Текст книги "Спрашивали - Отвечаем"
Автор книги: Автор Неизвестен
сообщить о нарушении
Текущая страница: 2 (всего у книги 2 страниц)
По всей вероятности, здесь мы имеем дело с небесным объектом, занимающим промежуточное значение между планетой и кометой. Причислить его все же к планетам позволяет шарообразная форма (в отличие, например, от кометы Галлея, которая по своей форме напоминает картофелину). Однако подобно кометам, состоит новая планета в основном из пыли и замерзших газов, а также углеродистых соединений и силикатов.
Значение этого открытия, как говорилось вначале, не столько в том, что обнаружено еще одно небесное тело в Солнечной системе. Главное – получено первое документальное подтверждение существования диска или пояса Кольперта, состоящего из комет и им подобнь1х тел – ледяных карликов, вращающихся за орбитой Плутона. В нем миллиарды мелких небесных тел и, возможно, тысячи планет, подобных Смайли.
Итак, косвенные улики подтвердились. Но астрономический детектив вовсе не завершен. Поиски других подозреваемых продолжаются.
НОВАЯ ЖИЗНЬ
СТАРЫХ ИДЕЙ?
Порой бывает так: сделал человек изобретение, а оно никому не понадобилось. Проходят десятилетия, а то и века, пока о нем вспомнят, реставрируют и пустят наконец-таки в дело. Так давайте поговорим о старых идеях, которые иногда, уже в наши дни, получают новое, порой неожиданное воплощение.
Вселенский поезд:
будет ли он построен?*
История подтверждает известный факт: не бывает добрых или злых изобретений. Все зависит от того, в какие руки – добрые или злые – оно попадет.
Будем надеяться, что изобретение, о котором пойдет речь дальше, станет использоваться лишь в мирных целях, на планете, прошедшей через перипетии разоружения.
"Рукопись представляет собой главы из книги, над которой автор работает в настоящее время.
Ксли вам понравится, опубликуем продолжение.
У истоков его стоял уже не фантаст, но ученый. Впрочем, калужского учителя К.Э.Циолковского долгое время считали если не сумасшедшим, то чудаком уж точно. Ведь писал же человек:
"Вокруг одного из меридианов планеты устроен гладкий путь, и на нем охватывающий кругом планету и ползущий по ней пояс. Это есть длинная кольцеобразная платформа на множестве колес... На этой платформе тем же способом двигается другая такая же платформа, но поменьше и полегче, на другой – третья и т.д."
Прочитав такое описание в научнофантастической повести "Грезы о земле и небе", читатель недоуменно пожимал плечами и закрывал книжку. И так писатель не блистал особым стилем и захватывающим сюжетом, а тут и вовсе понес невесть что...
Действительно, точное техническое воплощение такого замысла, по всей вероятности, невозможно. Построить протяженную, идеально гладкую, точно выдерживающую радиус кривизны планеты магистраль уже само по себе дорого и трудно. Снабдить платформы невиданной мощности двигателями, обеспечивающими преодоление гигантского на суперскоростях сопротивления воздуха, тоже влетит в копеечку – энергия с каждым днем дорожает... А главное, где взять материалы, способные не разрушаться при температурах в тысячи градусов? (А именно такие температуры должны возникнуть при достижении платформами первой космической скорости из-за трения о воздух.)
Стало быть, изучение идеи Циолковского – пустая трата времени? Не скажите. Смотря кто как подходит к проблеме. Для Анатолия Юницкого тогдашнего сотрудника Гомельского института механики металлополимерных систем АН Беларуси – идеи К.Э.Циолковского послужили толчком к дальнейшей работе. Что из этого получилось? Об этом он и рассказал в Калуге на научных чтениях, посвященных 130– летию со дня рождения Циолковского.
Размеры предлагаемого им сооружения не имеют аналогов в хозяйственной деятельности землян: разгонное средство должно кольцом охватить всю планету.
Так что название "Общепланетарная транспортная система" вполне соответствует сути.
