355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Размахин » Радиолокация без формул, но с картинками » Текст книги (страница 5)
Радиолокация без формул, но с картинками
  • Текст добавлен: 24 февраля 2018, 12:30

Текст книги "Радиолокация без формул, но с картинками"


Автор книги: Михаил Размахин



сообщить о нарушении

Текущая страница: 5 (всего у книги 9 страниц)

Часть вторая
КАК ОНА РАБОТАЕТ

С кем бы познакомиться поближе

Итак, в общих чертах мы уже познакомились с радиолокацией. Рассмотрели целый ряд различных станций, каждая из которых добросовестно выполняет порученные ей обязанности. Но наши знания пока несколько односторонни, не правда ли? Мы знаем, что может каждая станция, но не знаем пока, как она это делает. Постараемся восполнить этот пробел.

Какую бы станцию рассмотреть? Может быть, все станции, о которых мы рассказали в первой части книжки? Но, как говорят авторитеты, «нельзя объять необъятное». В научно-технической книге в таких случаях пишут: «К сожалению, небольшой объем не позволяет нам подробнее остановиться на этой интересной проблеме».

Так что не будем ставить перед собой непосильных задач и выберем путь попроще. Посмотрим, как работает одна станция. При этом мы познакомимся и с общими принципами работы радиолокационных систем и с особенностями работы именно этой, избранной нами станции. Да, но как выбрать образцовый объект?

Для решения этой важной проблемы можно предложить несколько методов.

Метод первый: теоретико-вероятностный. Выписываем названия всех станций на маленьких билетиках, свертываем их в трубочку и складываем в шапку. Потом просим незаинтересованное лицо, например милую толстушку соседку-второклассницу Олю, вытащить какой-нибудь билетик. Так и определится станция, о которой нужно рассказать. Преимущество этого метода – полная объективность выбора. Но слепой жребий может выбрать нетипичную или устаревшую станцию. О некоторых специфических типах станций автор, к сожалению, не сможет рассказать так подробно, как это сделают специалисты в данной области. При этом, конечно, проиграет и читатель, и сам автор.

Метод второй: социологический. Предполагаемым читателям рассылается анкета, где перечислены станции, о которых автор может рассказать нечто вразумительное. По большинству поданных голосов и выбирается героиня рассказа. Сам по себе метод неплох. Но здесь автора испугал объем предстоящей работы, связанной с размножением и рассылкой анкет, сбором ответов и обработкой результатов на вычислительной машине (какой же уважающий себя социолог теперь обрабатывает результаты вручную?). Кроме того, просто жаль времени, которое нужно потратить на все эти операции.

Метод третий: волевой. Читатель полностью лишен возможности влиять на выбор станции. Делает это автор, руководствуясь своими привязанностями и имеющимся у него объемом информации о различных типах станций. При этом он торжественно обязуется в меру сил принимать во внимание и интересы читателей. Тем, кого все же не устраивает выбор автора, мы, видимо, ничем помочь не сможем. Правда, в сносках указано довольно много книг и статей по радиолокации, в которых можно найти описания станций других типов, и любознательным читателям мы рекомендуем покопаться в этой литературе самостоятельно.

Итак, выбор сделан. Мы выбрали современную, мощную радиолокационную станцию обнаружения и сопровождения космических объектов: спутников, пилотируемых и автоматических космических кораблей, баллистических ракет. Сначала несколько слов о том, как выглядит наша знакомая. Представьте себе одну из трибун стадиона, например, трибуну плавательного бассейна в Лужниках. Примерно такую же форму имеет здание, в котором размещается наша станция. Правда, это здание все-таки поменьше трибуны. Та плоскость, где на трибуне расставлены скамьи для зрителей, в радиолокационной станции занята приемной и передающей антеннами. Само помещение разделено на залы и лаборатории, в которых и размещается оборудование радиолокационной станции.

Предположим, что мы сдали весьма строгие экзамены по технике безопасности и получили разрешение провести экскурсию по всем этажам здания. Да, еще нужно выбрать время, когда станция не работает, так как во время работы даже специалистам, обслуживающим станцию, в некоторые помещения заходить запрещается. Обычно это залы, где работают мощные энергетические установки, от близкого знакомства с которыми удерживает известный всем плакат с молнией и некоторыми экспонатами анатомических музеев. Нельзя мешать и операторам центрального пульта, где собраны контрольные приборы и индикаторы. Работа операторов требует максимальной собранности и сосредоточенности, так что не стоит их отвлекать.

