355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Майк Тули » Справочное пособие по цифровой электронике » Текст книги (страница 7)
Справочное пособие по цифровой электронике
  • Текст добавлен: 6 апреля 2017, 06:30

Текст книги "Справочное пособие по цифровой электронике"


Автор книги: Майк Тули



сообщить о нарушении

Текущая страница: 7 (всего у книги 8 страниц)

2.6. Тестер цифровых микросхем

Тестер цифровых микросхем позволяет проверить большинство распространенных КМОП– и ТТЛ-элементов без удаления их из схем, Прибор рассчитан на микросхемы с 14-контактным корпусом и «стандартным» подключением питания (контакт – земля, контакт 14 – 4–5 В). При желании его несложно переделать для микросхем с 16-контактным корпусом и другим подключением питания.

Чтобы проверить ту или иную микросхему, требуется работоспособная микросхема такого же типа и схема разводки ее контактов.

Описание схемы. До рассмотрения схемы тестера целесообразно изучить принцип его работы. Он довольно прост: логическая функция проверяемой микросхемы дублируется аналогичной исправной микросхемой и затем сравниваются выходные сигналы двух микросхем.

Для сравнения используется логический элемент, реализующий функцию исключающее ИЛИ (см. гл. 2). Если входы этого элемента одинаковы, на выходе появляется напряжение низкого уровня, а если входы различаются – на выходе действует напряжение высокого уровня.

Электрическая схема тестера показана на рис. П2.12.


Рис. П2.12.Принципиальная электрическая схема тестера микросхем. Числа около переключателей S14 и S15 относятся к надписям на лицевой панели прибора и выбору контактов тестового гнезда SK1.

Сигналы от проверяемой микросхемы берутся с помощью клипсы («захвата»), которая подсоединяется к тестеру коротким ленточным кабелем через гнезда SK2 15-контактного разъема типа D. Линии, на которых действуют логические сигналы (они соответствуют контактам 1–6 и 8—13) у подведены к однополюсным тумблерам S1—S13, за исклчением S7. Тумблеры пронумерованы в соответствии с номерами контактов микросхемы.

Тумблеры S1—S13 (за исключением S7) упрощают соединение контактов проверяемой микросхемы с соответствующими контактами эталонной микросхемы, которая вставляется в гнездо SK2. Подчеркнем, что при обычной работе с помощью тумблеров соединяются только входные контакты. Например, при проверке микросхемы 7400 (четыре двухвходовых элемента НЕ-И) во включенном состоянии должны находиться тумблеры 1, 2, 4, 5, 9, 10, 12 и 13.

Выходные сигналы, используемые для сравнения, выбираются с помощью переключателей S14 (внешние) и S15 (внутренние). Например, при проверке микросхемы 7400 переключатели нужно поочередно ставить в положения 3, 6, 8 и 11. Результат сравнения индицируется светодиодом D1, который светится при напряжении низкого уровня на выходе микросхемы IC1. Такое напряжение получается при идентичных входных сигналах и показывает, что обе микросхемы работают одинаково. Тумблер S7 служит для подачи питания на тестер, а светодиод D2 сигнализирует о наличии питания. Конденсатор С1 предназначен для развязки.

Монтаж. Собрать тестер довольно просто, но для этого необходимо выполнить гораздо больший объем монтажных работ, чем в предыдущих случаях. Сначала требуется разметить лицевую панель, просверлить отверстия, установить органы управления и индикаторы, а затем приступить к монтажу основной платы. Гнездо SK1 размещается на печатной плате (точные ее размеры не играют роли) и крепится на стойках так, чтобы оно выглядывало через небольшое прямоугольное отверстие в лицевой панели. Гнездо впаивается в печатную плату. Проводники между противоположными сторонами разрезаются в семи местах с помощью кусачек или сверла (дрели) и соединяются проводами с переключателями (рис. П2.13).


Рис. П2.13. Соединения между схемной платой и компонентами на лицевой панели. Монтаж тумблеров S1—S10 аналогичен показанному для S11—S13.

Элементы IC1d, RU R2 и С1 монтируются на небольшом куске печатной платы (19 полосок с 17 отверстиями). Монтажная схема всех элементов показана на рис. П2.14.


Рис. П2.14. Монтажная схема для платы Veroboard.

