355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Размахнин » Радиолокация без формул, но с картинками » Текст книги (страница 6)
Радиолокация без формул, но с картинками
  • Текст добавлен: 24 марта 2017, 13:30

Текст книги "Радиолокация без формул, но с картинками"


Автор книги: Михаил Размахнин



сообщить о нарушении

Текущая страница: 6 (всего у книги 7 страниц)

Отсутствие видимой симметрии в распределении фаз импульсов необходимо для лучшего качества сжатия. Чтобы осуществить укорочение такого сигнала, нужно задержать отрезки сигнала, пришедшие первыми, затем изменить фазы всех отрезков так, чтобы они совпали, и сложить эти отрезки. Задержку ранее пришедших отрезков, как и в первом случае, выполняет линия задержки, изменение фазы – фазовращатели, а сложение сфазированных отрезков – схема сложения (сумматор). Но если линия задержки для ЧМ сигналов должна иметь всего один вход и один выход, то линия задержки, применяемая для обработки сигналов с изменяющейся фазой (фазоманипулированных, сокращенно ФМ сигналов), имеет много выходов. Длина линии задержки должна быть такой, чтобы сигнал полностью размещался в ней. Для каждого отрезка сделан собственный выход. Отрезок сигнала, поступивший первым, медленно проходит всю линию задержки. Отрезок, расположенный в середине сигнала, пройдет только половину линии. А последний отрезок совсем не задерживается. Каждый из них дойдет до своего выхода, они одновременно выйдут из линии задержки и поступят на схему сложения. Если фаза отрезка нас устраивает (скажем 0 градусов), то на этом выходе фазовращатель не нужен. Если фаза противоположная, то ставим фазовращатель, который изменит ее до нужного значения. Вот мы и получили: все отрезки находятся в фазе и появляются одновременно. Значит, на выходе схемы сложения сигнал укоротится, а амплитуда его возрастет. Эффект тот же, что и для ЧМ сигнала.

Если отрезки попытаются выйти через другие выходы, то несимметрично расположенные фазовращатели будут поворачивать фазы отрезков как попало и на схему сложения поступит примерно одинаковое число отрезков с противоположными фазами, а сумма двух отрезков с противоположными фазами практически равна нулю. Поэтому и суммарный сигнал будет невелик. Именно для этого и нужна кажущаяся хаотичность взаимного расположения отрезков с разными фазами. Лишь в том случае, когда отрезки сигнала попадают в предназначенные для них выходы, мы получаем мощный сжатый сигнал. Все сигналы, у которых закон расположения отрезков с разными фазами не совпадает с выбранным нами законом, не будут сжаты в линии задержки, и выходной сигнал будет невелик. Согласование фильтра, построенного на основе такой линии задержки, с ФМ сигналом достигается расположением фазовращателей, в точном соответствии с размещением противофазных отрезков в сигнале.

Вот в общих чертах объяснение того, как сжимают длинный сигнал в согласованных фильтрах радиолокационных приемников. Этим мы достигаем сразу несколько целей. Во-первых, сигнал стал заметнее среди шумов, во-вторых, он значительно укоротился, а это, как мы уже знаем, повышает разрешающую способность радиолокационной станции.

Теоретически степень улучшения характеристик станции пропорциональна величине базы сигнала. Но чем больше база сигнала, тем сложнее его внутренняя структура. Например, фазоманипулированный сигнал с базой 1000 должен состоять из 1000 отдельных отрезков, фазы которых распределены по заданному закону. Но трудно создать фильтр, согласованный с таким сигналом. В настоящее время самый распространенный метод построения таких фильтров основан на использовании линий задержки с отводами, на каждом из которых должен стоять фазовращатель. Значит, нужно сделать 1000 отводов с линией задержки, разместить на них примерно 500 фазовращателей (около половины отрезков будет иметь фазу, которую не нужно изменять) и разработать довольно сложную схему сложения 1000 отдельных отрезков сигналов.

