Текст книги "Кто ест пчел? 101 ответ на, вроде бы, идиотские вопросы"
Автор книги: Мик О'Хара
сообщить о нарушении
Текущая страница: 4 (всего у книги 16 страниц)
Что происходит в…?
Можно ли как-то вычислить, какое количество экскрементов вырабатывает организм из определенного количества съеденной пищи? Например, какое количество экскрементов образуется из 1 кг пищи? Какое количество фекалий выделяет за день среднестатистический взрослый человек? Каков их состав?
Найджел Уоткинс (Эпсом, Великобритания)Дэвид Бакстер (Солфорд, Великобритания)
Одна из основных функций толстой кишки – поглощать воду и вырабатывать пластилиноподобные фекалии, от которых организм освобождается самопроизвольно или усилием воли. Фекалии на 75% состоят из воды; половину их сухого веса составляют бактерии, остальное – не подвергшаяся ферментации грубая часть пищи и желчевыделения. Средний европеец выделяет за день от 19 до 280 г кала, хотя, если у вас диарея, этот показатель может быть и выше. У разных людей в разные периоды жизни масса выделяемого кала тоже может меняться. У африканцев и азиатов масса кала вдвое превышает названные показатели. Единственный способ увеличить вес кала – есть больше клетчатки, поскольку неферментированная клетчатка способна удерживать много воды. Некоторые виды грубой пищи, ферментирующейся в толстой кишке, способствуют размножению микробов. А например, пектин или гуммиарабик также выделяют водород, метан и жировые кислоты с короткоцепочечной структурой. Продукты расщепления короткоцепочечных жирных кислот могут оказывать благоприятное воздействие на слизистую оболочку кишечника. Продукты бактериальной ферментации могут оказывать осмотическое воздействие на фекальную массу. Пшеничные отруби почти не подвергаются ферментации и потому значительно увеличивают массу кала. Чем грубее отруби, чем меньше они обработаны, тем больше воды они способны удерживать и, соответственно, тем больше кала вырабатывается в результате их потребления. Хлеб из непросеянной муки мало влияет или вообще не влияет на вес фекалий. У разных людей из 1 г пшеничных отрубей формируется различное количество кала. У здорового человека масса влажного кала составляет 3–5 г с 1 г клетчатки. У людей, страдающих слизистым колитом и симптоматическим дивертикулитом, этот показатель равен примерно 2 г на 1 г клетчатки. Таким образом, эффект грубой пищи в толстой кишке можно вычислить по следующей формуле: масса кала = Wf(1+Hf)+Wb(1+Hb)+Wm(1+Hm), где Wf, Wb и Wm соответственно масса в сухом состоянии остатков непереваренной пищи в толстой кишке, присутствующих в кале бактерий и осмотически активных метаболитов и других веществ в толстой кишке, которые могли бы уменьшить количество избыточно поглощаемой воды, а Hf, Hb и Hm означают водоудерживающую способность соответствующих параметров.
Мартин Иствуд (Норт-Куинсферри, Великобритания)
Организм человека ежедневно удаляет из кишечника до 250 г экскрементов, или фекалий, состоящих на 75% из воды и на 25 % из твердых веществ. Твердые вещества образуют такие неусвояемые продукты, как фруктовая кожура (33%), мертвые бактерии, обычно обитающие в кишечнике (50%), неорганические вещества (соли кальция), клетки, отторгнутые кишечником, секреции кишечника, в том числе слизь, и желчные пигменты, придающие калу цвет. Количество выделяемого кала зависит не только от количества съеденной пищи, но и от типа самой пищи, а также активности кишечника. Если вы едите много пищи, богатой клетчаткой (овощи, бобы, злаки), организм не может переварить и усвоить ее в полной мере и потому вырабатывает больше кала, чем при употреблении легко усвояемых продуктов с низким содержанием клетчатки (например, шоколада). На активность кишечника воздействуют острая пища, некоторые лекарственные средства (например, слабительное) и инфекции. Чем выше скорость прохождения содержимого по пищеварительному тракту, тем меньше воды успевает усвоить кишечник и, соответственно, тем больше масса вырабатываемого кала.