Но вот экскурсия началась. Проходим зал за залом и в каждом видим примерно одно и то же: вдоль стен длинные ряды железных шкафов (специалисты называют их стойками). Кое-где шкафы открыты – пока станция не работает, инженеры и техники проводят профилактику, заменяют сомнительные узлы и детали. Если заглянуть внутрь стойки, то можно увидеть переплетение разноцветных проводов, толстые кабели в пластиковой или металлической оболочке, тысячи ламп, транзисторов и много других приборов, вобравших в себя последние достижения электроники, оптики, механики, в общем, всех отраслей современной науки.

А вот и центральный пульт. Сейчас здесь пусто. Тускло отсвечивают равнодушные и пустые экраны индикаторов, неподвижны стрелки сотен контрольных приборов, зачехлен микрофон внутренней связи.

Но как только станция включится в работу, за пульт сядут люди, управляющие станцией, засветятся синеватые или зеленоватые экраны индикаторов, размеренно заскользит по ним яркий луч развертки, отмечая цели всплеском светового пятна. Включаются кинокамеры и магнитофоны, записывающие весь ход работы. Потом в спокойной обстановке специалисты оценят по данным, зафиксированным на магнитных лентах и кинопленке, как работала станция. Выполнить такую оценку в ходе работы и обработать сигнал от цели может только быстродействующая вычислительная машина. Она и размещается в тех залах, куда мы попадаем, выйдя из помещения центрального пульта. Ни одна современная радиолокационная станция уже не может обойтись без вычислительной машины и зачастую качество работы станции в значительной мере определяется объемом памяти машины и скоростью, с которой она выполняет вычисления.

Идем дальше, приоткрываем дверь в большой зал, где стоят внушительные на вид устройства. Специалист-электротехник без труда узнает трансформаторы, выпрямители и другие приборы, снабжающие нашу станцию электроэнергией. Еще бы им не быть внушительными! Ведь радиолокационная станция потребляет во время работы столько электроэнергии, сколько ее нужно небольшому городу. И хотя сейчас приборы не работают на полную мощность, негромкий, басовитый их гул и вся обстановка невольно внушают почтение и мы осторожно закрываем дверь.

Закон природы гласит, что скорость движения экскурсантов всегда возрастает по мере продвижения к концу экспозиции. Поэтому мы ускоренным шагом (бегом неприлично) проходим по залу, где стоят системы, охлаждающие радиоэлектронную аппаратуру во время работы, и другие вспомогательные устройства.

Ну вот, кажется, и все. Разобрались в своих впечатлениях? Как вам понравилась выбранная автором станция? Если понравилась, то читайте дальше, будем разбираться, как она работает. Но прежде всего ответим на вопрос…

Как оценивают знакомую?

Скажем сразу, что автор считает читателя серьезным молодым человеком, склонным к анализу своих действий. Будем считать априори, что это не идеалист, который может влюбиться, что называется по уши, но не может объяснить заинтересованной публике, за что же он любит свою избранницу. Интересно, как этот серьезный молодой человек выбирает из круга знакомых девушек ту, общению с которой он намерен посвятить все свое свободное от работы время. Мне кажется, что ответ может выглядеть примерно так.

Во время знакомства я оцениваю в девушке некоторый небольшой набор качеств, или, выражаясь техническим языком, параметров. Ну, скажем, цвет волос и глаз, изящество манер, размер обуви, свойства характера самой девушки и будущей тещи, степень взаимности, проявляемая девушкой, время, затрачиваемое на проводы после очередного свидания, число пересадок… Кажется, все[13]13
  У Вас, уважаемый читатель, расположение отдельных элементов в этом списке, да и сам список могут быть другими. Не надо удивляться, ведь одинаковых людей на бывает.


[Закрыть]
. Некоторые из перечисленных параметров, такие как свойства характера или рост, для меня существенны (не всем юношам нравятся девушки выше их ростом), другие могут и не играть важной роли, например размер обуви.

Некоторые параметры невозможно полностью оценить за время знакомства (характер девушки и тещи), другие можно. Если воспользоваться методом, предложенным Я. И. Хургиным в книге «Ну и что?», то надо составить табличку, где каждая кандидатура оценивается по всем качествам, скажем, по пятибалльной системе, подсчитать сумму баллов и выбрать ту, чья суммарная оценка выше.