Но и это еще не все. Сигнал по мере прохождения линии задержки в значительной мере ослабляется – затухает. Это связано с большим поглощением колебаний в материалах, используемых для задержки сигнала. Так что изображенная на рисунке (стр. 94) ситуация не совсем точна. Если бы удалось нарисовать длинную линию задержки, у которой было бы 1000 выходов, то высота фигурок, изображающих сигналы, была бы разной Для правильной обработки всего длинного суммарного сигнала необходимо, чтобы все отрезки (сигналы с отдельных отводов) имели одинаковую амплитуду. Следовательно, на многих отводах, особенно в конце линии задержки, нам придется ставить усилители, которые будут выравнивать амплитуды сигналов. Значит, фильтр станет еще сложнее. Для предохранения этого сложного фильтра от колебаний температуры, сотрясений, воздействия соседних блоков приемника нужно предусмотреть еще целый набор устройств, так что задача создания согласованного фильтра для сложного сигнала с большой базой действительно очень трудна. Естественно, что теоретикам задали вопрос, нельзя ли как-то обойти эти трудности и сжимать сигнал, не используя сложные в изготовлении согласованные фильтры.

Можно сделать иначе

Сжатия сигнала можно добиться и с помощью более простого устройства – коррелятора. У коррелятора два входа. На один поступает принятый сигнал, а на второй – подают так называемый опорный сигнал. Для этого в момент излучения передатчиком зондирующего сигнала небольшую часть этого сигнала отводят с помощью линии задержки. Коррелятор как бы сравнивает поступающие сигналы, и если они одинаковы, то на выходе формируется узкий и мощный сигнал. Этот пик в точности совпадает с пиком на выходе согласованного фильтра. Если сигналы на входе коррелятора будут разными, то на выходе получается незначительный сигнал, почти не заметный на фоне шума.

Правда, мы пока что предполагали, что нам известно, когда нужно подать опорный сигнал на коррелятор. На самом деле, конечно же, так не бывает. Чтобы узнать момент подачи опорного сигнала на коррелятор, нужно знать дальность до отражающего объекта, а это именно и является конечной целью работы радиолокатора. Такой порочный круг нужно разорвать. Делается это так.

Будем с очень небольшими перерывами подавать на коррелятор опорный сигнал. Если в какой-то момент на антенну сигнал не поступает, то на коррелятор одновременно с опорным сигналом придет лишь шум, который всегда принимается антенной. И только когда опорный сигнал поступает на коррелятор одновременно с принятым отраженным сигналом, на выходе коррелятора появится мощный сжатый импульс. В этот момент мы и заметим на экране индикатора отметку от цели. Но для непрерывной подачи опорного сигнала нужны иногда довольно сложные схемы задержки и устройства циркуляции. Часто сложность таких схем становится сравнимой со сложностью согласованного фильтра, и это сводит на нет преимущества простой структуры коррелятора (обычный перемножитель и интегратор). У радиолокаторов, использующих для сжатия сигналов коррелятор, есть довольно важное преимущество. В них можно менять форму используемых сигналов. Для этого нужно изменить только генератор зондирующих сигналов в передатчике. Работу коррелятора такая замена не нарушит, так как опорный сигнал отводится от генератора и он изменится автоматически при смене излучаемого сигнала. В приемнике с согласованным фильтром это сделать нельзя, так как быстро перестроить сложную структуру устройства обработки практически невозможно.

Почему это свойство является преимуществом? Представьте себе действующий в боевой обстановке радиолокатор, который использует только один вид сигнала. Системы радиотехнической разведки противника, оснащенные чувствительными приемниками, непрерывно ведут наблюдение на всевозможных частотах за появляющимися в эфире РЛС. Если им удается принять большое число сигналов радиолокационной станции, то тогда можно установить такие важнейшие характеристики РЛС, как частота сигналов, их длительность и даже форма отдельных импульсов. Зная эти параметры, противник может с помощью мощных передатчиков излучить сигнал, не отличающийся от зондирующих. При этом на индикаторе появится одна или несколько ложных отметок от целей, которых просто не существует. Противник может использовать и другие методы для срыва работы радиолокационной станции, например, излучать мощные шумовые сигналы в диапазоне частот РЛС. В этом случае наблюдение и реальных и ложных целей становится попросту невозможным. Вот в таких случаях и проявляются все преимущества станций с корреляционной обработкой. Она может изменить форму сигналов и тем самым избежать вредного воздействия помех противника.

