови матери, ребенка (детей) и предполагаемого отца, экспертиза о замене детей и краже ребенка – на установлении групп крови членов семей, относящихся к данному происшествию, и обе эти экспертизы – на известном порядке наследования групповых факторов.

Здесь возможны следующие варианты выводов.

О спорном отцовстве (спорном материнстве):

1) данный мужчина не является отцом обследуемого ребенка или данная женщина не является матерью обследуемого ребенка;

2) отцовство (материнство) не исключается, в силу чего судебномедицинская экспертиза крови не может разрешить вопрос о спорном отцовстве (материнстве).

О замене детей или краже ребенка:

1) ребенок Г. не мог родиться в семье Ивановых, но может происходить из семьи Петровых, а ребенок Н. не мог родиться в семье Петровых, но может происходить из семьи Ивановых (замена установлена);

2) ребенок Г. мог родиться как в семье Ивановых, так и в семье Петровых, а ребенок Н. не мог происходить от Петровых, но мог родиться у Ивановых (частичное установление факта замены);

3) судебномедицинская экспертиза крови не имеет возможности разрешить поставленный перед нею вопрос, поскольку оба ребенка могут происходить как из той! так и из другой семьи.

Факт неправильного переливания крови, зависящего от ошибок в определении группы крови донора или реципиента (лицо, которому была перелита кровь), выясняют путем исследования крови того и другого.

Выводы делают исходя из того, что при переливании имеют значение агглютиногены (антигены эритроцитов) донора и агглютинины (антитела сыворотки) реципиента.

Наряду с освещенными основными этапами экспертизы крови возможны некоторые дополнительные исследования.

Региональное происхождение. Выяснение вопроса, из какой области тела вытекла кровь, образовавшая следы на вещественных доказательствах, основывается преимущественно на обнаружении морфологических элементов, свойственных той или иной области. Так, присутствие клеток слизистой оболочки дыхательных путей свидетельствует об истечении крови из органов дыхания, примесь к крови кала – о кишечном кровотечении; на наличие менструальной крови указывает содержание в ней клеток слизистой оболочки матки и т. д.

Результаты морфологического исследования, как правило, оказываются малонадежными и пока в большинстве случаев не дают возможности доказать региональное происхождение крови. Это зависит от изменений морфологических элементов в процессе высыхания крови и последующего извлечения их из нее.

Для дифференцирования менструальной крови (точнее – менструальных выделений) от крови иного происхождения предложены и другие способы исследования (обнаружение фибринолитического фермента по остаточному азоту, электрофорез и пр.), но и они не могут считаться достаточно эффективными.

Срок, прошедший с момента образования следов крови на вещественных доказательствах (давность следов крови). Несмотря на довольно большое количество рекомендованных методов (растворимость различными реагентами, изменение цвета, переход красящего вещества крови из оксигемоглобина в метгемоглобин, степень проникновения хлоридов из пятна в окружающий материал и т. д.), вопрос, как правило, остается неразрешенным. Это обусловливается тем, что результаты всех предложенных реакций зависят не только от срока, прошедшего с момента возникновения следов крови, но и от воздействий на последние внешней среды (температура, влажность и пр.), которые обычно в каждом конкретном случае точно не могут быть учтены.

Количество жидкой крови, образовавшей следы на вещественном доказательстве. Определение количества крови, излившейся из тела, имеет большое значение, например, при выяснении, убит ли человек там, где найден его труп, или последний перенесен на место обнаружения.

Из существующих для этого методов наиболее прост и доступен способ, основанный на определении веса высохшей крови, с последующим пересчетом на объем жидкой крови. Пределы ошибок данных методов – 15 – 20%.

Отличие крови плода или младенца от крови взрослого. Гемоглобин крови плода или младенца более устойчив к действию щелочей, чем гемоглобин взрослого человека.

Сравнительное исследование основывается на сроке изменения цвета крови или вытяжки из следа крови после добавления раствора едкого натра; на быстроте перехода оксигемоглобина в гематин при действии раствора едкой щелочи (спектральное исследование); на денатурации гемоглобина щелочью с последующим осаждением сернокислым аммонием.

Половая принадлежность. Из высохшей крови извлекают лейкоциты (белые кровяные тельца), часть которых оказывается пригодной для данного вида исследования.

Ядра сегментоядерных лейкоцитов носят на себе по-ловоспецифические образования (половой хроматин) различной формы, что позволило разделить их на два типа, обозначенных прописными латинскими буквами – А и В.


    Ваша оценка произведения:

Популярные книги за неделю