Итак, серьезный молодой человек умеет (или думает, что умеет) оценивать качества своей знакомой и по ним судить, насколько она близка к его идеалу. Мы находимся в худшем положении. Ведь пока нам неизвестно, как оценивать радиолокационную станцию. По числу этажей здания, где она размещается, или по общему весу ее оборудования? Даже не посвященному в таинства радиолокации ясно, что такие оценки ни к чему хорошему не приведут. Пока что более сложная и более мощная станция, конечно, крупнее, но с развитием методов миниатюризации[14]14
  Миниатюризация – создание элементов схемы и отдельных блоков очень малых размеров.


[Закрыть]
и разработкой новых элементов схем станции следующих поколений, становясь совершеннее, будут иметь меньшие габариты. Значит, надо разобраться детальнее.

Вводим новое действующее лицо – заказчика. Хотя с точки зрения всеобщего прогресса он персонаж положительный, так как, тормоша специалистов, он вынуждает их развивать и совершенствовать станции, все же общение с ним не всегда приятно. Ведь он все время чего-то требует, а это не самое приятное свойство человека, не правда ли?

Заказчик нашей станции требует, чтобы ему построили станцию с большой дальностью действия, с высокой точностью определения местоположения целей, с хорошей разрешающей способностью и высоким темпом обзора. Ничего себе списочек для одной станции! Но постойте-ка, тут сразу четыре абсолютно непонятных термина! Поясним.

Первое требование означает, что нам необходимо обнаруживать достаточно маленькие цели на возможно больших расстояниях.

Но чем больше расстояние, тем больше сил затрачивает сигнал на преодоление пути и тем слабее возвратившийся отраженный сигнал. Здесь мы имеем полную аналогию с ситуацией, изображенной на рисунке. Со старта марафонского забега отправляется в путь группа полных сил бегунов, а достигают финиша (в нашем случае приемника радиолокационной станции) лишь немногие изнуренные спортсмены (для нас сигналы).

Поэтому для каждой станции существует такое расстояние, что от целей, находящихся на большем удалении, отраженный сигнал заметить, а тем более измерить, не удается. Это расстояние и называют дальностью действия.

Увеличить дальность действия можно за счет повышения энергии сигнала.

Выбранная нами станция излучает сигналы в виде отдельных импульсов того или иного вида. В этом случае дальность действия определяется энергией отдельного импульса А эта энергия зависит от длительности импульса и его средней мощности. Не вдаваясь в детали, скажем, что беспредельно увеличивать мощность нельзя, – это очевидно из простых физических соображений. Если мы используем предельно возможную мощность, а заданная дальность действия еще не достигнута, то энергию сигнала придется увеличить, уменьшив его длительность.

Так поступают не только в радиолокации. Например, одно время строили только пятиэтажные дома, длинные-длинные, порой занимающие целый квартал. Естественно, что число квартир в одном доме при этом могло быть как угодно большим. Итак, казалось бы, за счет использования максимально доступной мощности и большой длительности можно получить сколь угодно большую дальность действия станции. Но… В технике всегда есть место для «но». В этот раз «но» связано со вторым и третьим требованиями заказчика (высокая точность определения местоположения цели и хорошая разрешающая способность). Чтобы понять, в чем заключается противоречие между этими требованиями, рассмотрим в самом простом виде, как в радиолокационной станции определяют местоположение цели.

Где же она?

Точка, в которой находится в данный момент цель, в нашей станции определяется дальностью до цели и двумя углами – углом места и азимутом. Азимут – угол в горизонтальной плоскости, отсчитываемый от направления на север (термин заимствован, вероятно, у путешественников и туристов). Угол места – угол в вертикальной плоскости, отсчитываемый от горизонтальной плоскости (термин, по-видимому, придумали специально для радиолокации). Угол места и азимут (точнее, пересечение плоскостей, которые они определяют) дают нам прямую линию, на которой расположена цель, а дальность указывает, где именно на этой прямой находится цель. Значит, точно измерить угловые координаты и дальность.

Начнем с измерения дальности.

