355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Васильев » Путешествия в космос » Текст книги (страница 14)
Путешествия в космос
  • Текст добавлен: 16 октября 2016, 22:00

Текст книги "Путешествия в космос"


Автор книги: Михаил Васильев



сообщить о нарушении

Текущая страница: 14 (всего у книги 16 страниц)

Первое жилище на Луне – клочок уюта на поверхности этого негостеприимного мира. Внутренняя обстановка его должна удовлетворить основным требованиям: быть легкой, компактной и удобной.

КОГДА ЭТО ПРОИЗОЙДЕТ?

Однако «открытие Луны» – первое посещение ее человеком – произойдет еще не сегодня и не завтра. Это только в научно-фантастических романах гениальный изобретатель строит космический корабль и отправляется на нем сразу на Луну или на Марс, а то и сразу на несколько планет проездом. В действительности проблема космических путешествий столь грандиозна, что решение ее не под силу не только одному, а целой дюжине гениев. Лишь напряженный труд многих и многих ученых разных специальностей позволит решить эту задачу. Кроме согласованных дружных усилий, труда десятков тысяч людей, решение этой проблемы потребует и времени. Ведь оно может быть осуществлено только последовательно, этап за этапом.

Доктор физико-математических наук проф. В. В. Добронравов, проанализировав темпы развития современной науки и техники, учитывая актуальность и важность проблемы космических сообщений, наметил такие предположительные сроки решения отдельных этапов великой задачи – космического полета. По мнению проф. В. В. Добронравова, решение проблемы космического полета можно разделить на три этапа.

Первый этап – создание автоматических ракет, способных подниматься на высоту в 300–400 километров. Эта задача в настоящее время в основном решена. Первый этап завершается созданием автоматического искусственного спутника Земли, подобного тому, конструкцию которого, предложенную проф. Зингером, мы уже описывали.

Проф. Добронравов считает самой крайней датой создания такого спутника 1965 год.

Мы уже знаем, что создание автоматического искусственного спутника Земли, который будет двигаться по круговой орбите в верхних слоях атмосферы на высоте в 320–350 километров, является задачей сложной, но разрешимой, с точки зрения нашей современной техники. И сообщение о практическом осуществлении этой задачи может появиться в любой день – завтра, через неделю, через полгода. В ряде стран уже запланированы на 1957 год первые запуски искусственных спутников.

Следующий этап – проникновение человека в космос. Сначала – первые полеты в специально оборудованных ракетах, затем первый «обитаемый» искусственный спутник, а затем и создание космического острова – передового бастиона человечества на пути к звездам. Этот этап, видимо, завершится полетом ракеты с экипажем вокруг Луны. 1980 год – такова ориентировочная дата этого полета.

Наконец, третий этап – посещение Луны и ближайших планет нашей солнечной системы с высадкой на их поверхности. Ориентировочная дата первого такого полета – на Луну – с возвращением на Землю – около 2000 года. Сроки, предположительно намеченные проф. В. В. Добронравовым, надо считать скорее пессимистическими, чем обнадеживающими. Несмотря на гигантскую сложность всей проблемы в целом, сроки на решение отдельных ее этапов, по нашему мнению, следует сократить минимум вдвое по сравнению с названными В. В. Добронравовым.

Уста премудрых нам гласят:

Там разных множество светов,

Несчетны солнца там горят,

Народы там и круг веков.

М. В. Ломоносов

ГЛАВА ВОСЬМАЯ 
В ДАЛЬНИЕ РЕЙСЫ

К ЖИВЫМ – ЖИВЫЕ

Если не будет изобретен и применен атомный реактивный двигатель, полеты на Луну, Марс, Венеру с высадкой на их поверхностях будут чрезвычайно дорогими и сложными предприятиями. Они будут возможны только с искусственного спутника – космического острова. Для осуществления их придется в сложных условиях космического пространства собирать чрезвычайно громоздкие, тяжелые космические корабли, может быть, состоящие из нескольких ступеней. Однако это под силу современной технике. Мало того, уже имеются хорошо разработанные проекты экспедиций для посещения ближайших планет солнечной системы.

