355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Автор Неизвестен » Рассказывают ученые » Текст книги (страница 13)
Рассказывают ученые
  • Текст добавлен: 26 сентября 2016, 00:42

Текст книги "Рассказывают ученые"


Автор книги: Автор Неизвестен



сообщить о нарушении

Текущая страница: 13 (всего у книги 19 страниц)

Современный рационализм физической теории не может ограничиться познанием законов бытия, он включает трансформацию познавательных норм, логических правил, аксиом самого познания, и вместе с тем он ведет к рациональному преобразованию бытия. Классическая физика, и прежде всего законы механики, изложенные в "Математических началах натуральной философии" Ньютона, в известном смысле претендовали на роль вечных скрижалей науки. Большинство мыслителей XVIII – XIX вв. думали, что законы механики Ньютона представляют собой незыблемый фундамент естествознания. Классическая наука – это не только определенные аксиомы, но и уверенность в том, что это действительно аксиомы. Что же такое неклассическая физика? Иногда ее определяют чисто негативным образом: она "не классическая", в общем случае она отказывается от фундаментальных постулатов, из которых исходит классическая физика.

Но это лишь часть дела. С новыми открытиями в физике изменилось не только представление о самой науке. Теория относительности и квантовая механика не только заменили старые фундаментальные физические законы новыми. Эти новые законы уже не претендовали на окончательное решение основных проблем бытия.

В XIX в. Гельмгольц видел высшую и конечную цель науки в сведении всей картины мира к центральным силам, полностью подчиненным механике Ньютона. Современный же физик вообще не ставит перед собой какой бы то ни было окончательной цели. Подобные иллюзии утеряны навсегда. Неклассическая физика – это здание, которое не только растет вверх, но и углубляется в поисках все более глубокого фундамента, который, однако, никогда не будет последним.

Каждая эпоха в науке характеризуется некоторыми идеалами физического объяснения природы. Современный идеал науки отличается от классического не только своим содержанием, но и своей динамичностью. Современная наука даже в том идеале объяснения мира, к которому она стремится, видит нечто меняющееся уже на глазах одного поколения.

В чем же состоит этот динамический идеал науки второй половины XX в.? В чем состоят связанное с этим идеалом радикальное обновление стиля фундаментальных исследований и те новые принципы науки, которые несут в себе зародыш новой, послеатомной цивилизации?

Исходная область новой научной революции – теория элементарных частиц. Видимо, ближайшая ступень этой теории будет состоять в систематизации уже известных частиц и тех, что будут открыты. Есть также основания думать, что общей тенденцией дальнейшего развития науки будет уже наметившаяся тенденция, направленная к объяснению известных из эксперимента основных свойств элементарных частиц, к ответу на вопрос, почему частицы данного типа обладают именно такими, а не другими массами и зарядами.

Второй путь, который ведет к принципиально новым основаниям научной картины мира, – это современные космология и астрофизика. Оба эти пути все больше сливаются в один.

При рациональной организации общества этот путь развития науки приводит к существенному преобразованию роли человеческой личности: человек становится инициатором радикальных преобразований картины мира, характера труда, структуры производства, баланса используемых природных ресурсов. Современное учение о пространстве, времени, движении, веществе и жизни, наиболее фундаментальные исследования, которые иногда называют меганаукой, становятся непосредственным импульсбм для самых радикальных, технических, экономических и экологических трансформаций. Отсюда – небывалый интерес в очень широких кругах к физике, к ее воздействию на другие науки, к возникновению и развитию неклассической науки, которая получает от современной физики импульсы, заимствует у нее понятия, применяет и конкретизирует ее выводы. И этот широкий интерес является существенным вкладом в современную идейную борьбу. Он направлен против иррационализма, он укрепляет доверие к разуму, он дает очень важную гарантию прогресса современной культуры.

По-видимому, практическое применение неклассической физики является одной из основ того интереса, о котором вы говорите?