Итак, представьте: вдоль экватора сооружается эстакада – легкая, отдаленно напоминающая переход над железнодорожными путями. Особой надобности в массивных конструкциях нет – эстакаде предстоит держать, в пересчете на погонный метр, не такой уж большой груз – 20-30 кг. Эстакада не обязана быть и чересчур уж гладким путем, она вполне может следовать перепадам рельефа. В океане она будет опираться на заякоренные плавучие понтоны, устроенные с таким расчетом, чтобы не мешать судоходству.
На эстакаде располагается вакуумная разгонная система. Прежде всего это прочная, диаметром в несколько десятков сантиметров труба, кольцом опоясывающая планету. Так что ее длина порядка 40 тыс. км. Через специальные окна-люки в трубу по всей длине помещают другую трубообразную конструкцию, начиненную контейнерами с полезной нагрузкой. Одновременно эта конструкция выполняет роль ротора электродвигател я.
По окончании загрузки люки закрываются, герметизируются и внутри трубопровода создается почти полный вакуум. Чем выше разрежение, тем меньшее сопротивление будет испытывать ротор при раскрутке.
Вдоль вакуумированной трубы на эстакаде расположен статор линейного электродвигателя. Здесь же специальная магнитная система, при включении которой ротор-кольцо с полезным грузом внутри, предназначенным для выведения в космос, отрывается от стенки внешней трубы и зависает по ее центру.
Эта система магнитного подвеса и удержания подобна тем, что испытываются на современных магнитопланах. Она исключает возможность касания ротором стенок трубы на участках ее изгиба, например, когда эстакада пересекает впадину или возвышенность.
Теперь давайте посмотрим, как эта удивительная машина должна действовать.
Кольцо ротора, как уже говорилось, плотно охватывает поверхность планеты.
А теперь предположим, что длина окружности кольца начнет увеличиваться.
Что при этом произойдет? Правильно, соответственно начнет расти и диаметр кольца, оно начнет удаляться от поверхности Земли.
Как может кольцо растягиваться, ведь оно не резиновое? Да очень просто: в некоторых пределах, на 12– 35% своей длины, может растягиваться и сталь. Расчет же показывает: чтобы каждая точка кольца удалилась от поверхности на 100 км, вполне достаточно, если длина окружности возрастет всего на 1,6%. Растянут же кольцо центробежные силы, которые появятся, как только оно придет во вращение.
Итак, каким образом может действовать подобная система на практике?
Корпус ротора должен быть двойным:
наружный слой из материала высокой проводимости – алюминия или меди, а еще лучше – из сверхпроводящего сплава; внутренний – из прочной эластичной стали.
Статором всепланетного двигателя, как мы уже говорили, послужит эстакада. На ее обмотку будет подаваться переменный ток, который породит бегущее вдоль ротора магнитное поле. Оно наводит в наружном слое ротора поперечные токи, которые станут взаимодействовать с бегущим магнитным полем статора. В результате возникнет сила, направленная по продольной оси ротора. Находящееся в вакууме кольцо придет в движение.
Как показывает расчет, за 2-3 недели скорость разгона достигнет первой космической скорости – около 8 км/с. Притяжение Земли и центробежные силы будут уравновешены, внутри кольца возникнет невесомость.
При дальнейшем разгоне центробежные силы станут растягивать ротор, он начнет всплывать, но система магнитной центровки удержит его от касания верхней части трубы-кожуха. Но как только будет достигнута стартовая скорость 10 км/с, источники электропитания будут отключены, откроются держащие вакуумированную трубу замки, и она, распираемая через систему магнитной подвески центробежными силами, начнет уходить вверх.
Устройство автономного магнитного подвеса не допустит соприкосновения внешней неподвижной части кольца с крутящейся внутренней, так что вся система должна благополучно подняться на высоту порядка 100 км. Здесь уже сопротивление атмосферы практически отсутствует. Срабатывают пирозаряды, оболочка раскрывается, ее фрагменты опускаются вниз для повторного использования, а освобожденный ротор будет продолжать набор высоты.
При достижении 200-300 км над поверхностью планеты, разрывные силы превысят прочность соединяющих стержней и кольцо распадется на ряд фрагментов. Эти цепочки контейнеров с грузами начнут самостоятельную жизнь, превратившись в отдельные спутники.
