Текст книги "Популярно о микробиологии"
Автор книги: Михаил Бухар
сообщить о нарушении
Текущая страница: 2 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]
Глава 4
Микробы и…
Бермудский треугольник
Говорил, ломая руки,
Краснобай и баламут
Про бессилие науки
Перед тайною Бермуд.
В. Высоцкий
Две трети земной поверхности занимает вода. Моря и океаны, разделяя страны и народы, в то же время служат наиболее дешевыми транспортными магистралями. Тысячи судов различной грузоподъемности бороздят водную поверхность. Однако, несмотря на развитие средств навигации и возросшую энерговооруженность морского транспорта, судоходство по-прежнему представляет собой отнюдь не безопасное мероприятие. И по сей день корабли гибнут из-за туманов, штормов, тайфунов, ураганов, цунами; гибнут, посылая в эфир SOS – призыв о помощи. По сообщениям с потерпевшего крушение корабля можно восстановить всю картину бедствия и в будущих моделях судов учесть выявленные в экстремальных условиях конструктивные недостатки. Но бывают случаи, когда корабли исчезают, не успев подать никаких сигналов. И тогда рождаются легенды, иногда очень интересные и волнующие, о гигантских морских змеях, заглатывающих целые суда, или китах, ударом исполинского хвоста переворачивающих корабли, или об удивительных свойствах некоторых районов океана, например о так называемом Бермудском треугольнике.
Так называется область Атлантического океана между Пуэрто-Рико, Флоридой и Бермудскими островами, в которой, согласно мнению многих исследователей, происходит масса необъяснимых явлений. За последние 50 лет в Бермудском треугольнике произошло более 1000 загадочных событий. Для их объяснения используются различные теории, а когда их не хватает, появляются легенды. Но, как правило, они весьма далеки от истинной причины катастрофы, которую пытаются найти моряки и кораблестроители.
А истина иногда может быть довольно простой. Но сначала немного теории. С тех пор как человек впервые попытался протащить по земле тяжелый предмет, он поневоле столкнулся с проблемой трения, и в частности с трением сыпучих тел. Когда мы тянем по земле достаточно тяжелый груз, то перемещается не только он сам – движутся и верхние слои почвы относительно друг друга. Коэффициент трения между этими пластами определяется состоянием трущихся поверхностей, их шероховатостью, величиной удельного давления, временем подвижного контакта, физико-механическими и химическими свойствами, но главным образом вязкостью, скоростью движения слоев относительно друг друга и смазкой.
А теперь вообразите себе гигантский сухогруз, груженный рудой. Ее слои благодаря трению крепко «держатся» друг за друга, и она становится почти неподвижным монолитом. Представьте, что коэффициент трения резко уменьшился, и слои «поплыли» относительно друг друга. Добавьте к этому небольшую качку, и вы увидите, как сотни тонн руды начинают перемещаться и с огромной силой ударять в борт судна. В результате оно, расколовшись пополам, тонет. Даже не проломив борт, а только сместившись, огромная масса руды так меняет положение центра тяжести корабля, что он может тут же перевернуться и затонуть, даже не успев послать сигнал SOS [1]1
То, что мы рассказали, – не выдумка. В США во время шторма на одном из Великих озер именно таким образом разломился пополам и затонул пароход, груженный железной рудой.
[Закрыть] .
Как же мог так быстро измениться коэффициент трения? [2]2
Коэффициент трения между слоями определяется состоянием трущихся поверхностей и смазкой.
[Закрыть] И здесь злоумышленниками могут оказаться микроорганизмы. Поселившись на поверхности руды и размножаясь в огромных количествах, они образуют пленку, значительно снижающую коэффициент трения. В этом случае микроорганизмы играют роль смазочных масел, с той лишь разницей, что снижение коэффициента трения приводит отнюдь не к положительным результатам, как это обычно бывает в технике, а к трагическим последствиям.
Кстати сказать, в пресловутом Бермудском треугольнике, где таинственным образом исчезают корабли, идеальные условия для развития микроорганизмов: высокие температура и влажность воздуха. И как знать, не являются ли в некоторых случаях виновниками таинственного исчезновения судов не космические пришельцы и не удивительные свойства некоторых участков морской поверхности, а всего-навсего вездесущие микроорганизмы?