У коррелятора по сравнению с согласованными фильтрами значительно шире круг используемых сигналов. Кроме уже знакомых нам ЧМ и ФМ сигналов в приемнике с корреляционной обработкой можно применять, например, сигналы в виде отрезков случайных шумовых процессов. Создать согласованный фильтр для этого сигнала невозможно, а использовать его очень соблазнительно. Обнаружение такого радиолокатора – дело весьма трудное, так как его сигналы легко спутать с обычными шумами. Но даже если сигнал обнаружен, измерить его параметры почти невозможно.

В конечном итоге получается, что и у корреляторов, и у согласованных фильтров есть и свои достоинства, и свои недостатки. Решать, какую из схем радиолокационного приемника надо использовать, приходится в каждом конкретном случае отдельно, тщательно взвесив цели, поставленные перед будущей станцией, и возможности производства. В любом случае – используем ли мы коррелятор или согласованный фильтр – физический смысл обработки сигнала один и тот же. Мы просто сжимаем приходящий отраженный сигнал, чтобы повысить надежность его обнаружения и улучшить разрешающую способность станции.

Но у всякого реального полезного процесса есть и неприятные теневые стороны. И в нашем случае приходится учитывать побочные эффекты сжатия импульсных сигналов. Вот к ним-то мы и переходим.

О тех, кто рядом

Ну что же, казалось бы, все в порядке. Над уровнем шума сигнал мы подняли, сделали его коротким, так что местоположение цели теперь можно определить достаточно точно. В пору подписывать проект станции у начальства и передавать его разработчикам. Они превратят проект в рабочие чертежи и схемы, строители возведут станцию, монтажники соберут оборудование. Станцию опробуют и сдадут эксплуатационникам, которым предстоит обнаруживать и сопровождать цели. И все-таки остается еще масса нерешенных проблем, и одна из самых важных – проблема боковых лепестков.

Дело в том, что при сжатии в согласованном фильтре и в корреляторе мы никогда не получаем одиночного сжатого сигнала. Где бы он ни появился, его всегда спереди и сзади сопровождают младшие братья – боковые лепестки. Иногда их еще называют остатками сжатого сигнала Хотя они по величине меньше основного, но учитывать их влияние необходимо. Никакой пользы они не приносят, а вредны по двум причинам.

Во-первых, боковые лепестки увеличивают уровень шума вблизи сжатого сигнала. Если один из них случайно совпадает с шумовым выбросом, то их сумма может стать большой и такой лжесигнал можем принять за полезный – произойдет ложная тревога.

Во-вторых, даже если шум настолько слаб, что его влиянием можно пренебречь, то и тогда боковые лепестки могут исказить истинную картину расположения целей.

Уровень боковых лепестков пропорционален уровню полезного сжатого сигнала. Увеличим полезный сигнал втрое – и боковой лепесток возрастет втрое. При уменьшении сигнала происходит то же самое. Предположим, что самый большой боковой лепесток в десять раз слабее сжатого сигнала и на антенну попадает два полезных сигнала от двух разных целей. Один из них, скажем второй, слабее другого тоже в десять раз. Тогда наибольший боковой лепесток первого сигнала и второй основной сжатый сигнал имеют одну и ту же величину. Попробуйте разобраться, кто есть кто! Вряд ли Вам это удастся. А если второй полезный сигнал еще слабее или шум не очень мал, то на экране появится такая неразборчивая картина, что второй полезный сигнал мы наверняка пропустим. Если мы знаем, что вторая цель наверняка должна быть, и поэтому пристально ищем отметку от нее, то тогда мы можем принять боковой лепесток первого сигнала за отметку от второй цели. Тем более, что боковой лепесток так же стабилен, как и полезный сигнал. Опять ошибка, так как вторая цель будет обнаружена не там, где она находится на самом деле.

Вот почему вредны боковые лепестки. Совершенно устранить их невозможно. Правда, придуманы методы частичного уменьшения величины боковых лепестков, но они весьма сложны и не всегда надежны. Приходится учитывать и то, что, пытаясь уменьшить боковые лепестки, мы можем исказить или уменьшить и основной, сжатый, полезный сигнал. Поэтому специалисты вынуждены мириться с присутствием этих вредных сигналов и следить лишь за тем, чтобы они не становились слишком большими.