Станция включилась в работу. Сигнал срывается с передающей антенны и со скоростью света устремляется к цели. Одновременно на экране индикатора световой луч развертки начинает свой путь из точки, которая обозначает место расположения станции. Система развертки устроена таким образом, что при отсутствии цели луч будет все время прочерчивать на экране светящуюся горизонтальную линию (но будем все-таки считать, что цель есть). Вот сигнал достиг цели, отразился от нее и, вернувшись к станции, попал на огромное полотнище приемной антенны. И в этот момент луч сделает на экране засечку – цель обнаружена. То же происходит и со всеми последующими сигналами. Если цель приблизится к станции, то сигнал совершит свое путешествие к ней и обратно быстрее, а значит и луч развертки раньше засветит отметку от цели. Так как скорость, с которой путешествует сигнал, постоянна, то время, прошедшее с момента излучения сигнала до его приема, пропорционально удвоенному расстоянию до цели. Поэтому, выбрав подходящий коэффициент пропорциональности, мы можем измерить расстояние на индикаторе, которое успел пробежать луч развертки за это время, непосредственно в километрах или милях. Так мы получаем шкалу дальности на экране индикатора. Теперь нам достаточно заметить цифру, у которой возникает отметка от цели, чтобы сказать, на какой дальности она находится. Но как точно мы можем измерить это расстояние? Чем больше делений на нашей шкале дальности, тем точнее можно произвести отсчет.

Попробуйте измерить длину подмосковного окунишки рулеткой, на которой деления расположены через 25 сантиметров. По-моему, довольно трудно. Значительно легче сделать это, имея под рукой линейку с миллиметровыми делениями. Шкала индикатора в нашем распоряжении, и казалось бы, что точность может быть как угодно высокой. Не тут-то было. Представим себе обычную жизненную ситуацию. Вы приходите на стадион минут за двадцать до начала футбольного матча. Кое-где уже сидят зрители. Вы подходите к своему ряду и не можете найти своего законного места, скажем № 216. Вы видите место № 214, далее восседает мужчина, несколько похожий на Тартарена из Тараскона, а за ним на скамейке виден № 218. Учитывая стремление дирекции стадиона разместить на трибунах как можно больше зрителей и внушительные габариты ранее пришедшего болельщика, Вы с грустью вынуждены констатировать, что сидеть вам придется на ступеньках лестницы. По-моему, сейчас самое подходящее время решить задачу, на каком же месте сидит болельщик.

Теперь Вам должно быть понятно состояние оператора, определяющего дальность до цели, отметка от которой перекрывает сразу несколько делений шкалы.

Поскольку ширина отметки прямо пропорциональна длительности сигнала, то нетрудно понять, что для повышения точности отсчета и станции необходимо использовать более короткие сигналы и тогда отметка от цели станет уже и не перекроет соседних делений. Применение коротких сигналов позволит нам выполнить и третье требование заказчика– обеспечить высокую разрешающую способность станции по дальности. Если две цели расположены таким образом, что отметки от них перекрываются и образуют одну суммарную отметку, то специалисты говорят, что цели не разрешены. Если это не совсем понятно, то посмотрите на рисунок. Представьте себе, что Вы смотрите на футболистов сверху. В ситуации, показанной слева на рисунке, Вы увидите отдельно каждого из футболистов и мяч. Это и означает, что вы «разрешаете» данные цели. А в ситуации, изображенной справа, задача потруднее. Тут не всегда даже можно сказать, сколько Вы видите футболистов, а где находится мяч и вовсе не понятно (не забывайте, что Вы смотрите сверху!). Вы видите лишь группу футболистов.

В этом случае Вы цели «не разрешаете» – они слились для Вас в одну. Теперь понятно, что такое разрешение?

Будем укорачивать сигналы, то есть сужать отметки от них на экране индикатора. Когда ширина отметок станет меньше расстояния между ними, произойдет разрешение целей и каждая из них будет наблюдаться отдельно. Естественно, что заказчик заинтересован в получении станции, которая бы правильно определяла бы и положение, и число целей. Значит, да здравствуют короткие сигналы? Но ведь раньше мы убедились, что нам нужны длинные сигналы. Опять конфликт. Обещаем справиться и с ним. А пока поверьте на слово, что специалисты сумели сделать это. Объяснение запишем себе в долг.