Один из таких проектов предполагает, что сборка космической армады осуществляется на искусственном спутнике. Трехступенчатые корабли-паромы – по расчету их потребуется несколько десятков штук – в течение нескольких месяцев доставляют на круговую орбиту требующееся количество горючего, оборудования, приборов, части кораблей, которые отправятся в дальний полет. Целая армада – десять гигантских космических кораблей, начальный вес каждого из которых равен 3720 тоннам, – будет снаряжена для полета к концу подготовительного периода.

Это будут гигантские корабли, совершенно непохожие внешне на те ракеты, которые доставили их части и все оборудование с Земли на искусственный спутник. Они будут составлены из отдельных баков с горючим, часть из которых, видимо, будет шарообразной. Эти баки – космические цистерны – будут представлять собой по существу каучуковые или резиновые мешки. Крепость их стенок может быть не очень большой, так как им надо будет выдержать только инерционные ускорения, не очень большие по величине.

В соответствующий момент включатся двигатели кораблей, армада покинет круговую траекторию и ляжет на гиперболическую, которая затем перейдет в эллиптическую, касательную к орбите Марса. Несколько более часа продлится работа моторов каждого корабля, так как развиваемая ими тяга не велика – всего около 200 тонн. Но за этот час затрачивается большая часть всего горючего, которое запасено на кораблях. Вес каждого корабля в тот момент, когда двигатели будут выключены, составит всего 906 тонн.

Двести шестьдесят дней продлится полет в космическом пространстве, и к концу этого срока армада приблизится к красноватому шару Марса. Снова включаются двигатели кораблей, и армада ложится на круговую орбиту вокруг Марса. Еще меньше становится вес кораблей. Каждый из них весит уже всего 410 тонн.

Теперь необходимо совершить высадку на поверхность планеты. Для этого используются три посадочные лодки. Они снабжены широкими крыльями для планирования и торможения в разреженной атмосфере Марса. Общий полезный груз, который опустят на поверхность планеты эти лодки, составит около 150 тонн. Этого достаточно, чтобы привезти сюда средства передвижения по поверхности планеты, надувные домики, исследовательскую аппаратуру – все необходимое для большой комплексной экспедиции ученых в составе 50 человек на срок свыше 400 дней.

Сначала в районе полюса планеты осуществляет посадку только одна посадочная лодка. По всей вероятности, будет целесообразно посадку ее произвести на лыжи. Она останется навсегда на Марсе, поэтому вместо горючего, необходимого для взлета, она будет загружена оборудованием, автомобилями-вездеходами и т. д. Около 125 тонн полезного груза привезет она на Марс. Ее экипаж сразу же начнет разведку поверхности Марса, подыскивая в экваториальной области удобные площадки для приземления двух других посадочных лодок, имеющих в своих баллонах горючее для обратного взлета на круговую орбиту и несущих по 12 тонн полезного груза. Посадка этих лодок будет осуществлена на колесные шасси.

Марс меньше Земли, сила тяжести на нем меньше, и окружная скорость, при которой тело становится спутником этой планеты, лишь немногим больше 3,5 километра в секунду. Поэтому для взлета с поверхности Марса на его круговую орбиту достаточно одной ступени ракетного корабля.

Оставив на Марсе лишнее оборудование, отцепив крылья и шасси, которые были нужны при посадке, но уже не понадобятся при взлете, уложив в кабины собранные коллекции, записи, образцы, весь состав экспедиции соберется в пассажирских каютах двух посадочных лодок, опустившихся у экватора. Снова загремят реактивные моторы, развивая у каждой лодки тягу в 200 тонн.

Свыше 110 тонн топлива потребуется сжечь каждой лодке для того, чтобы лечь на круговую траекторию, да еще по нескольку тонн для того, чтобы согласовать свое движение с оставленными на круговой траектории семью космическими кораблями. Три корабля, доставившие сюда посадочные лодки, остаются на орбите искусственного спутника Марса.

Достигнув орбиты этих кораблей, весь экипаж экспедиции равномерно разместится в их каютах. Вес каждого из них составляет около 408 тонн, включая 222 тонны горючего, необходимого для того, чтобы лечь на обратный курс, достигнуть Земли и стать ее искусственным спутником.