Для каждого радиолокационного сигнала картина расположения боковых лепестков различна. Обычно боковые лепестки занимают интервал, равный удвоенной длительности несжатого сигнала. Сам основной сжатый сигнал расположен в центре этого интервала. У одних сигналов боковые лепестки равномерно покрывают весь интервал и величина их примерно одинакова. У других боковые лепестки имеют разную величину, причем наибольшие лепестки могут располагаться и вблизи сжатого сигнала, и по краям интервала. Существует несколько приближенный закон сохранения «объема» лепестков. Если за счет каких-то мер мы добились уменьшения лепестков на одном участке интервала, то обязательно должны возрасти лепестки на других участках. Подбирая сигнал и несколько видоизменяя его, мы можем получить практически любое нужное нам расположение боковых лепестков. Причем иногда на каком-либо небольшом участке интервала удается совершенно избавиться от них. Этим обстоятельством пытаются воспользоваться специалисты.

Пусть, например, известно, в какой момент следует ожидать появление отметки от второй, меньшей цели. Тогда можно выбрать сигнал, у которого именно в этот момент бокового лепестка нет или он очень мал. Уж теперь-то мы сможем заметить и маленькую цель. А то, что боковые лепестки, появляющиеся в другие моменты времени, возрастут, это уже не так важно. Если известно, что цели идут рядом, то мы постараемся очистить от боковых лепестков участок около сжатого сигнала. Ведь освободил же художник место в трамвае для девушки. При этом мы сознательно идем на то, что слабые отметки от целей, расположенных дальше, почти наверняка не будут обнаружены. Нужно заметить маленькую цель в другом участке интервала. Уберем боковые лепестки и из этого участка. При этом мы предполагаем, что нам точно известно, где может появиться цель (на практике так бывает очень редко). Если же у нас нет никаких сведений о второй цели, то приходится выбирать сигнал, у которого боковые лепестки средней величины равномерно заполняют весь интервал. Без априорных сведений о второй цели ничего лучше не придумаешь.

Вот и получается, что для каждой конкретной ситуации нужно было бы иметь свой сигнал, лучше всего подходящий для этого частного случая. Теоретикам не удалось найти сигнал, подходящий ко всем случаям. Да это, видимо, и невозможно. Пессимизм автора в этом случае разделяет и видный американский специалист Вудворд, который после многолетних исследований с грустью констатировал: «Основной вопрос, какой сигнал лучше всего использовать в радиолокации, остается по существу без ответа».

Как найти цель, послать сигнал и получить ответ

Раньше при оценке характеристик радиолокационной станции мы уже немного рассказали о том, как станция ищет цель в секторе обзора. Но до сих пор мы говорили лишь о приемнике радиолокационной станции. Пришла пора поговорить и о передатчике. Как обычно, начнем с примера.

Представьте себе, что Вас попросили найти какой-нибудь предмет в совершенно темной комнате. В зависимости от обстоятельств поиска может возникнуть несколько различных ситуаций. Разберем их по порядку.

Ситуация № 0. Цель поисков – маленький предмет, например карандаш. Света в комнате нет, карманный фонарик Вы не захватили. Ищете вслепую, не зная, где лежит карандаш. Можно смело утверждать: Вы его не найдете.

Ситуация № 1. Цель поисков – часы со светящимся циферблатом или просто наша старая помощница – кошка. Света нет, да он и не нужен. Вам лучше всего войти в комнату и внимательно осмотреться. Цель сама подскажет, где она находится, и наверняка будет обнаружена.

Ситуация № 2. Цель поисков – по-прежнему кошка. Зато теперь у Вас есть карманный фонарик. Включайте его и осмотрите поочередно все места, где может она находиться. Уверен, что Вам удастся отыскать ее, даже если в данный момент кошка находится под кроватью или в шкафу (в детективных фильмах все шпионы действуют именно в таких ситуациях).

Ситуация № 3. Самая простая. Вы можете включить верхний свет и обнаружить любой предмет, который находится в комнате. Правда, Вам, может быть, придется несколько раз повернуться и даже нагнуться или встать на цыпочки, чтобы заглянуть во все углы (но это уже не столь важно).

Изучив эти ситуации, читатель без труда разберется и в методах поиска целей радиолокационной станцией. Достаточно для каждой из ситуаций привести радиолокационную аналогию.

Ситуация № 0. С радиолокационной точки зрения интереса не представляет. Станция просто-напросто не включена. Конечно же, цель не будет обнаружена.