Да, конечно. Важно отметить, что для такого применения требуется очень смелая постановка собственно познавательных задач. Здесь важны уверенность в том, что фундаментальные исследования не могут не принести важных практических результатов. Но эти результаты далеко не всегда можно предвидеть. Когда экспериментатор хочет установить новую, еще неизвестную закономерность, результат предстоящих исследований не может быть заранее известен. Когда мыслитель обдумывает кардинальные вопросы, на которые дадут ответы новые ускорители или новые телескопы, каждый из этих будущих ответов может поставить под сомнение самый смысл заданных вопросов. И во всяком случае, каждый такой ответ может быть совершенно неопределенным в смысле практических выводов. В космос и в микромир человека прежде всего ведет стремление к решению познавательных задач. Каковы бы ни были возможные практические результаты будущих астрофизических исследований или сооружения сверхмощных ускорителей элементарных частиц, отнюдь не эти результаты, которые нельзя определить заранее, служат непосредственным стимулом указанных исследований.

Теория относительности стала источником такого радикального практического результата, как атомная энергетика, именно благодаря общему, отвлеченному и чисто познавательному характеру поставленных в начале столетия вопросов о пространстве, времени, движении, массе, энергии... Сейчас перед наукой, и в первую очередь перед физикой элементарных частиц и астрофизикой, стоят еще более общие и еще более фундаментальные вопросы. И они, конечно, будут решаться независимо от определенности их будущих практических приложений.

Поэтому принципиальная уверенность в ценности разума, в ценности науки так важна сейчас для темпа исследовательской работы в области фундаментальных наук.

Все же можно ли сейчас нарисовать хотя бы самые общие контуры тех сдвигов в производстве, которые вызовет фундаментальная наука в ближайшие десятилетия?

Перспективы, скажем, до 2000 г. просматриваются довольно ясно и однозначно. К указанному сроку атомная энергетика станет преимущественной компонентой электроэнергетического баланса. Она будет опираться на реакторы-размножители, которые дают больше ядерного горючего, чем потребляют его. К этому времени основой технологии станет квантовая электроника. Кибернетика будет введена в основные производственные процессы. Молекулярная биология и особенно радиационная генетика позволят преобразовать органическую жизнь. Химия приблизится к возможности делать "все из всего" и коренным образом изменит сырьевую базу производства. Экономический эффект: в нашей стране производительность труда будет возрастать не только с большой скоростью, но и с непрерывным ускорением.

Что же касается более далеких прогнозов, которые еще не обрели хронологической определенности, то для них исходным пунктом являются теоретические коллизии современной физики и некоторые экспериментальные направления. Сейчас физика занята подготовкой вопросов, которые будут заданы природе с помощью новых, чрезвычайно мощных ускорителей частиц. Я имею в виду ускорители, которые будут превосходить самые мощные современные установки в десятки раз. Они дадут возможность проникнуть в очень малые пространственно-временные области – порядка 10-13 сантиметра и 10-24 секунды. Можно ожидать, что в этих областях наука столкнется с принципиально новыми явлениями. В частности, есть основания предполагать, что здесь частицы не движутся в обычном смысле, а возникают и исчезают, то есть основная проблема состоит не в поведении, а в бытии частиц.

Очевидно, развитие этого направления потребует не только огромных экспериментальных, но и весьма больших интеллектуальных усилий, преобразования логики научного мышления. А это в свою очередь не может не сказаться на общем интеллектуальном потенциале науки.

В свое время теория относительности не только привела к таким практическим выводам, как использование внутренней энергии атомного ядра, но и оказала заметное воздействие на цивилизацию вообще преобразованием самого стиля научного мышления. Современная физика, опираясь на изучение микромира и космоса, идет к еще более радикальному преобразованию научного мышления.

Можно ли сейчас сказать что-либо определенное о возможностях человеческой цивилизации, когда она овладеет тайнами микромира? Как будет выглядеть эта "послеатомная" цивилизация – эпоха, которая наступит тогда, когда практическое применение получат не только достижения атомной физики, но и физики элементарных частиц?