Монтаж платы осуществляется в следующей последовательности: гнездо IС, перемычка, конденсатор, резисторы и пистоны. После монтажа необходимо тщательно осмотреть плату. Затем она крепится непосредственно под гнездо SK1 с помощью двух стоек. Микросхема IC1 вставляется в гнездо с соблюдением ее правильной ориентации. После этого завершается остальной монтаж схемы в соответствии с рис. П2.13.

На лицевой панели прибора устанавливаются органы управления, переключатели, индикаторы и разъем. Целесообразно сначала вырезать шаблон и приклеить его к лицевой панели. Клипса 1C соединяется с 15-контактным разъемом типа D при помощи ленточного кабеля длиной около 500 мм. Все подключения к разъему осуществляются в соответствии с данными табл. П2.2.


Для изолирования паек на клипсе целесообразно использовать короткие теплостойкие насадки, а для лучшей идентификации – кабель с разноцветными проводами.

Как всегда, после окончания внутреннего монтажа его нужно тщательно проверить, особенно цепи гнезд SK1 и SK2. Все тумблеры следует установить в выключенное положение.

Проверка. Для проверки прибора требуется работающее устройство с микросхемами логических элементов в 14-контактных корпусах и исправная эталонная микросхема. Желательно иметь дело с низкочастотным устройством, так как распределенные паразитные емкости кабеля и самого тестера при совместной работе с быстродействующими устройствами могут вызвать определенные трудности.

Предположим, что для первой проверки выбрана микросхема 7400. Для начала нужно вставить эталонную микросхему в гнездо SK1, выключить питание устройства и подключить клипсу, обращая внимание на контакт 1. Затем подключить входы, пользуясь тумблерами S1—S13, и подать питание на устройство. Тумблер S7 следует перевести в положение «Вкл.» (см. рис. П2.12) и проверить свечение светодиода D2. Если он не светится, выключите питание и проверьте монтаж, включая ленточный кабель, разъем и клипсу.

Убедившись в том, что питание на тестер подается, переведите оба сравнивающих переключателя S14 и S15 в положение 3 (выход первого элемента НЕ-И). Проверьте, светится ли D1 при всех режимах работы проверяемого устройства. Если он не светится или вспыхивает, то одна из микросхем неисправна (однако причиной неисправности может быть и неправильный монтаж схемы). Повторите аналогичную проверку для всех четырех выходов микросхемы (S14 и S15 в положениях 6, 8 и 11) и убедитесь в том, что все четыре элемента НЕ-И дают один и тот же результат.

Тестер можно использовать и «наоборот», т. е. для проверки микросхемы, находящейся в гнезде, а не на плате. Для этого подозрительную микросхему нужно вставить в гнездо SK1, а клипсу с эталонной микросхемой – в гнездо на печатной плате. Дальнейшая процедура проверки аналогична описанной выше.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R2 = 2,470 Ом; конденсатор С1 = 10 мкФ (электролитический, 16 В); полупроводниковые приборы: IC1 – 74LS86; D1 – красный светодиод (с линзой); D2 – зеленый светодиод (с линзой).

Дополнительные детали: S1—S6/S8—S13 – миниатюрные однополюсные тумблеры на два положения (12 шт.); S7 – поворотный однополюсный переключатель на два положения; S14, S15 – круговой переключатель на 12 положений (2 шт.); SK1—14-контактное гнездо; SK2 – вставка разъема типа D на 15 контактов, монтирующаяся на шасси; PL1 – разъем типа D на 15 контактов для монтажа кабеля; клипса для микросхем с 14 контактами; 14-контактное гнездо (2 шт.); ленточный кабель с 14 проводами длиной 500 мм; корпус типа Verobox с размерами 205x140x110 мм (номер детали 202-21033А); плата типа Veroboard с размерами 95x63 мм (номер детали 801-21070Н); пистоны односторонние диаметром 1мм (7 шт.); изолирующие стойки (2 шт.); крепеж (болтов 2 шт., гайки 6 шт.); ручка.

Разводка контактов распространенных микросхем приведена в приложении 1.

2.7. Индикатор тока

Предлагаемый прибор предназначен для индикации относительных значений токов в печатных проводниках без их разрыва и подключения обычного амперметра. Чувствительность прибора такова, что он может воспринимать ток до нескольких миллиампер и допускает сопряжение с проверяемой схемой по постоянному и переменному току.