Глава 5
Микробы и землетрясения
Даже если все микробы разом подпрыгнут, вряд ли это приведет к землетрясению.
В. Шинкаревский
Население Земли в 2012 г. составляет около 7 млрд. К 2050 г. нас будет 12 млрд, из них 9 млрд будут жить в городах.
Исторически сложилось, что большинство городов расположены в устьях рек и на побережьях морей и океанов, где преобладают песчаные почвы или просто даже пески. Возведение многоэтажных зданий, особенно на таких почвах, сопряжено с определенными сложностями, особенно в зонах, где сейсмическая подвижность грунтов доставляет дополнительные трудности или значительно удорожает строительство.
Сопоставляя размеры микроорганизмов с размером строительных объектов, трудно даже представить себе, что такие маленькие по всем параметрам существа могут оказывать какое-то влияние на такое масштабное явление, как градостроительство. Конечно, микроорганизмы не могут остановить землетрясения или препятствовать их возникновению, но они способны снизить разрушающий эффект этого природного явления, в результате которого страдают дамбы, здания и другие сооружения.
Каждый, кто бывал на пляже, наверняка видел «строительство» замков на песке и из песка и знает, насколько непрочны эти сооружения. Их зыбкость и недолговечность объясняется слабым взаимодействием между частицами песка или низким коэффициентом трения.
В предыдущей главе мы уже писали, как микробы могут уменьшить трение между слоями сыпучих веществ и к чему это может привести. В данной главе речь тоже пойдет о трении, но на этот раз будут рассмотрены возможности микроорганизмов, связанные с его увеличением. Действительно, увеличить трение можно, даже если слегка смочить песок водой. Но она испаряется, и замки, рассыпаясь, разрушаются. В строительстве вместо воды используют цемент – вещество, содержащее углекислый кальций.
Культура Bacillus pasteurii(продуктом ее метаболизма является все тот же углекислый кальций), внесенная в грунт, как бы цементирует частицы песка друг с другом, увеличивая возможность песчаной почвы противостоять разрушающим силам сдвига, возникающим при землетрясениях.
Теоретически возможны два варианта использования этого микроорганизма: первый – внедрение культуры Bacillus pasteuriiв объем дамбы или фундамента, или, если она в них уже присутствует, – в грунт питательной среды, стимулирующей рост бактерий. Проницаемость песка достаточна велика: в обоих вариантах и бактерии, и питательная среда легко проникают во весь объем грунта, обеспечивая необходимое цементирование. Регулируя количество введенных микроорганизмов и массу питательной среды, можно изменять качество цементирования в зависимости от требований, предъявляемых строительством.
Такие приемы могли бы предотвратить и провалы, и вымывание грунтов, и оползни, придавая даже уже построенным сооружениям большую устойчивость к землетрясениям.
Следует также упомянуть о способности микроорганизмов создавать колонии в виде пленок, которые образуются практически везде, где поверхности соприкасаются с водой и воздухом. Бактериальные пленки состоят из миллиардов клеток, склеивающихся с поверхностью и между собой. Они широко представлены в природе, к тому же достаточно и механически, и химически устойчивы. С негативным эффектом увеличения поверхностного слоя бактерий на наших зубах мы сталкиваемся ежедневно утром и вечером, снимая этот налет зубной щеткой. Образующиеся на зубах бляшки, представляющие собой скопление бактерий, достаточно прочно связаны с их поверхностью, и чтобы избавиться от них, иногда приходится прибегать к помощи стоматолога и целого арсенала средств, включая обработку ультразвуком. Изучение образования и роста микробных популяций в виде пленок выявило некоторые механизмы управления поверхностным ростом. Выяснилось, что микроорганизмы выделяют специальные белки, способствующие взаимодействию миллионов бактерий друг с другом, результатом которого и является пленочный рост. Нельзя ли найти полезное применение механической прочности и химической устойчивости микроорганизмов? Такие попытки уже есть. Поверхностные микробные пленки способны служить непроницаемым барьером, препятствующим распространению загрязнений. Значит, можно, например, с их помощью блокировать утечку нефти из поврежденных подземных хранилищ. Такие пленки эластичны и не разрушаются даже при землетрясениях. Причем при их использовании и затраты ниже, и экологическое воздействие на окружающую среду более щадящее, чем при применении для этих же целей эпоксидных смол, а также акриламидных или силикатных пленок.