Контуры "послеатомной" цивилизации можно наметить лишь весьма неопределенно. Однако не исключено, что центральную роль в практических применениях "послеатомной" физики будут играть процессы трансмутации частиц, в том числе аннигиляции пар частица – античастица.

Сейчас такие процессы относятся к числу довольно экзотических. Но весьма вероятно, что именно они станут исходным научно-техническим звеном "послеатомного" века, подобно тому как экзотические для конца 30-х годов процессы деления ядер урана стали исходным звеном атомного века.

Процессы трансмутации частиц в принципе могут освободить всю энергию, соответствующую всей массе покоя вещества. Это примерно в тысячу раз больше, чем при делении ядер урана.

Если удастся изолировать античастицы, отделив их от частиц, мы получим аккумулятор, который сможет накапливать в каждом грамме вещества 9-1020 эрг энергии. Подобные сверхаккумуляторы найдут себе применение в космических кораблях и позволят достичь периферии Солнечной системы, а может быть, даже выйти за ее пределы.

С помощью достижений физики элементарных частиц станет возможной аккумуляция энергии в очень малых по размерам приборах, в которых на миллиметровых или еще меньших уровнях создаются мощные электромагнитные поля, высокие напряжения, температуры, давления... Высокоэнергетическая миниатюризация может радикально изменить всю технологию и силовой аппарат производства. Подобные сверхаккумуляторы найдут широкое применение и в медицине.

По-видимому, мир, который открывается перед современной физикой, – это все более "странный" мир?

Да, это так, но "странность" его – особая, специфическая для нашего времени. Очень крупные, эпохальные открытия всегда раскрывали "странную", непривычную, парадоксальную реальность. Такой реальностью была, например, гелиоцентрическая система.

Парадоксы неевклидовой геометрии стали парадоксами бытия, схемой реального "странного" мира в нашем столетии в рамках общей теории относительности и релятивистской космологии. Но даже не в этом специфическая "странность" современной картины мира. Сейчас новые фундаментальные представления о мире не перестают быть странными, не становятся традиционными. Из всех исторических традиций науки современная физика берет прежде всего "традицию антитрадиционализма" и делает ее необходимым условием научного творчества. Но именно в этом – отличие разума от рассудка: немецкая классическая философия присвоила рассудку функцию подведения наблюдений под известные законы, а разуму – функцию изменения законов. Современная наука (именно в этом "странность" ее результатов, именно в этом – смысл понятия "меганаука", именно в этом – основа характерной для нашего времени связи фундаментальных исследований с практикой) – апофеоз разума. И тем самым – беспрецедентное исключение иррационализма во всех его модификациях из современной культуры.

Д. А. Франк-Каменецкий

От мегамира к микромиру

[Известного советского физика-теоретика доктора физико-математических наук, профессора Давида Альбертовича Франк-Каменецкого уже нет среди нас. Данная беседа состоялась в 1969 г. Однако многие высказанные в ней мысли сохранили свою актуальность и до сегодняшнего дня. В тех случаях, когда развитие науки внесло изменения в существовавшие ранее представления, мы дали соответствующие подстрочные примечания. – Ред]

Какое значение для теории происхождения химических элементов имеет открытие новых необычных объектов во Вселенной, излучающих громадные количества энергии, в частности квазаров?

Эта проблема принадлежит к числу еще не решенных вопросов современной астрофизики. Существует довольно распространенная точка зрения, согласно которой для решения всех вопросов, связанных с происхождением элементов, достаточно рассмотрения процессов, происходящих в звездах. Что же касается космических процессов катастрофического характера (в частности, взрывных явлений), то они здесь ничем помочь не могут.

Однако я не согласен с подобной точкой зрения. Дело в том, что за последнее время накопился ряд данных, заставляющих предположить, что мы знаем еще далеко не все космические процессы, ответственные за фактически наблюдаемое распределение химических элементов во Вселенной. Вот хотя бы "проблема гелия". Согласно теории расширяющейся "горячей" Вселенной, в космических объектах должно содержаться не меньше 25 – 30 процентов гелия. Данные же астрономических наблюдений дают более низкое число – не больше 20 процентов. Известны отдельные звезды, в которых содержание гелия еще значительно ниже. С другой стороны, привести к почти полному разрушению гелия термоядерные процессы не могут. В связи с этим возникает подозрение, что в дозвездной стадии существования материи, теорию которой развивает В. А. Амбарцумян, могли происходить не термоядерные процессы, а процессы, связанные с очень высокой концентрацией электромагнитной энергии, способные приводить к разрушению гелия.