А как определить угол места и азимут цели? Эту миссию выполняет антенна станции, которая обладает направленностью. Что это значит? Антенна принимает только сигналы, приходящие из узкого пространственного конуса. Функция, с помощью которой математики сумели описать это свойство – возможность селектировать цели по угловым координатам, – называется диаграммой направленности антенны. На сигналы от целей, находящихся вне диаграммы направленности, антенна по существу не реагирует. Зная угловые координаты этого конуса, мы тем самым определяем и угловые координаты цели. Если в конус попадают две или три цели, то все они будут иметь одни и те же угловые координаты, то есть, как говорят специалисты, они не разрешены по углам. Значит, нужно уменьшить угловые размеры конуса, иначе говоря, сужать диаграмму направленности. Когда она сузится настолько, что при любом положении в нее будет попадать единственная цель, мы сможем торжественно сообщить заказчику, что добились полного разрешения целей по угловым координатам. Но такая ситуация принципиально невозможна. Во-первых, диаграмма направленности не может быть бесконечно узкой (как будет показано ниже, для этого потребуется бесконечно большая антенна). Ну и кроме того, несколько целей могут оказаться на одном и том же направлении, но на разных дальностях. Тогда мы, может быть, сумеем разрешить их по дальности, но никогда не сможем разрешить их по угловым координатам.

В реальной жизни, однако, никогда не требуют «бесконечно хороших» показателей. Требуют просто хороших. Это значит, что нужно разрешать цели, которые достаточно близко расположены. Что значит «достаточно близко»? А это уже зависит от конкретной задачи. Иногда специалистов удовлетворяют станции, которые разрешают цели с угловыми координатами, отличающимися на минуты или даже градусы, а в некоторых случаях требования к угловой разрешающей способности будут определяться секундами.

При узкой диаграмме направленности угловые координаты каждой цели можно определить точнее. Ведь число возможных неперекрывающихся положений в пространстве у узкого конуса больше, чем у широкого. А это равносильно выбору шкалы отсчета с большим количеством делений. Значит, нужно сужать диаграмму. Как это сделать?

Специалистам хорошо известно, что ширина диаграммы направленности определяется в основном размерами антенны. Чем больше антенна, тем уже ее диаграмма направленности, тем лучше она измеряет угловые координаты целей и разрешает цели по углам. Конечно, длина волны станции при увеличении антенны должна оставаться постоянной. Следовательно, нашему заказчику нужна станция с очень большой антенной. В общем-то, если не считать чисто технических ограничений, ничто не мешает построить радиолокационную станцию с антенной любой величины. Правда, если длина антенны будет измеряться несколькими километрами или десятками километров, то придется учитывать такие факторы, как кривизна Земли, различие температур воздуха на краях антенны и т. д. Но до этого, кажется, дело еще не дошло.

Если бы наша станция была живым человеком, то можно было бы предложить и другой способ. Ширина диаграммы направленности для человека, то есть угол, в котором он может видеть окружающие объекты, не поворачивая головы, в нормальном состоянии равна 140–150 градусам. Если же человек (мужчина, конечно) выпьет сто граммов водки или эквивалентное количество алкогольного напитка любого сорта, то его диаграмма направленности, по официальным данным ГАИ, сузится до 40 градусов. Вот и готовый рецепт сужения диаграммы направленности.

Но мы, кажется, несколько отвлеклись от темы. Извините. Вспомним – речь шла о наблюдении цели только в узком пространственном конусе. А где гарантия, что цели когда-нибудь попадут в него? Нет такой гарантии. Поэтому станция не ждет, пока цели попадут в ее диаграмму направленности, а сама активно ищет их.

Первые образцы радиолокационных станций были смонтированы в автофургонах, причем антенна неподвижно крепилась к крыше фургона. Для поиска целей в пространстве поворачивался весь фургон вместе с антенной и оператором относительно вертикальной оси. Шасси все-таки оставалось неподвижным. При этом пространство просматривалось на все 360 градусов и цели обнаруживались на любом направлении. Чем быстрее вращался фургон, тем чаще пробегал луч по каждому участку неба и тем труднее было цели проскользнуть незамеченной.

Число оборотов станции в минуту или в секунду называют темпом обзора пространства.

Пока самолеты летали со сравнительно малыми скоростями, их надежно обнаруживали и при небольшом темпе обзора. Но самолеты стали летать быстрее. Пока станция разворачивается, они могли пролететь огромное расстояние и незаметно приблизиться к охраняемому объекту. Нужно увеличить темп обзора. Но если вращать фургон быстрее, то ощущение сидящего в нем оператора можно, по-видимому, сравнить только с ощущениями космонавтов, проходящих проверку на центрифуге. Какая уж тут работа, хотя бы сознания не потерять. Поэтому в последующих вариантах станций кабина операторов и все оборудование остается неподвижным, а вращается лишь антенна.

Скорость самолетов увеличилась, появились спутники и ракеты – небольшие цели, двигающиеся с огромными скоростями.