Действие промышленных индикаторов тока основано на одном из двух принципов: восприятие небольшого падения напряжения на проводнике с током и использование эффекта Холла для фиксации магнитного поля, существующего в непосредственной близости от проводника с током.

В общем, индикаторы тока с использованием эффекта Холла лучше, так как не требуют прямого контакта с печатными проводниками. К сожалению, такие приборы довольно дороги.

Описание схемы. Электрическая схема индикатора тока показана на рис. П2.15.


Рис. П2.15. Принципиальная электрическая схема индикатора тока.

Прибор фиксирует небольшое падение напряжения вдоль печатного проводника (обычно несколько сот микровольт) и представляет собой инвертирующий операционный усилитель. Чтобы обеспечить широкий диапазон входных напряжений (от нескольких микровольт до сотен милливольт), операционный усилитель работает в режиме с логарифмической характеристикой, т. е. его коэффициент усиления по напряжению значительно уменьшается с увеличением уровня входного сигнала.

Тумблером S1 выбирается сопряжение входа микросхемы IC1 по постоянному или переменному току, а потенциометром VR1 обеспечивается дополнительная ручная регулировка усиления (чувствительности). Мостовой выпрямитель D1—D4 подает на измерительный прибор сигнал правильной полярности независимо от полярности входного сигнала. Диоды D5 и D6 служат ограничителями, а конденсатор С3 определяет постоянную времени.

Вход «половинного» питания для операционного усилителя формируется с помощью стабилитрона D4 и резистора R7. Конденсаторы С2 и С4 служат для развязки, а светодиод D8 сигнализирует о включенном питании.

Монтаж. Собрать индикатор тока несложно. Все его элементы, за исключением батарейного соединения, собственно измерительного прибора, гнезда пробника и органов управления, монтируются на стандартной печатной плате типа Veroboard (24 полоски с 23 отверстиями). Монтажная схема для платы Veroboard показана на рис. П2.16.


Рис. П2.16. Монтажная схема индикатора тока. Для микросхемы IС1 на плате устанавливается держатель. Выход VR1 (W) соединяется с центральным лепестком потенциометра.

Под гнездом микросхемы IC нужно сделать четыре-разрыва печатных проводников.

Монтаж элементов производится в следующей последовательности: гнездо микросхемы, перемычки, конденсаторы, резисторы, диоды и пистоны. После монтажа необходимо тщательно проверить плату, обратив особое внимание на ориентацию электролитических конденсаторов, диодов и выпрямителя.

Плата укрепляется горизонтально в корпусе Verobox с помощью четырех коротких изолирующих стоек, а микросхема аккуратно вставляется в гнездо.

Измерительный прибор, органы управления и гнезда пробника размещаются на лицевой панели, куда наносятся и все необходимые надписи. Соединения с лицевой панелью осуществляются короткими изолированными проводами в соответствии с монтажной схемой, показанной на рис. П2.17.


Рис. П2.17. Соединения компонентов, монтируемых на лицевой панели. Резистор R5 припаивается к металлическому корпусу потенциометра VR1.

Проверка. Прежде всего следует проверить правильность монтажа индикатора тока, обратив особое внимание на подключение батареи и измерительного прибора. Затем нужно подключить батарею РРЗ (или аналогичную) и включить питание. Светодиод D8 своим свечением сигнализирует о наличии питания. С помощью мультиметра на диапазоне 10 В убедитесь, что напряжение на D7 составляет от 4,5 до 5 В. В противном случае просмотрите все соединения и монтажную схему на плате Veroboard.

Для правильной работы прибора необходимо обеспечить его надежный контакт с печатным проводником. С этой целью купите или сделайте два зонда. К каждому зонду подсоедините провод, заканчивающийся штырьком диаметром 2 мм. Проверка зондов производится в соответствии со схемой, показанной на рис. П2.18.


Рис. П2.18. Схема для проверки индикатора тока.

Батарея с напряжением 1,5 В обеспечивает падения напряжения в соответствующих контрольных точках, равные 100 мкВ, 1 и 100 мВ.

Установите максимальную чувствительность прибора (потенциометр VR1 поверните по часовой стрелке до упора) и коснитесь зондами точек А и D. Стрелка измерительного прибора при этом должна отклониться на всю шкалу, т. е. показать примерно 1 мА. Затем коснитесь зондами точек В и D. Прибор покажет примерно 0,6 мА.