Вторая проблема – это "проблема дейтерия", тяжелого водорода. Дело в том, что в "земном" водороде содержится около одной шеститысячной доли дейтерия. Как известно, водород – самый распространенный химический элемент во Вселенной. Однако содержание в нем дейтерия пока еще точно неизвестно. Но если оно совпадает с тем, что мы наблюдаем в земных условиях, возникает трудноразрешимая задача. Ведь при термоядерных реакциях в недрах звезд дейтерий очень быстро уничтожается, "выгорает". Между тем одна шеститысячная – это очень высокий процент содержания дейтерия в водороде. И если химические элементы образуются исключительно при термоядерных реакциях в звездах, то совершенно непонятно, как эти реакции могли обеспечить столь высокий процент.

Правда, высказывается предположение, что "земной" дейтерий образовался в результате так называемых холодных плазменных процессов в процессе образования Солнечной системы и, следовательно, его должно быть больше, чем вообще в космосе. Однако подобная гипотеза имеет много уязвимых мест. В частности, в реакции, о которой идет речь, должны принимать весьма существенное участие так называемые тепловые нейтроны. Но если бы таких нейтронов в период формирования Земли действительно было много, то некоторые редкоземельные элементы, поглощая их, должны были бы исчезнуть. А они существуют...

Так что есть основания ожидать, что и во Вселенной процент содержания дейтерия в водороде приближается к одной шеститысячной. Если наблюдения покажут, что это в самом деле, так, мы получим весьма убедительное свидетельство в пользу того, что химические элементы образуются не только при термоядерных реакциях в звездах, но и в результате плазменных процессов – холодного ускорения частиц.

Какую же роль во всем этом играют квазары?

Как известно, квазары являются источником очень мощного радиоизлучения. Согласно современным физическим представлениям, оно возникает при движении релятивистских электронов в мощных магнитных полях (так называемое синхротронное радиоизлучение). Однако в мощных магнитных полях могут ускоряться не только электроны, но и атомные ядра. А значит, создаются условия для холодных ядерных реакций.

Существует ли связь между изучением термоядерных, процессов во Вселенной и исследованиями физиков по управляемым термоядерным реакциям?

Исторически эти проблемы связаны между собой очень тесно. Ведь сама мысль о возможности земного технического применения термоядерных реакций возникла в результате изучения источников звездной энергии. На первых порах физики, работавшие в этой области, широко пользовались в качестве исходных данных количественными закономерностями, выведенными при изучении термоядерных реакций в звездах. Однако в дальнейшем эти две области исследований – наука о звездной плазме и об управляемых термоядерных реакциях – довольно сильно разошлись.

Дело в том, что существенно различается физика этих процессов. В звездах плазма удерживается мощной силой тяготения. В искусственных же условиях подобным методом воспользоваться нельзя, так как для этого потребовались бы гравитационные силы, в сотни раз превосходящие силу тяготения Земли. Земная физика пошла другими путями для удержания плазмы, она, например, стремится использовать электромагнитное поле [В последние годы ведутся исследования и в другом направлении: изучается возможность возбуждения термоядерной реакции в высокотемпературной плазме с помощью лазерного облучения. – Ред.].

Более общий вопрос: считаете ли вы, что все основные физические законы уже открыты и любое новое явление может быть объяснено с их помощью?

Конечно нет! Такому предположению противоречит хотя бы то обстоятельство, что физики непрерывно открывают все новые и новые элементарные частицы, общая полная теория которых пока не построена.