Ситуация № 1. В этом случае сама цель должна излучать сигналы, согласованные с приемником станции. Передатчик радиолокатора выключен. Поэтому «молчащие» цели или цели, излучающие сигналы, не согласованные с приемником, не будут обнаружены. Просматривая сектор обзора, мы сможем обнаружить «светящиеся» цели и измерить их угловые координаты. Вот только с определением дальности будет трудновато, так как мы не знаем момента излучения принятого сигнала. Это так называемая пассивная радиолокация. У нее есть то преимущество, что наблюдающая за целью станция себя не обнаруживает, так как не излучает собственных сигналов, а лишь улавливает своей антенной излучение цели. Недостатки очевидны. Трудно надеяться на то, что все цели будут излучать сигналы, да еще и согласовывать их с приемным устройством станции.

Ситуация № 2. Передатчик радиолокационной станции по определенному закону поочередно посылает свои собственные (зондирующие) сигналы в каждую точку сектора обзора. Приемная антенна поворачивается или настраивается (при электронном управлении) таким образом, чтобы улавливать отраженные сигналы из узкого «освещенного» участка сектора. При этом в станции можно использовать всего одну антенну. Сначала ее подключают к передатчику и посылают зондирующий сигнал. Затем антенну подключают к приемнику и ожидают отраженный сигнал в течение времени, за которое может прийти сигнал от цели, находящейся на максимально возможной дальности. Затем антенну перемещают и цикл передача – прием повторяется. Здесь мы встречаемся с активной радиолокацией. Обнаружение цели производится независимо от того, хочет она этого или нет. Наиболее трудной операцией в этом случае является переключение антенны. Техническая реализация переключателя часто представляет собой очень сложную задачу.

Ситуация № 3. В станции используют две различные антенны. Небольшая передающая антенна с широкой диаграммой направленности освещает сразу значительную часть сектора обзора, а иногда и целиком весь сектор. Огромная приемная антенна с узкой диаграммой направленности (которая нужна для точного определения угловых координат) осматривает сектор обзора, обнаруживая цели в любой его точке. Закон обзора сектора для приемной антенны в этом случае никак не связан с режимом работы передатчика. Приемная антенна обрела полную самостоятельность. Закон перемещения диаграммы направленности приемной антенны по сектору обзора может быть различным. Можно просматривать сектор по строкам, как при чтении страницы книги, можно по спирали, начиная с границ сектора обзора и приближаясь к его центру. Если какой-либо участок сектора обзора интересует нас в большей степени, мы задержим в нем диаграмму направленности приемной антенны на необходимое время.

В последние годы управление диаграммой направленности все чаще доверяют вычислительной машине. Лишь она в состоянии быстро оценить важность того или иного участка сектора, установить, есть там цель или нет, и выдать команду на перемещение диаграммы в другую точку.

Когда цель обнаружена, нам надо решить, что же делать дальше. Мы можем либо следить за уже обнаруженной целью, то есть взять ее на сопровождение, либо, помня о том, что одна цель уже обнаружена, искать другие, пока еще не обнаруженные цели. Ну а, кроме того, в современной станции иногда можно одновременно и искать новые цели и сопровождать уже обнаруженные. При этом часто возникает вопрос, нужно ли сопровождать данную цель или она не представляет для нас интереса. Решающую роль при этом играет, конечно, характер цели. Если это мирный метеорологический спутник, так пусть себе летает. А если боевая ракета? В общем машине или оператору, которые распознают цели по виду отраженных сигналов, есть над чем поломать голову.

При современном развитии радиолокации станция практически никогда не работает в одиночку. Обычно в группе радиолокационных станций производится координация действий и четкое распределение обязанностей между станциями. Те станции, у которых дальность действия больше, работают в режиме обнаружения. Когда цели приближаются, их передают на сопровождение младшим станциям с меньшей дальностью действия, а сами опять переходят в режим поиска. Станции сопровождения, получив целеуказание или координаты обнаруженной цели, уже не тратят времени на обзор пространства, а сразу захватывают цель и начинают следить за ее перемещениями. При этом получают траекторию, пространственную кривую, описывающую движение цели. Математики разработали методы продления отрезка траектории и вперед, и назад. Поэтому, наблюдая цель в течение нескольких секунд, в принципе можно приближенно определить всю ее траекторию. Если мы наблюдаем за спутником, то можем найти форму орбиты, если за баллистической ракетой, то можно более или менее точно назвать точку старта и место ее падения. Соответствующие заинтересованные лица определят, что нужно делать дальше, но это тема уже совсем другой книжки (помните гриф «Перед прочтением сжечь!»).