Будет ли когда-нибудь общепланетарная система реализована на практике? Сказать трудно, здесь много сложностей не технического, а политического характера, ведь возводить ее придется всем миром. Принципиальных же затруднений с точки зрения технологии не видно уже сегодня. Не так уж велики и финансовые затраты – стоимость проекта оценивается в 500 млрд. долларов. Это вполне сравнимо с расходами на программу СОИ и меньше тех средств, что тратятся сегодня на "вооружение армиями планеты.
Возвращение решетчатого крыла
Общепланетарная система обещает в десятки раз удешевить стоимость вывода в космос 1 кг полезного груза. Но это не значит, что традиционные ракеты нам станут вовсе не нужны. Они еще послужат для полетов на другие планеты. Тем более их усовершенствование продолжается, появляются все новые проекты создания космических аппаратов многократного использования.
Но здесь речь пойдет не о них.
Знаете ли вы, что и традиционные наши "Союзы" тоже имеют крылья? Правда, крылья не совсем обычные...
Вспомним начало века. "Этажерки" – так, быть может, не совсем почтительно называли летательные аппараты первых авиаторов. Действительно, рассматривая в книгах, посвященных истории авиации, изображения первых аэропланов, порой даже не можешь с первого взгляда определить, сколько же у этого "летающего чуда" плоскостей: три, четыре, пять?.. Всех, пожалуй, перещеголяли англичане – инженер Г.Филлипс в 1893 году построил летательный аппарат, у которого было 40(!) плоскостей-пластин, скрепленных между собой стойками и расчалками.
Авиаконструкторы того времени рассуждали, казалось, совершенно логично.
Для лучшего полета аэроплана необходимо, чтобы его крыло имело большую подъемную силу. А подъемная сила при прочих равных условиях зависит от площади аэродинамических плоскостей.
Делать крылья большого удлинения поначалу не умели – их прочность оказывалась меньше требуемой. Поэтому одно крыло . и стали располагать над другим, словно полки этажерки. Удлинение каждой плоскости небольшое, крылья для большей прочности дополнительно связывались стойками и расчалками. Получалась вполне приемлемая конструкция:
и достаточно прочная, и обладающая достаточной подъемной силой.
Однако вскоре специалисты разочаровались в полипланных конструкциях уж слишком громоздкими они оказались. Последний в нашей стране самолет-триплан "КОМТА" закончил свою службу в 20-е годы. Лишь самолетыбипланы оказались долговечнее: знаменитые И-15 и И-16 воевали в небе Испании, да и сейчас еще можно увидеть в небе характерный силуэт "Аннушки" – биплана Ан-2.
Почему так получилось? С появлением на аэропланах мощных моторов, с увеличением скорости полета большие плоскости оказались уже не нужны.
Более того, многочисленные расчалки и стойки, да и сами "лишние" плоскости начали оказывать столь значительное сопротивление движению, что с началом второй мировой войны от них практически отказались. Предпочтение было отдано монопланам – самолетам, у которых было всего одно крыло, две плоскости по бокам фюзеляжа. Именно монопланы со стреловидным крылом и реактивным двигателем одолели звуковой барьер, летают ныне со скоростями 2-3 тыс. км/ч.
Впрочем, полипланные системы не забыты окончательно. Они, как ни странно, оказались нужны, когда летательные аппараты еще больше повысили скорость, стали вырываться за пределы земной атмосферы. Развитие ракетнокосмической техники потребовало создания нового типа плоскостей, которые при небольших размерах обладали бы эффективными тормозящими и планирующими свойствами.
Тогда-то специалисты и вспомнили снова о полипланных системах. В 1955 году ученые ЦАГИ и Высшей военноинженерной академии имени Н.Е.Жуковского образовали коллектив, который не был предусмотрен штатными расписаниями. Под руководством только что защитившегося доктора технических наук С.М.Белоцерковского нештатный коллектив энтузиастов стал всесторонне изучать полипланные системы, а точнее одну из их разновидностей решетчатые крылья.
Что такое решетчатое крыло? Помните, в начале этой главы мы упоминали о конструкции английского инженераизобретателя Г.Филлипса. Сорок плоскостей, скрепленных между собой, вот это и есть решетчатое крыло в первом приближении. Оно благодаря множеству плоскостей обладает хорошей подъемной силой, но, как показали эксперименты, самолет Филлипса оказался совершенно неустойчив в полете.