Дженнифер Келли (Кембридж, Великобритания)
Натальные узлы
Неужели акушерки и в самом деле завязывают пуповину новорожденного в узел? Если нет, какую хирургическую процедуру они выполняют? И как это делалось в прошлом, до того как современная медицина стандартизировала данный процесс?
Джек Уайат (Гринвилл, США)
Пуповина состоит из заключенной в оболочку ткани студенистой консистенции (так называемый вартонов студень), в которой проходят три кровеносных сосуда. Завязать в узел пупочный канал невозможно – он слишком толстый. Сегодня, там, где в наличии имеются все необходимые медикаменты, для перетягивания пуповины используется пластиковый зажим – им закрывают доступ крови в пупочный канал. После этого пуповину прямо над зажимом перерезают ножницами. Если зажима под рукой не оказалось, можно использовать кусочек чистой веревки, полоску кожи или крепкую травинку. Вместо ножниц послужат нож, камень с острым краем или даже острые зубы. Через 3 дня зажим снимают, а кончик пуповины на 5—10-й день после родов засыхает и отваливается.
Сара Картер (Брайтон, Великобритания)
Насколько мне известно, новорожденному пуповину в узел никогда не завязывали, во всяком случае в моей акушерской практике такого не случалось. Сегодня при родах акушерка сдавливает пуповину двумя кровоостанавливающими зажимами. Потом стерильными хирургическими ножницами делает между зажимами разрез, отделяя плаценту. Примерно на расстоянии 2,5 см от пупочной впадины отрезанный конец пуповины ребенка перетягивают пластиковым зажимом. Торчащий кончик постепенно высыхает и через несколько дней отваливается. В прошлом применялись два других метода. В 1960-е годы, когда я осваивала акушерское дело, процедура перевязывания пуповины была такая же, только вместо зажима использовалось стерильное резиновое кольцо. В прежние времена акушерки перетягивали пуповину куском веревки.
Мэри Коул (акушерка Колчестерской больницы общего типа, Эссекс, Великобритания)
Когда родилась наша дочь (около девяти лет назад), ей перетянули пуповину маленьким пластиковым зажимом. Через несколько дней кончик пуповины засох и отвалился сам, а зажиму мы придумали достойное применение: стали скреплять им пакет с мюсли. В этом качестве зажим прослужил нам несколько лет, а потом сломался, и нам пришлось рожать еще одного ребенка. Зажим от его пуповины служит нам по сей день.
Роб Айвз (Мэрипорт, Великобритания)
Вжик!
Усекновение головы – это очень больно? Если да, то как долго отсеченная голова сознает, что ее отсекли?
Уильям Уайлд (Оксфорд, Великобритания)
Да, это больно. Степень страданий человека зависит от умения палача или отсутствия оного. В 1587 году в замке Фотерингей казнили королеву Марию Шотландскую. Неловкий палач сумел отсечь ей голову только с третьего удара, да и то потом еще ножом перерезал кожу и хрящи, чтобы работа считалась выполненной чисто. Когда топор первый раз опустился на шею Марии, она издала глубокий протяжный стон, и объятые ужасом свидетели казни поняли, что королева испытывает нестерпимые муки. Как долго человек остается в сознании, после того как его обезглавили? Во Франции, в годы господства гильотины, некоторых из приговоренных просили моргать до тех пор, пока они остаются в сознании после того, как им на шею опустился нож. Как сообщают, после отсечения головы моргали до 30 секунд, хотя трудно сказать, был ли то нервный рефлекс, или моргание происходило по воле казненного. В большинстве стран, где современная наука могла бы дать ответ на этот вопрос, казнь через усекновение головы давно не практикуется в качестве законной меры наказания.
Дейл Макинтайр (Кембриджский университет, Великобритания)
Французский химик Антуан Лавуазье (1743—1794) стал жертвой революции и был приговорен к гильотине. Перед казнью он попросил друзей проследить, сколько раз он моргнет, после того как ему отсекут голову. Говорят, отсеченная голова моргала в течение 15 секунд.