Входят в строй радиолокационные станции с антеннами в несколько десятков метров длиной. Такую антенну не повернешь. И поэтому вместо механического перемещения антенны стали использовать электронное управление диаграммой направленности неподвижной антенны.

Для пояснения принципа такого электронного управления придется снова обратиться к примеру из спортивной жизни. Иначе понять его будет довольно трудно.

Приглашаю Вас в плавательный бассейн. Восемь пловцов, абсолютно равных по силам, должны доплыть до финишной стенки, вылезти из воды и собраться вместе. Встанем у финишной стенки и понаблюдаем. Пловцы, поскольку их силы равны, плывут прямо на нас ровной линией. Направление их движения перпендикулярно финишной стенке. Они одновременно достигнут бортика, вылезут из воды, и в этот момент мы сразу увидим группу из восьми человек. А теперь усложним ситуацию. Предположим (хотя в жизни так и не бывает), что бассейн имеет несколько необычную форму. Стартовая стенка его перпендикулярна боковым, а финишная сильно скошена, так что бассейн имеет не прямоугольную, а трапециевидную форму. Снова пригласим пловцов на старт, а сами снова встанем у финишной стенки. Теперь пловцы двигаются на нас как бы сбоку и линия их движения не перпендикулярна финишной стенке. Вот пловец на самой короткой дорожке уже вылез из бассейна, а остальные еще плывут. Если бассейн таков, что разница во времени между пловцами на соседних дорожках составляет одну секунду, то первый пловец будет ждать на бортике последнего пловца семь секунд, второй – шесть и так далее. И только когда последний пловец появится на бортике, мы сможем собрать их всех вместе.

А теперь снова вернемся к антеннам. Разобьем большую антенну на отдельные элементы, которые, по существу, представляют собой небольшие самостоятельные антенны. Если радиосигналы приходят с направления, перпендикулярного антенне, то они поступают на все элементы одновременно (бассейн правильной формы). Такие сигналы можно складывать и подавать на последующие каскады приемника. Если же сигналы приходят с других направлений, то они достигают элементов антенны неодновременно. Для того чтобы их можно было сложить, надо задержать ранее пришедшие сигналы до момента поступления сигнала с последнего элемента антенны (трапециевидный бассейн). Эту задержку выполняют специальные электронные устройства, называемые линиями задержки. Таким образом, для каждого элемента антенны необходима своя линия задержки. Чем сильнее отличается направление, откуда приходит радиоволна, от перпендикуляра к антенне, тем больше задержка сигналов, поступающих на соседние элементы антенны. Изменяя значение времени задержки, мы изменяем направление, в котором «смотрит» антенна. Сигналы, приходящие с этого направления, после антенны будут суммироваться, а сигналы с других направлений суммироваться не будут, так как для них значения задержек не соответствуют разности времени появления сигналов на отдельных элементах.

Наконец, последний вопрос, который может возникнут Зачем нужно складывать сигналы от отдельных элементов антенны? Во-первых, именно сложение сигналов с разными задержками и обеспечивает направленность и возможность изменять направление наблюдения. А во-вторых, суммарный сигнал становится мощнее и его легче принимать и обрабатывать.

Пока что мы говорили о приемной антенне, но точно по такому же принципу работает и передающая антенна с электронным управлением диаграммой направленности. Установив то или иное значение задержки для отдельных излучающих элементов, мы тем самым посылаем суммарный сигнал всей сложной системы в заданном направлении. Сложная электронная система по заранее выбранному закону изменяет задержки во всех элементах системы, и луч радиолокатора обшаривает пространство в поисках цели. Вот как работает неподвижная антенна с электронным управлением диаграммой направленности.

Хотя с помощью одной антенны нельзя осуществить круговой обзор, все же большой сектор пространства находится под непрерывным наблюдением. Если нужен круговой обзор, то придется строить несколько станций, направленных в разные стороны. Темп обзора в этом случае зависит от того, сколько раз в секунду станция может просмотреть свой сектор. Заказчик хочет, чтобы темп обзора был высоким? Ну что же, если выделены соответствующие средства и приложены соответствующие усилия, то в большинстве случаев это требование удовлетворить удается.

Подведем некоторые итоги. Мы знаем, как можно выполнить примерно половину требований заказчика. Но за нами остался долг – неразрешенный конфликт между остальными требованиями. Для выхода из любой конфликтной ситуации всегда можно найти компромиссное решение. Об этом и пойдет речь в следующей главе, в которой мы узнаем…


    Ваша оценка произведения:

Популярные книги за неделю