Почему? Можно ли исправить положение? Как? В этом группе Белоцерковского и предстояло разобраться. Причем интерес этот вовсе не был чисто теоретическим.
Да, конечно, в трудах основоположников аэродинамики Н.Е.Жуковского и С.А.Чаплыгина прямо указывалось, что полипланные системы обладают определенными преимуществами перед монопланными. Например, у монопланных крыльев при больших – до 30° – углах атаки происходит срыв воздушного потока и резкое уменьшение подъемной силы.
"Решетка" же позволяет достичь безотрывного обтекания потока и при 50°.
Но участники группы помнили и о практических опытах В.Ф.Шушанова, который еще в конце 40-х годов хотел использовать решетчатые крылья на планирующих торпедах. Такая торпеда, сброшенная с самолета, должна была спланировать в заданный квадрат на складных, весьма небольших по размерам, но очень эффективных крыльях.
При испытаниях из нескольких вариантов наилучшим образом проявили себя именно полипланные, решетчатые конструкции.
А главное, энтузиастов продвигало вперед само время. Вспомните, ведь то был 1955 год. Еще через два года весь мир всколыхнет известие о первом искусственном спутнике. А люди, работавшие над проолемами освоения космического пространства, думали не только о том, как взлететь в космос, но и как оттуда вернуться...
При решении же проблемы спуска с орбиты решетчатые крылья могли проявить себя с самой лучшей стороны.
Компактные, с хорошими аэродинамическими качествами, они и места занимали немного при старте, и при спуске могли эффективно вывести спускаемый аппарат в заданную точку.
Понятно, конечно, что для данных целей решетчатые конструкции из деревянных планок и даже из дюраля не годились. Здесь нужны были сплавы, могущие выдержать и высокотемпературный нагрев, и огромные механические нагрузки, возникающие при движении со сверхзвуковыми скоростями.
Нужно было также прояснить, какой именно должна быть геометрия таких решеток, чтобы они одинаково хорошо работали в широком диапазоне скоростей, ведь они служат не только для планирования, но и для аэродинамического торможения, помогают снизить скорость спускаемого аппарата до того предела, после которого уже может вступить в действие парашютная система.
В общем, хлопот у разработчиков оказалось немало. Но их изобретательность преодолела все трудности. И в настоящее время ни один полет космического корабля "Союз" не обходится без простых по конструкции, но очень эффективно работающих решетчатых крыльев.
Ну а что же самолеты? Неужто они никогда не вернутся к полипланным системам? Трудно сказать определенно.
Как показывают теоретические расчеты, решетчатые крылья благодаря их особым аэродинамическим качествам могут приблизить полет летательных аппаратов к птичьему, позволят резко и произвольно менять как направление полета, так и его скорость.
В полет, махолет?!
Раз уж мы заговорили о машущем полете, надо, наверное, сказать несколько слов и об его истории. Среди создателей махолетов немало изобретательных людей, и, похоже, они близки к решающему успеху.
Во всяком случае не столь давно американский авиаинженер и изобретатель П.Маккриди продемонстрировал машущий полет... птеродактиля!
А началось все с того, что в Техасе были обнаружены останки гигантского ископаемого летуна. У него оказался рекордный среди других существ, когдалибо обитавших на Земле, размах крыльев – почти 11 м! Подсчитали вес – около 70 кг. Как вообще такой гигант мог летать? Согласно законам аэродинамики, он должен был опрокидываться при полете назад. Птицы, к примеру, управляют своим телом в полете при помощи хвоста и оперения. У летающего же ящера ни того, ни другого. Может быть, стабилизатором ему служили голова и клюв? То есть летал он по известной среди авиамоделистов схеме "утка"...
Чтобы проверить это предположение, П.Маккриди и решил сделать летающую модель гигантского птеродактиля в масштабе 1:2.
Развлечение? Отнюдь. Для палеонтологов это экспериментальное подтверждение гипотезы. Для инженеров – повод для серьезного размышления и анализа, возможность накопить полезный опыт. Ведь машущий полет – один из самых экономичных. Кроме того, по своей маневренности птицы и насекомые намного превосходят самые совершенные летательные аппараты, построенные людьми.