Этот проект организации космической экспедиции на Марс выдвинул В. Браун. Проект довольно тщательно разработан с инженерной точки зрения; он осуществим средствами современной техники. Основным препятствием для его осуществления, по мнению Брауна, является высокая стоимость организации этой экспедиции. Причем основные затраты связаны с необходимостью сосредоточить на орбите искусственного спутника Земли исходный груз экспедиции – те 37 200 тонн, которые составляют вес десяти ее космических кораблей вместе с горючим.

Ведь для того чтобы забросить туда этот груз, надо совершить около тысячи рейсов с Земли трехступенчатых ракет, причем на каждый рейс необходимо затратить 5580 тонн горючего. Общие же затраты его достигнут 5 млн. 580 тыс. тонн. Стоимость этого горючего и составляет основную часть всех затрат на снаряжение экспедиции. Затраты на всю остальную часть полета – с орбиты искусственного спутника на Марс и обратно – составят едва ли больше процента от стоимости этого горючего.

Вот какой громоздкой, неудобной получается космическая армада для полета на Марс с использованием жидкостного двигателя. Примерно такой же будет и экспедиция на Венеру или на Меркурий.

Положение резко изменится, когда будут созданы реактивные двигатели, работающие на энергии расщепленного ядра атома. В отсеках для горючего одной ракеты можно будет разместить столько расщепляющихся материалов, что их хватит и на взлет с Земли, и на посадку на соседней планете, и на возвращение на Землю. Да еще в пути не придется волноваться о том, что горючего не хватит…

Армада ли многоступенчатых жидкостных космических кораблей, стремительная ли космическая ракета с двигателями, работающими на атомном горючем, – это сейчас сказать трудно, но экспедиция с Земли сравнительно скоро отправится на соседние нам планеты. И видимо, первой, которую посетят наши астронавты, будет Марс.

Таинственный Марс. Таинственный соседний с нами мир в солнечной системе, так похожий на нашу Землю. Яркокрасная, как сверкающий рубин, звезда, о которой еще в глубокой древности начали складывать легенды.

Марс значительно меньше нашей Земли – его диаметр составляет всего 6780 километров, а масса всего 0,1 массы Земли. Он движется по орбите со скоростью 24,1 км/сек на среднем расстоянии от Солнца, в 1,5 раза большем земного. Этот путь он проходит за 686,98 земных суток. Он вращается вокруг своей оси за 24 часа 37 минут 23,6 секунды. Эта ось вращения наклонена к плоскости орбиты почти так же, как земная ось, и поэтому на Марсе происходит смена времен года почти так же, как на Земле. За это сходство Марс иногда называют двойником Земли.

Марс окружен атмосферой, значительно более разреженной, чем Земля, и отличающейся от нее по химическому составу и строению. Во всяком случае в ней во много раз меньше и кислорода и воды, чем в земной. В этой атмосфере плавают облака, из которых выпадают твердые осадки – иней; в ней клубятся вечерние и утренние туманы.

Полюса Марса покрыты белыми шапками, величина которых изменяется в зависимости от времени года. Зимой белые шапки увеличиваются, летом уменьшаются. Наверное, так же выглядит из космического пространства изменение величины снежных покровов на Земле. Весной граница снегов отступает далеко к полюсу, осенью и зимой приближается к экватору. Путем специальных исследований удалось установить, что белые шапки Марса действительно образованы ледяным покровом.

Но на этом и кончается сходство между планетами-близнецами. Поверхность Марса нигде не покрыта сколь-либо значительным водным пространством. От полюса до полюса это ровная, гладкая поверхность суши. На ней нет сколько-нибудь значительных горных цепей, скал, холмов. Весь рельеф Марса состоит разве только из дюн, барханов, ветровой песчаной ряби, мелких трещин.

Климат на Марсе суровый, значительно более суровый, чем на Земле. Зимой поверхность Марса даже днем имеет очень низкую температуру: от минус 50 до минус 80°. В экваториальной зоне в полдень температура поднимается до плюс 25°, однако ночью она также падает значительно ниже нуля. В полярных областях в течение непрерывного летнего дня температура долгое время держится в пределах от 0 до плюс 15°.

Совершенно гладкая красноватая поверхность Марса, однако, имеет целый ряд резко различимых темных пятен. Эти пятна по привычке называют «морями», хотя, по всей вероятности, это просто более увлажненные участки почвы Марса, частично покрытые растительностью.