Глава 6
Фонтаны, монеты
и… микробы
Обычай – деспот меж людей.
А. С. Пушкин
Считается, что каждый человек, посетивший Рим, обязательно должен побывать на площади Навона, где расположен один из красивейших фонтанов в мире – Треви. Почти все туристы бросают в воду монеты: существует поверье, что тот, кто это сделает, обязательно вернется в Рим еще раз. Желающих повторно попасть в «столицу мира» достаточно: ежегодно из фонтана Треви извлекается монет на сумму около $600 000.
К сожалению, история не сохранила причину происхождения этого поверья, но мы знаем, что во многих странах, в том числе и на Руси, тоже существовал обычай при освящении бросать серебряную монету во вновь отрытый колодец.
Мы знаем также, что никаких знаний о микробах у наших древних предков не было (да и не могло быть). Но в силу своего опыта они предполагали существование «миазмов» – некой субстанции, которая присутствует в затхлой воде и в воздухе заболоченных мест, имеет неприятный запах и вызывает различные заболевания.
Не исключено, что нашим предкам только эмпирическим путем удалось найти связь между серебряной монетой, опущенной в воду, и снижением уровня миазмов, или заболеваемости после питья такой, обработанной серебром, воды. Возможно, подобного рода связи отмечались неоднократно и постепенно вошли в обиход. Если к этому добавить, что монеты в те времена чеканились не из медно-никелевых сплавов, как сегодня, а из золота и серебра – металлов, как теперь известно, обладающих сильным бактерицидным действием (чтобы обезвредить литр воды, достаточно несколько миллиардных долей грамма), то можно предположить, что бросание серебряной монеты – способ обеззараживания воды, эмпирически найденный древними. А сохранившийся до наших дней обычай – всего лишь атавизм.
Разумеется, антибактериальные свойства серебра находят применение и в наше время. Его преимущество перед другими антибиотиками заключается в том, что оно не действует на клетки человека. Серебро добавляют к изделиям из пластмассы и получают контейнеры, в которых пищевые продукты не портятся неделями. Фильтры для систем кондиционирования воздуха и очистки воды, бактерицидная краска для стен и потолков операционных, перевязочные и текстильные материалы, а также просто одежда, поверхности клавиатур и телефонов – вот далеко не полный перечень областей, где используются свойства серебра, открытые много веков тому назад.
Глава 7
Расхитители музейных ценностей
Какое нам, в сущности, дело,
Что все превращается в прах.
А. Ахматова
В этой главе речь пойдет не о хитроумных уловках музейных воров, не об отмычках и других «инструментах», с помощью которых они вскрывают сейфы или проникают в бронированные хранилища, где находятся сокровища мировой культуры. Останется в стороне и вопрос о баснословных ценах, по которым продаются украденные шедевры. И тем не менее речь пойдет о расхитителях музейных ценностей, которыми оказываются… все те же микробы. Редко кто задумывается, почему в каждом музее имеется гардероб, само существование которого поневоле уменьшает число посетителей, и для чего в каждом зале висят на стене термометр и психрометр для измерения, соответственно, температуры и влажности воздуха. Все это делается для того, чтобы ограничить проникновение в залы музеев и в запасники невидимых расхитителей музейных ценностей – микробов и создать для них крайне неблагоприятные условия.
Недавно в одном из тибетских монастырей было обнаружено удивительное собрание рукописей, возраст которых превышает сотни лет. Выполненные на пергаменте, представляющем собой отличный объект для атаки микроорганизмов, рукописи тем не менее хорошо сохранились. Каким же образом?