Итак, П.Маккриди взялся за дело и за несколько месяцев создал конструкцию с размахом крыльев около б м и весом более 20 кг. В действие модель летающего ящера приводили три электромотора, питаемые от никель-кадмиевых аккумуляторов. Два мотора предназначались для движения крыльев вверх-вниз, а третий – вперед-назад. Чтобы смягчить полет, а заодно и сэкономить энергию, усилие моторов не сразу передавалось на крыло, а прежде запасалось в 66 каучуковых "мышцах". Они и заставляли крылья двигаться мягко, можно сказать, даже величественно.
Наконец для управления полетом необходим мозг. Настоящему ящеру в свое время оказалось достаточно мозга весом в несколько граммов. Искусственного же пришлось оснастить компьютером и несколькими автопилотами общим весом в несколько килограммов.
Вот птеродактиль взлетел и на глазах у нескольких десятков корреспондентов почти сразу же ... рухнул на землю.
Система управления не справилась со своей задачей в результате какого-то сбоя.
Конструктор, конечно, был расстроен, хотя и постарался не подать виду.
"Теперь все мы наглядно убедились, что доисторический птеродактиль летал плохо", – прокомментировал он ситуацию на импровизированной пресс-конференции. Впрочем, автор вовсе не считает свою работу завершенной и когда-нибудь надеется создать махолет, который сможет поднять в воздух и человека.
На этом, наверное, можно было бы и закончить рассказ о неудачном эксперименте, если бы за ним не прослеживались гораздо более серьезные исследования и изобретения. Руководитель группы специалистов Нью-Йоркского университета Л.Бенет, занимающийся исследованиями полета насекомых, выразился совершенно определенно: "Если мы сумеем разобраться в аэродинамике полета майского жука, то либо откроем вопиющее несовершенство современной теории полета, либо выясним, что майский жук обладает каким-то до сих пор не известным способом создания подъемной силы".
Действительно, согласно теории ни майский, ни другие жуки летать не должны. Совершенно точно установлено, что их тоненькие хрупкие крылья, коэффициент подъемной силы которых меньше единицы, просто не способны поднять в воздух жука массой почти в целый грамм. Но жук-то летает!..
Некоторые причины такого несоответствия попытался понять киевский инженер В.Стоялов. После нескольких лет экспериментов он выяснил: майскому жуку в немалой степени помогают летать жесткие хитиновые надкрылья.
Прежде чем взлететь, майский жук поднимает надкрылья под определенным углом кверху. Частые взмахи машущих крыльев образуют под ними зону повышенного давления. Выше надкрыльев, напротив, образуется зона пониженного давления. Подъемная сила возрастает, и жук благополучно взлетает.
И это только одна из тайн, окружающих полет насекомых и птиц. Взгляните хотя бы на крыло обыкновенной, а еще лучше фруктовой мухи через увеличительное стекло или под микроскопом. С точки зрения современных специалистов по самолетостроению, мушиное крыло – форменное аэродинамическое безобразие. Оно все в желобках, вмятинах, микроскопических волосках... Такое крыло словно бы специально предназначено для того, чтобы взвихривать, взбаламучивать воздушный поток вместо того, чтобы его сглаживать, как это делают авиаконструкторы на крыльях современных летательных аппаратов.
Впрочем, так оно и есть на самом деле. Об этом свидетельствуют специальные исследования. До сих пор считалось, что во время полета крылья насекомых и других летунов погружены в так называемый ламинарный пограничный слой воздуха, который сглаживает все неровности. Однако последние данные заставляют эту точку зрения пересмотреть: судя по всему, на машущем крыле такой слой отсутствует. При машущем полете, видимо, выгоднее использовать как раз турбулентные вихри для получения большей подъемной силы. Сложный же рельеф поверхности крыла позволяет живым летунам лучше управлять воздушными потоками.