А. Гриант (Сидней, Австралия)
История об Антуане Лавуазье, до последних мгновений жизни продолжавшего героически служить науке, звучала неоднократно, но, к сожалению, она не подтверждена фактами. О ней не упоминается ни в найденных нами исторических документах, оставленных его современниками, ни в биографических очерках Лавуазье. Однако, как указывалось выше, предпринимались попытки доказать, что отсеченная голова некоторое время сохраняет сознание. Ниже представлены наиболее достоверные, на мой взгляд, сведения по данному вопросу. Автор-составитель Весьма подробно этот феномен описал доктор Борё. В идеальных условиях он провел опыт с головой убийцы Лангиля, гильотинированного в половине шестого утра 28 июня 1905 года (этот факт описан в книге Алистера Кершо «A History of the Guillotine», который взял данные из источника: «Archives d'Anthropologie Criminelle», 1905). «Вот что мне удалось наблюдать сразу же после обезглавливания: 5–6 секунд веки и губы гильотинированного дергались с ритмичной конвульсивностью… Я подождал несколько секунд. Спазматическое подергивание прекратилось. Черты лица разгладились, веки приспустились, так что видны были только конъюнктивы глаз, точно как у только что скончавшегося человека или умирающих, которых мне, по роду моей профессии, приходится наблюдать ежедневно. Звучным резким голосом я окликнул: «Лангиль!» – и увидел, как веки медленно, без судорожного подергивания, поднялись… В следующее мгновение глаза Лангиля приковались к моим, зрачки сами собой сфокусировались… Спустя несколько секунд его веки вновь медленно и плавно опустились, а лицо приобрело то же выражение, каким оно было до того, как я окликнул казненного. Я вновь выкрикнул имя Лангиля, и опять его веки медленно и плавно поднялись, а глаза, вне сомнения, живые, самопроизвольно воззрились на меня, возможно, даже еще более пристально, чем в первый раз. Потом веки в очередной раз опустились, но теперь уже почти не закрывая глаз. Я попробовал в третий раз окликнуть казненного, однако он не отреагировал. Его взгляд стал стеклянным, как у мертвеца. Я скрупулезно пересказал то, что мне пришлось наблюдать. Весь опыт длился 25–30 секунд».
Майкл Сноуден (Лондон, Великобритания)
Если и впрямь отсеченная голова некоторое время сохраняет сознание, тогда описанный ниже ритуал можно считать гуманным – при условии, что его исполняют с целью убедить умирающего, будто тот возносится на небеса.
Автор-составитель
По словам доктора Ливингстона, африканцам, которых он встречал, было известно, что при обезглавливании приговоренный не сразу терял сознание. Он рассказывал, что они сгибали упругое молодое деревце и привязывали к нему веревками за уши человека, которому собирались отрубить голову, – чтобы у казнимого в последние мгновения сознания создавалось впечатление, будто он летит.
Джон Радж (Харлингтон, Великобритания)
Сколь бы быстро ни покидало сознание человека, которому отсекают голову, можно не сомневаться в том, что несколько секунд он испытывает адскую боль. В 1983 году, вскоре после конференции Всемирной медицинской ассоциации, на которой обсуждалось отношение врачей к смертной казни, Гарольд Хиллман, в ту пору преподаватель философии в Суррейском университете, написал для журнала «New Scientist» статью о разных способах казни и о том, какие мучения они доставляют. Вот цитата из его статьи, касающаяся гильотины. «Этот вид казни назван гильотиной в честь депутата французского Национального собрания, предложившего ввести данное орудие казни в 1789 году. Его испытали на трупах в парижской больнице Бисетр и стали применять в 1792 году – в период Великой французской революции. Считается, что гильотину изобрел доктор Жозеф Игнас Гийотен, но на самом деле подобное орудие казни применялось еще в XVI веке в Италии, Германии, Франции и Шотландии. По мнению Гийотена, гильотина – быстрое и безболезненное орудие казни и эти преимущества должны распространяться на всех граждан, а не только на представителей знати. Гильотинирование было признано более гуманным способом казни, потому что нож гильотины более острый и отсекает голову быстрее, чем топор. Смерть наступает в результате отделения головного мозга от спинного после перерезания окружающих их тканей. Это должно вызывать острую жгучую боль. Из-за резкого прекращения притока крови в черепную коробку казнимый утрачивает сознание, вероятно, в течение 2–3 секунд. По словам очевидцев, отсеченные головы способны вращать глазами. То же самое могут делать и животные, которым в целях эксперимента отсекают головы, чтобы вырезать какой-то орган или исследовать биохимический состав мозга».