Наконец, при касании зондами точек С и D прибор должен показать приблизительно 0,3 мА. Отметим, что индикатор тока нечувствителен к полярности и зонды маркировать не нужно.

Работа с прибором. Убедившись в правильности функционирования индикатора тока, необходимо его как следует освоить. Для этого потребуется печатная плата (с поданным питанием), содержащая разнообразные ТТЛ-микросхемы, и ее подробное описание.

Зондами индикатора тока нужно поочередно касаться печатных проводников (питания) и наблюдать за показаниями прибора. На плате со стандартными ТТЛ-микросхемами индикатор должен фиксировать заметное отклонение стрелки, когда расстояние между зондами составляет примерно 10 мм. Конечно, при увеличении расстояния между зондами отклонение должно увеличиваться. После приобретения некоторого практического опыта вы сможете делать обоснованное предположение о значении тока, потребляемого каждой микросхемой в отдельности.

Индикатор тока используется также для обнаружения дефектов в разъемах (касаются зондами разъемного соединения с разных сторон и наблюдают за показаниями прибора), высокоомных соединений и недостаточной фильтрации. В последнем случае прибор требуется перевести в режим переменного тока и коснуться зондами шины питания и земли.

Компоненты.Резисторы (угольные, 0,25 Вт, 5 %): R1 = R2 = R4 = R5 = 1 кОм; R5 = 100 Ом; VR1 = 100 кОм (линейный, угольный); конденсаторы: С1 = 4 мкФ (танталовый, 35 В); С2 = С4 = 100 мкФ (электролитический, 16 В); С3 = 10 мкФ (электролитический, 16 В); полупроводниковые приборы: IC1—741; D1—D4 – ОА91; D5, D6 – 1N4148; D7 – BZY88C4V7; D8 – красный светодиод (с линзой).

Дополнительные детали: S1, S2 – миниатюрный однополюсный тумблер на два положения; SK1 – гнездо диаметром 2 мм (красное); SK2 – гнездо диаметром 2 мм (черное); 8-контактное гнездо для микросхемы; корпус типа Verobox с размерами 205x140x110 мм (номер детали 202-21033А); плата типа Veroboard с размерами 65x63 мм (24 полоски с 23 отверстиями), отрезается от детали с номером 801-21070Н; односторонние пистоны диаметром 1 мм (8 шт.); изолирующие стойки (4 шт.); крепеж (болты 4 шт., гайки 4 шт.); ручка; измерительный миллиамперметр с разрешающей способностью 1 мА; держатель для батареи РР3; зонды (2 шт.).

2.8. Звуковой логический индикатор

Звуковой логический индикатор позволяет пользователю прослушивать сигналы, действующие в микропроцессорной системе. Другими словами, он представляет собой альтернативу обычного логического пробника, который обеспечивает только визуальную индикацию логических состояний и, следовательно, не позволяет сделать обоснованного предположения о поведении импульсного сигнала в проверяемой линии.

Прослушивая сигналы в микропроцессорной системе, можно разобраться, что в ней происходит. С помощью звукового индикатора удается не только зафиксировать активность в конкретной линии, но и оценить частоту импульсов и наличие в сигнале периодичности. По звуку можно различать сигналы на отдельных линиях шины, синхронизации и разрешения микросхем. Каждому, кто еще сомневается в возможностях этого простого прибора, но регулярно занимается отладкой микропроцессорных систем, мы советуем собрать звуковой логический индикатор.

Описание схемы. Принцип действия звукового логического индикатора довольно прост. Высокочастотные сигналы, действующие в микропроцессорной системе, преобразуются в сигналы более низкой звуковой частоты с помощью двоичного делителя частоты. Выходные сигналы делителя формируются и подаются на обычный усилитель звуковой частоты.

Электрическая схема звукового логического индикатора показана на рис. П2.19.


Рис. П2.19. Принципиальная электрическая схема звукового логического индикатора.

Микросхема IC1 (КМОП-делитель) осуществляет деление частоты входных сигналов на 1024 (210). Цепочка R1, D1 и D2 защищает IC1 от чрезмерных входных напряжений (максимум ±50 В). Микросхема IC2 представляет собой усилитель звуковой частоты с фиксированным коэффициентом усиления. Частотная характеристика этого усилителя постоянна в диапазоне от нескольких герц до 20 кГц и больше.