Это ответ на ваш вопрос, так сказать, с точки зрения эксперимента. Если же взглянуть на дело с точки зрения теории, то во всяком случае современная физическая теория не может считаться внутренне замкнутой. Существует теория, описывающая квантовые явления, но не включающая гравитации, и гравитационная теория, не включающая квантовых явлений [В настоящее время теоретики много работают над созданием квантовой гравитационной теории. Ее рвз-работка – одна из центральных проблем современной физики и астрофизики. – Ред.].

Как, по вашему мнению, должно сказаться на мировоззрении современного человека то обстоятельство, что развитие фундаментальных физических представлений все еще совершается вопреки здравому смыслу?

По существу, так было всегда. Вспомните хотя бы историю с антиподами. Разве легко было в свое время нашим предкам привыкнуть к мысли о том, что где-то на другой стороне Земли люди ходят "вниз головой"? Разве это не противоречило здравому смыслу того времени?

Разница состоит лишь в том, что сейчас наука развивается быстрее и потому приходится гораздо чаще, чем прежде, приспосабливаться к новым идеям.

Я хотел бы подчеркнуть следующее. Идеалисты, как объективные, так и субъективные, считают, что все законы природы заложены в некоем духе мировом или в духе данного индивидуума. Но если бы дело действительно обстояло так, то в любых самых экстравагантных законах природы мы не должны были бы видеть ничего противного нашему здравому смыслу. То обстоятельство, что науки, и в первую очередь физика элементарных частиц, все чаще открывают законы и закономерности, вступающие во все большие противоречия со здравым смыслом, на мой взгляд, является одним из самых убедительных аргументов против религиозно-идеалистической точки зрения. Это свидетельствует о том, что сознание формируется под влиянием внешнего мира, а не наоборот.

Какие идеи в современной теоретической физике, на ваш взгляд, представляются наиболее интересными?

Лично мне весьма импонирует идея так называемых квазичастиц. Как известно, современная теоретическая физика исходит из идеи квантово-волнового дуализма. Элементарная частица рассматривается либо как частица, либо как волновой процесс. С другой стороны, любой волновой процесс можно "прокванто-вать", то есть разложить на частицы. Именно так в физике появились "частицы" света – фотоны, "частицы" тяготения – гравитоны и т. п.

В то же время любой вообще физический процесс может быть представлен как волновой, а следовательно, и проквантован. В этом смысле можно говорить о звуковых "частицах" – фононах, о плазменных "частицах" – плазмонах и т. д. Рассмотрение подобных "частиц" или, лучше сказать, квазичастиц имеет важное значение. Во-первых, оно лишает элементарные частицы их особых привилегий и позволяет взглянуть на разнородные физические явления с единой точки зрения. Во-вторых, изучение свойств квазичастиц имеет для современной физики ничуть не меньшее значение, чем исследование свойств элементарных частиц.

В связи с квазичастицами я хотел бы подчеркнуть еще одно, как мне представляется, чрезвычайно важное обстоятельство. Быть может, самая великая революция в физике состоит в том, что современная наука приходит к пониманию того факта, что не всегда сложное построено из более простого. Атом, разумеется, сложнее электронов и протонов, из которых он построен. Однако, проникая еще дальше в глубь атомного ядра, мы обнаруживаем, что там все обстоит еще значительно сложнее. И приходим к поразительному выводу: может быть, простое строится из сложного.

В поисках единой теории

На вопросы отвечает

доктор физико-математических наук

В. С. Барашенков

Каково, на ваш взгляд, современное состояние теории элементарных частиц?

После некоторого периода кажущегося застоя в этом разделе современной физики произошел серьезный сдвиг. В частности, в области теории идут исследования проблемы объединения различных известных типов взаимодействия, в первую очередь слабых и электромагнитных, а также сильных. И делается все это на очень глубоком – кварковом уровне. Однако теоретических моделей, описывающих мир элементарных частиц, пока еще слишком много, и в настоящее время трудно какой-либо из них отдать предпочтение.

Важное значение для дальнейшего развития наших представлений об элементарных частицах будет иметь недавнее открытие так называемых пси-частиц, обладающих необычными свойствами. Хотя теоретические предпосылки, допускающие наличие в природе подобных частиц, существовали, само их экспериментальное обнаружение явилось все же довольно неожиданным.