Посетивший монастырь журналист был удивлен предосторожностями, которые соблюдались при посещении хранилища рукописей. Вход в него состоял из нескольких тамбуров, в каждом из которых надо было прочесть молитву, чтобы очиститься от греховных мыслей и заодно сменить бренную верхнюю одежду. Все это напоминает применение мер предосторожности перед хирургической операцией, когда необходима максимальная стерильность. Именно уменьшение количества микроорганизмов (о полном избавлении от них в этих условиях не может быть и речи) позволило сохранить рукописи для потомков.
Картины великих мастеров прошлого, написанные красками, составленными на основе растительных и животных жиров, тоже подвергаются атаке и разрушаются. Ведь составные части лаков и красок служат благоприятной питательной средой для развития микроорганизмов. Пострадавшими могут оказаться не только картины. Микробной атаке подвергаются, к сожалению, все музейные ценности, а также изделия из дерева, текстиля, металла и памятники архитектуры. Все они нуждаются в защите от микроорганизмов. На сырых стенах зданий известный русский микробиолог Б. Л. Исаченко обнаружил тионовые бактерии и высказал предположение (впоследствии подтвердившееся) об их возможной роли в гибели архитектурных сооружений. С деятельностью бактерий английские микробиологи связывают разрушение стен шедевра английской архитектуры – Вестминстерского аббатства. Плесень уничтожает фрески и витражи знаменитого Кентерберийского собора, созданные в XII–XV вв.
Крупнейшее в мире собрание чертежей, рисунков и рукописей Леонардо да Винчи в Милане поражено грибком. Шедеврам доисторической живописи – росписям пещеры Ласко в южной Франции, датируемым XV тысячелетием до новой эры, угрожает грибок Fusarium solani.
От обычных воров есть защита: сейфы и сигнализационные системы различной степени надежности. Абсолютной защиты от микроорганизмов нет. Самым надежным средством было бы их устранение, но чаще всего такая задача практически невыполнима. И это объясняется не только вездесущностью микробов, но и тем, что не все предметы искусства могут быть подвергнуты жесткой бактерицидной обработке. Поэтому единственное, что в этом случае остается на вооружении в борьбе с этими расхитителями музейных ценностей, – максимальная изоляция предметов искусства, включая их покрытие непроницаемым для микроорганизмов барьером. И чем она надежнее, тем больше шансов на сохранение шедевров мирового искусства для будущих поколений. Вот почему одеваются в стекло и пластик уникальные скульптуры Летнего сада в Санкт-Петербурге и мраморные львы Воронцовского дворца в Алупке. Вот почему серьезно стоит вопрос о сокращении числа посетителей музеев, чтобы сохранить для потомков шедевры ушедших веков.
Глава 8
Геология рядом с нами
На дне лесных озер, на болотах и речных плесах порой можно заметить рыхлый осадок цвета ржавчины. Если осторожно извлечь этот осадок, не нарушив его структуры, то даже при небольшом увеличении, под лупой можно различить тончайшие нитевидные образования различных оттенков, от желтого до темно-коричневого, причудливым образом переплетенные в комки, напоминающие вату. На первый взгляд может показаться, что ржавчина образовалась из случайно попавшего сюда куска железа. Однако это не так. Рассматривая комочки при большем увеличении, мы заметим множество палочковидных клеток, из которых состоят нити. Клетки покрыты слоем гидрата окиси железа, который и придает им цвет ржавчины. Откуда же взялось в воде такое его количество?
Железо – один из самых распространенных элементов в природе. Оно встречается в виде окисных и закисных соединений, причем закисные значительно лучше растворяются в воде, чем окисные. Таким образом, наличие в воде растворимых соединений легко объяснить. Они попадают в нее, вымываясь из различных железосодержащих минералов. Но откуда в воде берутся нерастворимые окисные формы железа, непонятно. Тем более что переход закисных форм в окисные происходит очень медленно и в экспериментальных условиях в растворе двухвалентного железа осадок трехвалентного железа если и образуется, то в очень небольших количествах. Следовательно, в природной среде что-то ускоряет процесс окисления железа и его переход в нерастворимые соединения. Этим ускорителем оказались микроорганизмы.