Окраска марсианских «морей» изменяется в зависимости от времен года. Те моря, которые находятся в экваториальной части планеты, большую часть года имеют голубую, серо-голубую и серо-зеленую окраску. Между весной и осенью некоторые из них приобретают зеленый оттенок.

«Моря» и «заливы», находящиеся в умеренном поясе планеты, имеют голубую и зеленую окраску только в летний период. Причем, чем ближе располагается темное пятно к полюсу, тем короче у него период зеленого и голубого цвета. Осенью эти пятна приобретают коричневый оттенок.

Все это удивительно похоже на изменения цвета наших земных растительных покровов. Но как все-таки доказать, что на Марсе есть жизнь, хотя бы растительная? Как окончательно убедиться в том, что не везде посланцы Земли во время своих космических полетов будут встречать только мертвый хаос скал, застывших гранитных глыб, ядовитые метановые вихри?

Ответил на эти вопросы советский ученый член-корреспондент Академии наук СССР Гавриил Адрианович Тихов.

Тихов решил твердо доказать, что темные, изменяющие свой цвет пятна на Марсе – области растительности. Для этого он обратился к исследованию свойств земной растительности.

Фотографам хорошо известно, что, если в яркий солнечный день снять сосну или ель сквозь светофильтр, пропускающий только невидимые глазом инфракрасные лучи, дерево на снимке получится белым, словно усыпанным снегом. Большинство земных растений отражает инфракрасные лучи целиком, почему и получаются такие снимки.

Тихов изучил фотографии Марса, сделанные в инфракрасных лучах. Если «моря» и «каналы» Марса на них получаются белыми, рассуждал Тихов, значит, они представляют собой области, покрытые растительностью, подобной земной.

Но на полученных снимках ему не удалось рассмотреть белых пятен – марсианские «моря» не отражали инфракрасных лучей.

Тихов снова вернулся к исследованию свойств земных растений. Оказалось, что хорошо отражают инфракрасные лучи только южные растения, живущие в теплом климате. Они получают от Солнца столько тепла, что им уже не нужно тепло инфракрасных лучей, и они отражают их.

Иначе ведут себя северные растения: ель, можжевельник, морошка или мхи. Им, жителям холодных областей земного шара, не слишком избалованным щедротами солнечных лучей, приходилось для поддержания своей жизнедеятельности поглощать и видимые лучи и инфракрасные. И на снимках в инфракрасных лучах они не получались белыми, как не получались белыми и марсианские «моря».

Мы уже говорили, что Марс находится в полтора раза дальше от Солнца, чем Земля, почему климат там значительно более холодный и суровый, чем на Земле, похожий, может быть, только на климат наших полярных областей. Растения Марса должны поэтому походить на растения северных широт нашей планеты.

Так казавшийся сначала неудавшимся опыт фотографирования Марса в инфракрасных лучах стал убедительным доказательством существования там растительной жизни. «Вероятно там (на Марсе), – пишет Г. А. Тихов, – живут вечнозеленые растения типа наших мхов, плаунов и жестколистных приземистых растений вроде брусники, клюквы, морошки. Могут жить низкорослые деревца, похожие на земные карликовые березки и ивы».

В настоящее время исследования о существовании растительности на других планетах и в первую очередь на Марсе вылились в целую науку – астроботанику. В составе Академии наук Казахской ССР создан и плодотворно работает под руководством Г. А. Тихова специальный сектор астроботаники. Ученые, работающие в этой области науки, ищут и находят новые факты, подтверждающие и уточняющие наши знания о жизни на других планетах. И сегодня мы можем быть твердо убеждены, что Земля – отнюдь не единственная носительница жизни в нашей солнечной системе, что, очутившись на Марсе, космические путешественники найдут там жизнь хотя бы растительную.

Настанет время, и на Земле в специальных теплицах, в которых будут искусственно созданы условия, подобные марсианским, будут высажены семена привезенных оттуда растений. Может быть, среди них найдутся и такие, которые приспособятся к климатическим условиям некоторых областей нашей Земли. Среди них могут оказаться и чрезвычайно полезные для человека, обладающие удивительными свойствами…

Космические путешественники, видимо, привезут и на Марс семена земных растений. Трудно сказать, каковы возможности в этой области и какие результаты может принести обмен флорой между планетами…

А есть ли на Марсе фауна – животные, птицы, насекомые, разумные существа? На этот вопрос в настоящее время ответить трудно, почти невозможно. Но, по всей вероятности, развитие органического мира там не должно остановиться на создании растительных форм жизни, оно неизбежно должно создать и животные организмы.