Автор-составитель
Организмы в организме
Сколько видов бактерий живет на теле человека или внутри его организма? Какова общая численность этих «гостей»?
Роджер Тейлор (Уиррал, Великобритания)
Микроорганизмы, живущие в организме здорового человека, – так называемая микробная фауна – подразделяются на два типа: постоянные обитатели и временные. Разумеется, это микробное сообщество может пополняться любым количеством паразитов, избравших тело человека своим домом. Бактериолог Теодор Роузбери в своем фундаментальном труде «Life on Man» (1969) представляет полный историко-биологический отчет обо всех микробах, живущих в организме обычного человека. Роузбери говорит, что их количество огромно. «Случись нам оказаться в центре этой микроскопической вселенной, мы должны смотреть вокруг широко открытыми глазами, внимательно всматриваться, а не пожирать глазами, – главное, чтоб не стошнило… потому что человека населяют в безмерных количествах самые разнообразные микробы». Роузбери называет ошеломляющие цифры. Например, он насчитал 80 различных видов бактерий в одной только ротовой полости и установил, что за день взрослый человек выделяет вместе с экскрементами в общей сложности от 100 млрд. до 100 трлн. бактерий. На основании данных цифр можно предположить, что плотность микроорганизмов в теле человека составляет примерно 10 млрд на 1 см2. Микробы живут на всех поверхностях тела взрослого человека – и на тех, которые подвержены внешним воздействиям (кожа), и на тех, к которым есть доступ извне (весь пищеварительный тракт от ротового отверстия до заднего прохода), а также на глазах, в ушах и дыхательных путях. По оценке Роузбери, в среднем на 1 см2 кожи человека приходится 10 млн. бактерий. Поверхность тела он сравнивает с кишащими народом улицами в канун Рождества, когда все горожане покупают подарки. Как бы то ни было, количество микробов разное на разных участках поверхности организма человека, составляющей почти 2 м2. Например, на жирной коже крыльев носа или в потных подмышках число бактерий может быть в 10 раз больше, а на некоторых внутренних поверхностях – на зубах, в горле или пищеварительном тракте – их концентрация возрастает в тысячи раз. Эти внутренние поверхности – наиболее «населенные» участки человеческого организма. Напротив, на тех поверхностях, где поток жидкости уносит бактерии (слезный канал, мочеполовая система), концентрация микроорганизмов значительно ниже. Собственно говоря, в мочевом пузыре и в нижнем отделе легких Роузбери вообще не обнаружил микробной деятельности. Сколь бы внушительными ни казались нам эти цифры, по оценке Роузбери, все бактерии, живущие на наружных поверхностях организма человека, можно уместить в горошине среднего размера, а те, которые живут внутри организма человека, – в сосуде объемом всего лишь 300 мл. При вирусных или инфекционных заболеваниях организма названные цифры возрастают, но незначительно. Да, общее количество микроорганизмов, живущих на нас и в нас, велико, но по сравнению с объемом тела человека микробов не так уж много. Что касается видового состава бактерий, живущих в здоровом организме, здесь оценки разнятся, поскольку относительно регулярно выявляются новые разновидности. Профессор микробиологии Королевского университета в Белфасте Марк Поллен утверждает, что «в одной только ротовой полости обнаружено более 80 видов бактерий, еще столько же – в кишечнике (по данным исследований во Франции, проведенных в Лаборатории экологии и физиологии пищеварительной системы в Жуи-ан-Жоза), и очень много бактерий живет у нас на коже. Точно нельзя сказать, но постоянный состав бактериального «населения» организма человека включает свыше 200 видов. Геном человека содержит максимум 100 тыс. генов, а бактериальный геном в среднем – 2 тыс. генов. Таким образом, в бактериях, живущих в организме человека, обнаружено в 4 раза больше генов, чем в геноме самого человека». Конечно, в организме человека «селятся» не только бактерии и вирусы. В своих работах «Furtive Fauna» (1992) и «Fearsome Fauna» (1999) Роджер М. Кнугсон описывает многочисленных и разнообразных паразитов, живущих на нас и внутри нас. Это, как правило, микроскопические организмы, некоторые из которых – существа весьма неприятные. Пожалуй, наиболее типичными