Рассматривая под микроскопом уже упомянутые нами нити железистой ваты, можно разглядеть внутри них живые клетки, которые в процессе роста покрываются слоем окислов железа. Одеваясь в такую железную броню, микроорганизмы сами себе прекращают доступ кислорода и в погоне за лучшими условиями жизни как бы вылезают из брони, оставляя наблюдателю рыхлые осадки окислов железа. Со временем эти осадки накапливаются на дне водоемов и, уплотняясь под тяжестью собственного веса и давления воды, образуют месторождение бурого железняка. Еще в XVIII в. шведский ученый Э. Сведенборг отмечал удивительный факт регенерации месторождений железной руды на уже выработанных участках через 24 года. Действительно, для образования промышленного месторождения нужно очень много лет. Однако в микроколичествах образование «месторождения» может наблюдать каждый, у кого есть немного терпения и наблюдательности. Вот вам и геологические процессы на дому.
Глава 9
Пятью хлебами
Как химик, я убежден в возможности получения питательных веществ из сочетания элементов воздуха, воды и земли, помимо обычной культуры, то есть на особых фабриках и заводах.
Д. И. Менделеев
Проблема питания – одна из самых острых, которые стояли и стоят перед человечеством. Среднесуточное потребление белка – главнейшего компонента пищи – в различных странах колеблется от 50 до 100 г на душу населения. Всего на земном шаре живут около 7 млрд человек. Простое арифметическое действие – умножение – дает астрономическую цифру ежедневной потребности в белке. Уже сейчас 400 млн людей голодает, дефицит белка в мире составляет миллионы тонн и продолжает расти.
Синтез белка растениями находится в зависимости от погодных условий и качества посевных площадей. Можно, конечно, их увеличить и добиться повышения урожайности для повышения сборов растительного белка. Однако в настоящее время лучшие почвы в основном уже освоены, и расширение пахотных земель если еще и возможно, то лишь за счет освоения менее плодородных почв, где урожаи будут значительно ниже. Все это говорит о том, что даже само по себе увеличение посевных площадей в настоящее время не приведет к решению проблемы питания. Необходимо использовать новые подходы.
С детства мы знаем легенды, герои которых удивительным образом справляются с этой задачей. Все, наверное, помнят сказку братьев Гримм о волшебном горшочке. Девочке из бедной семье его подарила старушка, которую она повстречала в лесу. Стоило только сказать: «Раз, два, три, горшочек, вари», как он начинал варить вкусную сладкую кашу. Или не менее удивительный вариант, описанный в Евангелии: «…Он взял пять хлебов и две рыбы, воззрев на небо, благословил и преломил хлебы, и дал ученикам Своим, чтобы они роздали им…. И ели все и насытились… Было же евших хлебы около пяти тысяч мужей». Не правда ли, чудо? Но ведь мы привыкли к тому, что в наше время сбываются самые невероятные мечты наших предков. Оказалось, что и евангельское «чудо» с пятью хлебами не так уж невозможно. Для этого нужно использовать синтетические способности микроорганизмов – биологических объектов с наиболее интенсивным уровнем обменных процессов.
Действительно, 5 кг дрожжевых клеток, размножаясь, дают в течение суток биомассу, равную среднему весу двух коров. Ею уже можно накормить несколько тысяч человек, особенно если учесть, что примерно половину веса дрожжевых клеток составляет белок. Вот вам и пять хлебов, которыми Христос накормил пять тысяч мужей. Элементарные расчеты показывают, что такое «чудо» вполне возможно. Нужно только найти микроорганизм, способный вести интенсивный синтез белка, снабдить его исходным сырьем, создать необходимые условия для роста – и проблема будет решена.