Заканчивая главу, еще раз покаемся, что рассказали не о всех возможных режимах работы радиолокационной станции. Например, при наблюдении цели на очень больших расстояниях можно использовать полуактивный или полупассивный режим. При этом на самой цели устанавливается и приемник, и передатчик. Слабый, зондирующий сигнал усиливается в приемнике и переизлучается передатчиком в направлении радиолокационной станции вместо слабого отраженного сигнала. В таком случае дальность действия станции резко возрастает. Правда, надо еще договориться с самой целью, согласится ли она таскать на себе приемник и передатчик. С чужими целями мы об этом, пожалуй, не договоримся.

Существует, естественно, еще много режимов работы станций. К тому же, каждый уважающий себя специалист стремится придумать какой-нибудь новый режим, более всего подходящий к решаемой им задаче, так что рассказать о всех физически невозможно. Сдаемся и переходим к следующей главе.

Кажется разобрались, что к чему

Мы теперь представляем, каким должен быть сигнал, чтобы станция могла выполнить все поставленные перед ней задачи. Заказчик может быть доволен, ведь мы честно старались выполнить все его требования. Дело теперь за производством.

Скажем сразу: новорожденная, только что построенная станция сначала будет работать несколько хуже, чем ожидали разработчики. Лишь после доводки и отработки сначала отдельных устройств, а потом и всей станции она станет такой, какой представлялась создателям при подписании проекта, а может быть, и несколько лучше. Ведь наука и техника не стоят на месте. К моменту сдачи станции потребителям в научно-исследовательских лабораториях уже рождается замысел следующей станции, которая должна быть совершеннее, компактнее и так далее, и тому подобное. Словом, она должна быть лучше. Чтобы показать, насколько же можно улучшить радиолокационные станции, приведем один, на наш взгляд, весьма любопытный пример.

Американский специалист Катрона сравнил возможности звуколокационного аппарата летучих мышей с параметрами лучших из существующих радиолокационных станций. Такое странное, на первый взгляд, сравнение представляет большой интерес для радиоинженеров, так как летучая мышь, звуколокационный аппарат которой весит доли грамма и занимает объем порядка од-кого кубического сантиметра, способна выполнять те же функции, что и радиолокационное устройство весом в сотни килограммов и объемом в несколько сотен кубических дециметров.

В результате сравнения Каврона пришел к следующим выводам:

1. Летучая мышь может принимать сигналы, величина которых сравнима с уровнем шумов, в то время как радиолокатор уверенно принимает только те сигналы, которые значительно сильнее шума.

2. Точность определения дальности до объекта и его угловых координат у летучей мыши выше, чем у действующих радиолокаторов.

3. Летучая мышь может поймать, по крайней мере, 175 москитов за 15 минут, то есть одного москита менее чем за 6 секунд. Завидная пропускная способность для системы обнаружения целей и наведения истребителей! Даже лучшие радиолокационные системы вместе с самыми быстродействующими вычислительными машинами, по-видимому, не смогут повторить такой результат. При охоте за москитами летучая мышь движется по оптимальному пути, который специалисты называют «кривой погони». Именно по такой траектории наводят истребители и ракеты вычислительные машины, входящие в состав комплексов противовоздушной обороны. Оказывается, что и «встроенная вычислительная машина» летучей мыши работает на уровне самых современных требований. Отметим здесь, что в опытах, которые провели американские специалисты Д. Гриффитс, Ф. Вебстер и С. Майкл [17], были зарегистрированы случаи, когда летучая мышь ловила двух насекомых в секунду одно за одним! Поразительный результат!