С другой стороны, открытия новых частиц стали важным аргументом в пользу гипотезы кварков. Дело в том, что без этой гипотезы было бы очень трудно объяснить свойства частиц. Более того, существование пси-частиц подтвердило, что кварков должно быть не три, а четыре. К тому же мы сейчас знаем, что каждый из этих кварков имеет три различных "цвета".

Кстати, хотел бы заметить, что мысль о существовании трехцветных кварков еще несколько лет назад была высказана известным советским физиком-теоретиком академиком Н. И. Богомоловым. Теперь она получила убедительные подтверждения.

Какое место занимает теория элементарных частиц в современном естествознании?

Наряду с астрофизикой она всегда играла чрезвычайно важную роль в формировании новых представлений о явлениях окружающего нас мира. Так, она подводит нас к новым представлениям о том, что такое элементарность.

Еще сравнительно недавно считалось само собой разумеющимся, что Вселенная представляет собой последовательность вложенных друг в друга физических систем – от Метагалактики до неделимых элементарных частиц, не имеющих внутренней структуры. Подобная картина хорошо согласовывалась и с нашим здравым смыслом, согласно которому целое всегда больше любой из составляющих его частей.

Но теперь мы знаем, что элементарная частица может содержать в качестве своих составных частей несколько точно таких же частиц, как и она сама. Например, протон на очень короткое время распадается (диссоциирует) на протон и пи-мезон, а каждый пи-мезон на три пи-мезона. Таким образом, в микромире теряют смысл привычные представления о целом и части, о простом и сложном, а следовательно, теряет смысл и привычное для нас представление об элементарности. Появилась идея "прекварков" – еще более фундаментальных частиц, из которых состоят сами кварки.

Пожалуй, наиболее поражающим воображение обстоятельством является постепенно открывающаяся нам все более глубокая взаимосвязь между микропроцессами и макроскопическими явлениями, в том числе явлениями космического порядка. Становится все более ясно, что многие важные свойства космических объектов определяются в конечном счете свойствами микрочастиц.

Как известно, одним из основных положений материалистической диалектики является утверждение о всеобщей взаимосвязи явлений природы. Взаимосвязь микро– и макропроцессов – одно из конкретных выражений этой связи. В качестве объектов, где связь микро и макро реально проявляется, можно привести черные дыры с радиусом 10-13 сантиметров. Их масса должна составлять 108 тонн. Экспериментальное обнаружение таких удивительных объектов – одна из интереснейших задач современной физики.

Чего вы ждете в ближайшем будущем от теории элементарных частиц?

Прежде всего построения единой теории сильных, слабых и электромагнитных взаимодействий. Кроме того, должна быть понята природа кварков и получен ответ на вопрос, почему их не удается наблюдать. Не исключена возможность, что кварки представляют собой особый тип образований, которые могут существовать только в совокупности и которые принципиально невозможно разделить.

Весьма интересных результатов можно ожидать и от дальнейшего изучения нейтрино, играющего очень важную роль в слабых взаимодействиях.

Нуждается ли, по вашему мнению, современная теория элементарных частиц в каких-то принципиально новых идеях?

Экспериментальных данных в этой области сейчас очень много, немало и непонятного. Не исключено, что стараниями теоретиков удастся преодолеть существующие трудности и объяснить экспериментальный материал, не прибегая к каким-то принципиально новым представлениям. Но могут потребоваться и совершенно новые идеи, в том числе и весьма необычные.

Считаете ли вы, что развитие теории элементарных частиц ведет к открытию "все более странного мира"?

Это и в самом деле так. Теория элементарных частиц ведет все дальше от наглядных представлений, она обрастает все более сложными математическими и другими образами, у которых нет аналогий в непосредственно окружающем нас мире.