Промышленное производство белка с помощью микроорганизмов не требует посевных площадей, не зависит от климатических и погодных условий и позволяет получать продукцию стандартного качества. Однако здесь есть свои трудности: это проблема и сырья, и высокого содержания в получаемом продукте наряду с белками нежелательных нуклеиновых кислот. Однако и эти проблемы успешно решаются или уже решены. Показано, что прием в пищу 20–30 г дрожжей, что соответствует приему 2 г нуклеиновых кислот, не оказывает вредного воздействия на человеческий организм. Кроме того, содержание нуклеиновых кислот в биомассе дрожжей может быть значительно снижено за счет специальной обработки. Что касается сырья, то и эта проблема частично решена, так как выращивание дрожжей может проводиться на питательных средах, содержащих этиловый или метиловый спирты, а также газ и другое углеводородное сырье.
Человечество узнало об этиловом спирте тысячи лет тому назад. Фрукты или фруктовые соки, содержащие углеводы, превращались попавшими из воздуха микроорганизмами в этиловый спирт. Такой процесс называется брожением, и он был известен еще нашим далеким предкам, которым, очевидно, понравились перебродивший сок и его последующее действие. С тех пор производство спирта возросло до миллионов тонн, но, конечно, не весь он идет на производство веселящих напитков. Спирт – важное сырье для химической промышленности, и ее потребности до недавнего времени определяли масштабы его производства. В последние годы к уже известным потребителям спирта прибавился еще один – микроорганизмы. При этом имеет место следующая взаимосвязь, изображенная на схеме:
Одни микроорганизмы превращают углеводы растительного происхождения, образующиеся в результате фотосинтеза, в спирт, а другие используют его для получения белка. Исходное сырье – углеводы – может быть получено почти в неограниченных количествах в районах, в которых производство растительного сырья не представляет проблем, например в тропиках. Процессы, представленные на этой схеме, позволяют использовать даровую солнечную энергию для биосинтеза белка. Наверное, следует более подробно остановиться на проблеме микробного белка и причинах, вызвавших к нему значительный интерес. Дело в том, что хотя растительные корма и содержат достаточное количество белка, его качество не может удовлетворить пищевые потребности человека из-за отсутствия в нем некоторых «незаменимых» аминокислот. Так, белки пшеницы бедны лизином, белки гороха – метионином, а белки кукурузы – триптофаном. Нехватка этих аминокислот в пище может быть восполнена добавлением белков микробного происхождения, что даст возможность обеспечить полноценным питанием человека и животных.
Не следует думать, что использование микробного белка превратит человека в поедателя дрожжей. Существует множество пищевых производств, нуждающихся в белковых добавках: это и хлебопечение, и животноводство, и рыбоводство.
И все же, несмотря на впечатляющие успехи микробиологического синтеза, основным поставщиком пищи является сельское хозяйство, объем продукции которого достиг 5 млрд тонн. В связи с ростом народонаселения к 2025 г. этот показатель должен быть увеличен на 50 %.
Предыдущее значительное повышение урожайности зерновых и риса – так называемая «зеленая революция» – было достигнуто за счет распространения высокоурожайных короткостебельных сортов пшеницы и риса. Признак короткостебельности контролируется генетически и легко передается при гибридизации, что в значительной степени облегчает селекцию новых высокоурожайных сортов. «Зеленая революция» сняла висящий над многими странами дамоклов меч голода и помогла накормить азиатские страны, численность населения которых за последние 40 лет увеличилась вдвое (с 1,6 до 3,5 млрд человек).
Норман Борлоуг – отец «зеленой революции» – понимал ее не только как использование новых высокоурожайных сортов, но и как начало новой эры развития сельского хозяйства, основанной на широком внедрении новейших достижений науки в практику сельского хозяйства.
И действительно, если во времена «зеленой революции» селекция проводилась по одному признаку – короткостебельности, то сейчас генетическая инженерия растений может отбирать и вводить в них отдельные гены, ответственные за устойчивость к недостатку или избытку влаги, насекомым-вредителям, гербицидам, а также к жаре или холоду. Можно создавать растения, способные снабжать себя азотными удобрениями, как это делают азотофиксирующие микроорганизмы, или содержащие питательные вещества в заданных пропорциях.
Таким образом, успехи микробиологии и генетической инженерии растений могут сыграть роль тех «пяти хлебов», которыми можно досыта накормить все человечество.