Причем и само крыло, скажем, того же насекомого, благодаря скоординированной работе мышц, движется при взмахе по довольно сложной траектории, как бы описывая своим концом восьмерку. Поначалу оно опускается прямо вниз, опираясь всей лопастью на воздух, давая своеобразный толчок, поднимающий тело насекомого вверх. Впрочем, опускание крыла идет не совсем уж прямо – небольшие даже по отношению к насекомому мышцы прямого действия, волокна которых прикреплены вблизи крыла, смещают маховую часть чуточку вперед. В нижней части своего пути крыло также поворачивается несколько вокруг своей продольной оси. Пластина его становится вертикально, и в таком положении крыло движется вверх и назад. Гребная пластина ударяет по воздуху, словно весло по воде, обеспечивая насекомому продвижение вперед. Дойдя до крайней верхней и задней точки, крыло снова поворачивается вокруг продольной оси, и плоскость его опять принимает горизонтальное положение. Затем цикл повторяется.
Конечно, столь сложный цикл движений пока.не по силам современным летательным аппаратам. Может быть, именно поэтому нынешние махолеты, строящиеся силами как отдельных энтузиастов, так и целыми лабораториями (одна из таких лабораторий, например, вот уже несколько лет работает в МАИ), правильнее было бы назвать не "летами", а "прыгами". Они, подобно упитанной курице, лишь отрываются от земли, а летать толком не могут.
Впрочем, погодите...
Летом 1989 года один такой махолет все-таки полетел! "Во время Всесоюзното слета сверхлегких летательных аппаратов (СЛА-89), – сообщает журнал "Изобретатель и рационализатор", – на глазах у изумленной публики летал махолет, как стрекоза. Его построили ребята из клуба юных техников при Боткинском механическом заводе под руководством инженера В.Топорова..."
Что же представляет собой воткинский махолет? Это тандем с двумя парами крыльев – в точности как у стрекозы. На длинном, стрекозином же хвосте оперение обычного, самолетного типа. При планировании с зафиксированными крыльями махолет может пролететь, постепенно снижаясь, довольно значительное расстояние. А вот если завести микродвигатель МКД-0,25 мощностью около 0,25 л.с., его мощности оказывается достаточно, чтобы шестикилограммовая машина летела по прямой со скоростью 32 км/ч.
Учтите, 24 кг на лошадиную силу – это фантастическая нагрузка. Для сравнения: у транспортного самолета она равна 4-5 кг/л.с., а у сверхлегкого рекордного мотопланера – 12 кг/л.с.
Итак, воткинский махолет, поднявшись на 50-метровую высоту за 4 минуты 32 секунды полета, доказал принципиальную возможность построения подобных машин. Так, по крайней мере, думали ошеломленные зрители. А что полагают специалисты?
Доктор технических наук Л.Л.Кербер, известные авиаконструкторы П.А.Ивенсен и В.П.Кондратьев отнеслись к новинке довольно сдержанно. Как ни жаль, но полетела очередная экзотическая игрушка, не более того, полагают они. Именно очередная, поскольку модели махолетов летали и раньше, а вот полноразмерную машину, способную поднять в воздух человека, создать пока не удается. Крыло живой птицы невоспроизводимо из-за своей сложности.
Если же упростить конструкцию, пытаясь восполнить недостаток подъемной силы частотой взмахов, как это делают насекомые, то нужную частоту довольно просто обеспечить лишь при малых размерах. А чем больше крыло, тем задача сложнее. Она может стать и вообще невыполнимой, как по законам аэродинамики, так и сопромата.
Впрочем, корреспонденту "ИРа" Ю.Н.Егорову удалось заручиться и другим мнением. Старший научный сотрудник МАИ Ю.В.Макаров полагает, что в Риге впервые летал махолет, обладающий уникальными свойствами. При небольшой частоте и малой амплитуде взмахов крыльев он совершил достаточно длительный, устойчивый и управляемый полет. Модель с размахом крыла 3 м имела необычайно большую нагрузку по мощности и приличную скорость.
К особенностям махолета можно отнести также автоматическую осевую закрутку крыла, которая осуществлялась под действием аэродинамических сил. Утверждение, что с увеличением масштаба махолета увеличивается и нагрузка на крылья, неверно. В этом можно убедиться, сравнивая полет, скажем, лебедя и жаворонка. Прежде летали комнатные махолеты весом порядка 10 г и легкие модели небольших размеров. Теперь же впервые осуществлен полет достаточно большой модели. Так что прогресс налицо.
... И последние новости: Топоров все-таки добился своего! Он построил и совершил первый полет на махолете собственной конструкции. Вслед взлетел махолет и одного из его учеников. Так держать, россияне!