В связи с этим необходимо упомянуть еще об одном интереснейшем явлении, наблюдаемом на Марсе, его «каналах».

Впервые «каналы» на Марсе – геометрически правильные полоски тянущиеся от одного «моря» до другого, – обнаружил итальянский ученый Анджело Секки почти 100 лет назад – в 1859 году. Он же дал им это злополучное название, ставшее позже причиной стольких недоумений, но зато усилившее интерес к Марсу со стороны не только астрономов.

Существование каналов подтвердил другой итальянский ученый – Скиапарелли. Его поразила геометрическая правильность этих образований на поверхности Марса, пересекающих в разных направлениях его рыжевато-красные пустыни. Скиапарелли обнаружил и другие закономерности в их строении: они никогда не обрывались на полпути, выходили из «морей» и, «озер» и в «моря» и «озера» впадали. Если каналы пересекались или встречались, на этом месте можно было заметить небольшое пятнышко.

В 1893 году Скиапарелли напечатал статью, в которой высказал предположение, что «каналы» Марса построены разумными существами, что с помощью этих каналов марсиане распределяют по поверхности своей планеты скудные запасы воды, образующиеся при таянии снегов и льдов полярных шапок и что, конечно, не сами каналы видны в телескопы, а широкие полосы полей и садов, выращенных трудолюбивым населением планеты вдоль этих каналов…

В настоящее время наиболее вероятно предположение, что каналы действительно представляют собой узкие полосы растительности. Изменение цвета этой растительности идентично с изменением цвета растительности марсианских «морей». Мало того, изменение цвета каналов происходит не сразу, а начиная от полярных шапок весной – как будто тающая вода течет по их руслам со скоростью 3,4 километра в час, и по мере ее продвижения пробиваются из почвы ростки растений… Но спор о происхождении «каналов» не снят с повестки дня до сих пор.

В сентябре 1956 года произойдет «великое противостояние» Марса. Две планеты сблизятся на предельно близкое расстояние – между ними будет «всего» 56 млн. километров. Астрономические трубы различных величин и систем нацелятся на красную планету. Может быть, раскроют, наконец, тайну марсианских «каналов».

А если астрономических методов окажется недостаточно, окончательно спор о каналах разрешат астронавты. С нашей точки зрения, гипотезы о том, что «каналы» – это какие-то своеобразные разломы в почве Марса, еще менее убедительны, чем предположение о создании разумными обитателями этой планеты грандиознейшей оросительной системы. И главное – почему это невозможно? Почему только на Земле материя смогла развиться до своей высшей формы, когда она начинает постигать самое себя? Почему Земле должна быть отдана привилегия быть единственной носительницей разума в нашей планетной системе?

На это обычно отвечают: а почему марсиане, сумевшие построить столь изумительную ирригационную систему, не прилетают к нам на Землю?

А почему мы до сих пор не прилетаем на Марс? Мы, создающие на поверхности нашей планеты целые искусственные моря? Наши сооружения не уступают по грандиозности марсианским, особенно если мы учтем сжатые сроки наших строек и пониженную силу тяжести на Марсе, составляющую там всего 0,38 земной. А вспомним грандиознейшие и совершеннейшие оросительные системы, создававшиеся древними народами тысячи лет назад, – в Египте, Ассирии, Китае, Хорезме. Ведь эти оросительные системы создавались еще тогда, когда люди и не мечтали о межпланетных перелетах. И может быть, как раз сейчас развитие марсианской техники стоит накануне космического полета для открытия Земли, подобно тому как наша техника рассчитывает свои силы для полета на Марс…

Во всяком случае астронавтам, которые первыми прилетят на эту бесспорно несущую на себе жизнь планету, надо будет предучесть возможность встречи с разумными ее обитателями, стоящими не ниже их на лестнице знания, культуры, развития…

Загадочный сосед Земли – Марс. По всей вероятности, он будет первым после Луны небесным телом, на которое ступит нога астронавта с Земли.


    Ваша оценка произведения:

Популярные книги за неделю