Монтаж. Все компоненты индикатора монтируются на куске печатной платы (10 полосок с 37 отверстиями), который легко отрезать от стандартной платы Veroboard. Монтажная схема прибора приведена на рис. П2.20.


Рис. П2.20. Монтажная схема звукового логического индикатора.

Всего на плате нужно сделать 20 разрывов печатных проводников.

Рекомендуется следующая последовательность сборки: гнезда IС, выходные пистоны, перемычки, резисторы, диоды и конденсаторы. Динамик монтируется в верхней части корпуса пробника, для чего вырезается отверстие диаметром примерно 14 мм, а приклеивается динамик эпоксидной смолой. Затем подсоединяются провода питания с соблюдением правильной полярности, красный провод с зажимом типа «крокодил» подключается к источнику +5 В.

Прежде чем вставить микросхемы в гнезда и закрепить плату, нужно внимательно осмотреть ее и проверить перемычки и разрывы печатных проводников, правильную ориентацию полярных компонентов (диоды и электрические конденсаторы), отсутствие выплесков припоя и закорачиваний печатных проводников.

После проверки платы две микросхемы вставляются в гнезда и плата закрепляется в корпусе. При этом не требуется никаких дополнительных приспособлений, так как плата плотно зажимается при соединении двух половин корпуса. Держатель зонда соединяется со входом прибора, а сам зонд закрепляется в держателе.

Проверка. Эта операция производится на функционирующей микропроцессорной системе, например на домашнем компьютере.

Питание его берется из удобной точки основного блока питания.

Когда зонд индикатора ничего не касается, никаких звуков не слышно. После прикосновения зондом к выходу генератора синхронизации (идеально подходит частота синхронизации от 1 до 4 МГц), слышен «чистый» тон с частотой 1–4 кГц. Если коснуться зондом одной из линий данных, то возникнет резкий звук (с частотой от 100 Гц до 1 кГц).

В том случае, если прибор не издает никаких звуков, необходимо вынуть печатную плату из корпуса и тщательно проверить ее, обратив внимание на ориентацию полярных компонентов (диодов, электролитических конденсаторов, микросхем) и правильность перемычек и разрывов.

Целесообразно прослушать генерируемые индикатором звуковые сигналы при касании зондом следующих точек в микропроцессорной системе: остальных линий шины данных; линии шины адреса (улавливаете ли вы различия между сигналами от старших и младших линий адреса?), линии шины управления (включая линии считывания и записи), линии разрешения микросхем.

Компоненты.Резисторы (угольные, 0,25 Вт, 5 %): R1 = R3 = 3 кОм; R2 = 22 кОм; R4 = 220 Ом; конденсаторы: С1 = 10 мкФ (танталовый, 25 В); С2 = 0,1 мкФ (полистироловый); С3 = 10 мкФ (электролитический, 16 В); С4 = 10 мкФ (электролитический, 25 В); С5 = 100 мкФ (электролитический, 16 В); С6 = 220 мкФ (электролитический, 16 В); полупроводниковые приборы: IC1 – 4020В; IC2 – ТВА820М; D1, D2 – 1N4148; D3– 1N4001.

Дополнительные детали: динамик с сопротивлением 8 Ом; гнездо для микросхемы 8-контактное (1 шт.); гнездо для микросхемы 16-контактное (1 шт.); корпус с размерами 140x30x20 мм; односторонние пистоны диаметром 1 мм (5 шт.); плата типа Veroboard с размерами 95x63 мм.

2.9. Врезка для интерфейса RS-232C

Это несложное устройство не только дает пользователю возможность изменять конфигурацию системы RS-232C, но и позволяет просмотреть разнообразные сигналы, а также выявить наиболее характерные отказы.

За последние несколько лет появилось довольно много схем подобных устройств. Одни из них обладают минимальными возможностями, например только индицируют состояния сигнальных линий, а другие показывают скорость передачи в бодах и автоматически определяют конфигурацию системы RS-232C в терминах DTE и DCE.

Предлагаемое устройство спроектировано с расчетом его изготовления в домашних условиях. С его помощью одновременно индицируются как MARK или SPACE логические состояния на любых двух линиях, подключается любая линия к любой другой линии (с любой стороны интерфейса), задается на любой линии состояние MARK или SPACE, подключается к любой линии внешнее оборудование, например осциллограф, цифровой счетчик, генератор импульсов и т. п., устройство полностью автономно и работает от внутренних батарей.