С другой стороны, новые, непривычные понятия – непривычные даже для физика – постепенно осваиваются, входят в обиход и незаметно становятся привычными. Один из физиков как-то привел показательный пример. Когда он был молодым, в Физическом институте Академии наук однажды обсуждался вопрос о потенциальном барьере для альфа-частиц. И докладчик, чтобы сделать для присутствующих это новое тогда понятие более наглядным, сравнил этот барьер со слоем Хэ-висайда, ионизированным слоем земной атмосферы, отражающим короткие радиоволны. А спустя несколько лет – это было уже в послевоенные годы – этому же физику пришлось стать свидетелем того, как один студент, объясняя другому, что такое слой Хэвисайда, сравнил его с потенциальным барьером для альфа-частиц.

Таким образом, по мере развития науки и освоения новых знаний происходит своеобразная переоценка ценностей. Совершается непрерывный процесс открытия и в то же время освоения "все более странного мира".

Если уж мы заговорили о "странном мире" элементарных частиц, то невольно возникает вопрос о так называемых сверхсветовых частицах, или тахионах. По этой проблеме в последние годы публикуется множество работ. Хотелось бы знать ваше мнение на этот счет.

Проблема, бесспорно, увлекательная. Само предположение о возможности существования сверхсветовых частиц не может не поражать воображение. Но если взглянуть на дело с чисто физической точки зрения, то окажется, что гипотеза.о существовании тахионов не противоречит специальной теории относительности. И даже не только не противоречит, а, наоборот, делает эту теорию более симметричной и внутренне согласованной, распространяя ее на мир, лежащий за световым барьером. Таким образом, гипотеза тахионов может быть верной или неверной, но она очень естественно вписывается в специальную теорию относительности, создавая цельную замкнутую картину. Разумеется, справедливость этой гипотезы может доказать только эксперимент.

Но, как известно, одним из основных положений специальной теории относительности является утверждение о предельном характере скорости света. Нет ли тут противоречия с предположением о существовании сверхсветовых частиц?

Я уже говорил, что идея тахионов теории относительности не противоречит. Это связано с тем, что запрет сверхсветовых скоростей не есть следствие, вытекающее из теории относительности, а лишь одна из аксиом, положенных в ее основание. Таким образом, специальная теория относительности в принципе не может запретить сверхсветовых процессов.

Согласно основному предположению, если тахионы действительно существуют, то они "обитают" за сверхсветовым барьером и не вступают ни в какое взаимодействие с "до-световыми" частицами нашего мира. Таким образом, речь идет о своеобразном распространении специальной теории относительности на гипотетические физические явления, протекающие по ту сторону сверхсветового порога. Мир тахионов, если он действительно существует, нигде не пересекается с миром досвето-вых скоростей. Эти миры, видимо, между собой не взаимодействуют.

В настоящее время физикам известны два типа частиц, между которыми не существует перехода, – "досветовые" и "световые", то есть частицы, движущиеся с досветовыми скоростями (протоны, нейтроны, электроны и т. п.) и со световыми скоростями (фотоны и нейтрино). Если бы оказалось, что тахионы действительно существуют, они составили бы третий тип частиц. Частица, принадлежащая к одному из этих типов, не может перейти в частицу другого типа ни при каких известных нам взаимодействиях. Я подчеркиваю: ни при каких известных нам взаимодействиях. На очень глубоком, еще не изученном современной физикой уровне это может быть и не так.

И все же возникает ощущение, что гипотеза сверхсветовых скоростей является чем-то вроде физической бессмыслицы?

Все дело в том, что вообще называть "физически бессмысленным". Соотношение или процесс, которые невозможны в круге привычных для нас явлений, могут реализоваться в другой области явлений. Иными словами, наши представления о возможном и невозможном носят относительный характер. Физически бессмысленными можно считать лишь такие теоретические выводы, которые вступают в противоречие с тем или иным известным фундаментальным законом природы в той области, где этот закон достаточно хорошо проверен. Гипотеза же тахионов, как мы видели, в подобные противоречия не вступает.

Но в таком случае при сверхсветовых сигналах должна нарушаться причинность: следствия могут опережать свои причины.


    Ваша оценка произведения:

Популярные книги за неделю