4. Летучие мыши обычно живут в пещерах и, вылетая из них, пользуются своим природным радаром. Масса летучих мышей одновременно издает крики, но эти крики, вероятно, не заглушают друг друга. Летучая мышь, по-видимому, обладает способностью не реагировать на сигналы, испускаемые другими летучими мышами, и на посторонние помехи. Радиолокаторы пока что похвастаться этим не могут. Сигналы расположенных рядом радиосистем сильно мешают нормальной работе радиолокационной станции, и борьба с помехами все еще остается серьезной проблемой для радиоспециалистов. При использовании радаров для военных целей противник часто старается нарушить работу чужих установок, излучая в направлении приемников радиолокаторов мощные шумовые сигналы. Проведенные с отдельными летучими мышами лабораторные эксперименты показали, что ультразвуковой шум значительной силы почти не влияет на их поведение и не мешает им использовать свой локационный аппарат. Такой устойчивостью к воздействию помех радиолокаторы пока не обладают.

5. Произведенные оценочные расчеты показывают, что мощность сигналов летучей мыши достигает 0,11 ватт на килограмм веса и около 0,03 ватта на кубический дециметр объема. Аналогичные значения для радиолокационной станции равны 0,2–1,0 ватт на килограмм веса и 0,2–0,5 ватта на кубический дециметр. Это единственный параметр, по которому созданные человеком радиолокаторы превосходят звуколокационный аппарат летучей мыши. Но это весьма слабое утешение.

Ведь «энергетическая установка» летучей мыши обеспечивает прежде всего ее перемещение и функционирование внутренних органов, и только часть энергии, по-видимому, очень небольшая, может «подаваться в локационный аппарат». В то же время энергоустановка радиолокационной станции практически целиком предназначена для осуществления локации. Так что сравнение не совсем правомерное. По-видимому, и по этому показателю создание природы существенно опережает творение человеческих рук.

6. Объем данных, которые обрабатывает летучая мышь при обнаружении и преследовании большого числа насекомых, можно сравнить с объемом информации, перерабатываемой аэродромным обзорным радиолокатором. Но летучая мышь ухитряется принимать и обрабатывать сигналы с помощью «устройства» весом в доли грамма и объемом в доли кубического сантиметра, а аэродромный радиолокатор весит сотни килограммов и занимает объем в несколько кубических метров.

Д. Каландер (Массачусетский технологический институт) провел детальное исследование сигналов, издаваемых летучей мышью на разных фазах полета: начальная фаза – поиск добычи, промежуточная – обнаружение и последняя фаза – преследование и поимка. Он доказал, что частота ультразвуковых сигналов сильно изменяется при переходе от одной фазы к другой. Оказывается, что очень важная качественная характеристика – длина волны, измеряемая расстоянием, которое пройдено в воздухе за время одного колебания, – в обоих случаях почти одинакова: 3,4 миллиметра для локационного аппарата мыши и 30 миллиметров для радиолокатора, с которым проводилось сравнение. Здесь летучая мышь имеет даже некоторое преимущество. Кроме того, у нее длина волны варьируется в пределах одного сигнала от 3,4 до 7 миллиметров. Ни один созданный человеком радар не обладает этой особенностью, а вполне возможно, что именно здесь и таится причина удивительной эффективности локационного аппарата летучей мыши [18].

Ухо летучей мыши из породы ночниц представляет собой избирательный отражатель, который может отражать сигналы в различных направлениях в зависимости от их частоты. И действительно, животное посылает сигнал, в пределах которого частота сильно изменяется. Недавно предложено создать радары, использующие этот принцип (сигнал с переменной частотой и антенну, сделанную по диаграмме избирательного излучения), чтобы определять направление на объекты.

Интересны и другие случаи прямого копирования локационного аппарата летучей мыши. Так, например, англичанин Л. Кэй создал миниатюрные акустические радары для слепых. Эхо отражается от предметов по-разному в зависимости от их удаленности от источника сигнала и формы поверхности. После небольшой тренировки с радаром Кэя можно отличить гладкие поверхности от поверхностей, имеющих какую-то фактуру. Этот портативный радар сконструирован на основе использования принципа действия природного локатора летучей мыши.

Один и тот же радар позволяет летучей мыши не только избегать крупных препятствий, но и ловко хватать мелких насекомых. Этот аппарат дает достаточно подробную информацию, которая позволяет различать эхо от неподвижных препятствий и эхо от движущихся объектов. При этом надо иметь в виду, что и те и другие перемещаются по отношению к летучей мыши, находящейся в постоянном движении.


    Ваша оценка произведения:

Популярные книги за неделю