представителями этих обитателей организма человека являются вши, способные поражать все участки тела с волосяным покровом от головы до подмышек и паха. Но, кроме зуда, вши не причиняют организму человека никаких неприятностей. Другое дело – клещи. Они могут стать причиной целого ряда тяжелых и экзотических заболеваний, вызываемых самыми разными вирусами. Есть еще чесоточные клещи, от которых страдают миллионы людей по всему миру. Эти паразиты способны внедряться в кожу, вызывая нестерпимый зуд. К счастью, их близкие родичи железницы, обитающие во всех регионах мира, благополучно довольствуются сухими кожными клетками, не доставляя больших неудобств. И не все телесные паразиты ползают. Если приглядеться, можно найти грибки в волосах и плесень в складках кожи. В пищеварительном тракте в числе прочих микроорганизмов можно обнаружить простейших, вызывающих амебиаз, а также 20-метровых бычьих цепней и анкилостомид, имеющих склонность проникать в кровоток. В крови наряду с другими организмами может жить кровяная шистосома, вызывающая кровотечение в мочевом пузыре и оставляющая рубцы на его стенках, в лимфатической системе – 12-сантиметровая вухерия, а в печени – желчелюбивая трематода (Clonorchis sinensis). Но, пожалуй, опаснее всех поражающая мозг патогенная ниглерия (Naegleria fowleri) – амеба, миллионами размножающаяся в черепе человека, пока тот не погибает.
Автор-составитель
Пучеглазые
Меня всегда удивляло вот какое явление: я прекрасно вижу под водой, если на мне защитные очки или маска, а без них у меня перед глазами все расплывается. Чем объясняется такой эффект?
Майкл Слейтер (Бристоль, Великобритания)
Причина та же, что и в том случае, когда погруженная в стакан с водой ложка кажется нам изогнутой. Скорость света в воде меньше, чем в воздухе. При переходе из одной среды в другую она меняется и луч света преломляется. Угол преломления зависит от коэффициента изменения скорости света при прохождении через ту или иную среду. Глаз человека устроен таким образом, чтобы свет, проходящий через зрачок, фокусировался на сетчатке, выстилающей глазное дно. Однако глаз приспособлен улавливать свет, попадающий на его поверхность из воздушной среды. Глаз обладает способностью преломлять световые лучи на стыке воздушной среды и его поверхности и передавать сфокусированное изображение на сетчатку. Но, когда свет направлен на глаз из воды, угол преломления другой, поэтому световые лучи фокусируется неправильно. Защитные очки воссоздают область контакта поверхности глаза с воздушной средой, и человеку возвращается ясное видение. Это явление преломления световых лучей при прохождении через разные среды лежит в основе действия оптических стекол (линз), используемых для коррекции плохого зрения.
Ричард Уильямс (Лондон, Великобритания)
Угол преломления света зависит от коэффициентов преломления сред по обеим сторонам роговицы: чем больше между ними разница, тем больше угол преломления света. Поскольку коэффициенты преломления воздуха, воды и роговицы составляют соответственно 1, 1.33 и 1.38, при контакте глаза с водой эта разница гораздо меньше, чем при контакте глаза с воздухом. Оптическую силу систем вычисляют по формуле:
P = (n (1) n (2))/R,
где n (1) и n (2) – соответственно коэффициенты преломления роговицы и внешней среды, а R – радиус кривизны роговицы. Оптическую силу систем измеряют в диоптриях. Диоптрия – единица преломляющей способности, равная обратной величине фокусного расстояния (в метрах) данной линзы. Если предположить, что R = 0,008 м, тогда оптическая сила линзы в воздушной среде составляет около 47 диоптрий, а в воде – 6 диоптрий. Фокусирующая способность глаза – величина относительно непостоянная, потому что форма хрусталика может меняться под воздействием цилиарного тела. Как бы то ни было, при контакте глаза с водой оптическая сила линзы уменьшается на 41 диоптрию. По существу, максимальное увеличение оптической силы глаза у маленького ребенка – около 15 диоптрий; у 60-летнего человека она может понизиться всего лишь на 1 диоптрию. Это значит, что в водной среде глазу не хватает преломляющей способности, для того чтобы сфокусировать световые лучи на сетчатку, поэтому изображение получается расплывчатым.
Уильям Мейдил (Саттон-Коулдфилд, Великобритания)