Описание схемы. Упрощенная схема врезки для интерфейса RS-232C показана на рис. П2.21.


Рис. П2.21. Упрощенная схема врезки. Отметим, что основная земля и сигнальная земля соединяются и подключаются к нулевому потенциалу (шасси).

Схема симметрична относительно зоны соединений (с каждой стороны интерфейса). Соединения в этой зоне осуществляются с помощью перемычек для печатных плат или коротких проводов, заканчивающихся штекерами диаметром 1 мм. К зоне соединений подводятся также точки с уровнями постоянного напряжения, соответствующими состояниям MARK и SPACE.

Шесть наиболее важных сигнальных линий (TXD, RXD, RTS, CTS, DSR и DTR) с каждой стороны интерфейса подаются на выбирающий переключатель. Выход переключателя связан со схемой обнаружения МАRК/SPACE, а также с разъемом ввода-вывода для внешнего контрольно-измерительного прибора. Седьмое положение переключателя используется только по мере необходимости для передачи остальных сигналов из зоны соединений в схему обнаружения MARK/SPACE.

Электрическая схема врезки для интерфейса RS-232C приведена на рис. П2.22.


Рис. П2.22. Принципиальная электрическая схема врезки для интерфейса RS-232C.

Абсолютно симметричная схема для другой стороны интерфейса на рисунке не показана, а номера ее соответствующих компонентов отличаются от показанных на 100, например S1 и S101.

Сигналы из зоны соединений выбираются с помощью переключателей S1 и S101. Микросхемы IC1a и IC1b действуют как компараторы; на их выходах образуются высокие уровни, когда входное напряжение больше +3 В или меньше —3 В соответственно. Диоды D1—D4 обеспечивают защиту от входных напряжений, превышающих положительное и отрицательное максимальное напряжения питания (максимальное напряжение в интерфейсе RS-232C равно ±25 В). Стабилитроны D7 и D8 образуют эталонные напряжения для компараторов, т. е. минимальное напряжение для SPACE и максимальное напряжение для MARK. С помощью D5 и D6 преодолевается ограничение используемого операционного усилителя, когда входное напряжение близко к отрицательному напряжению питания. Питание схемы обеспечивают две сухие батареи по 9 В каждая, а светодиод D11 сигнализирует о включенном питании.

Монтаж. Две схемы обнаружения MARK/SPACE монтируются на двух кусках печатной платы с размерами 60x64 мм (24 полоски с 23 отверстиями). Их можно отрезать от стандартной платы Veroboard. Монтажная схема платы показана на рис. П2.23, причем необходимо сделать 23 разрыва печатных проводников.


Рис. П2.23. Монтажная схема врезки для платы Veroboard.

Рекомендуется следующая последовательность монтажа: гнезда для микросхем, пистоны, перемычки, резисторы, диоды и конденсаторы. После монтажа тщательно проверьте плату и вставьте микросхемы в гнезда, конечно, обратив внимание на их правильную ориентацию.

Монтаж компонентов на лицевой панели показан на рис. П2.24.


Рис. П2.24. Монтаж на лицевой панели. Гнезда из зоны соединений припаиваются к соответствующим контактам S1 и S101.

Зона соединений представляет собой матрицу из 62 гнезд диаметром 1 мм. Размещение гнезд должно напоминать два 25-контактных разъема типа D (SK1 и SK2), а сами гнезда соединяются с соответствующими контактами. При разметке лицевой панели под гнезда выдержите расстояние по горизонтали 10,16 мм, а по вертикали 7,62 мм.

Необходимо соединить два гнезда, соответствующих контакту 1 (защитная земля), с двумя гнездами, соответствующими контакту 7 (сигнальная земля). Оба земляных гнезда (контакты 1 и 7) соединяются с линией нулевого потенциала лицевой панели в любой удобной точке.

Шесть соединений от выбирающих переключателей S1 и S101 с гнездами выполняются в соответствии с табл. П2.3.


После завершения монтажа зоны соединений над ней при помощи четырех стоек подходящей длины укрепляется плата. К задней стенке корпуса прикрепляется держатель для батарей. Питание от батарей к лицевой панели подводится с зажимами на конце. Внешний вид и маркировка лицевой панели показаны на рис. П2.25.


Рис. П2.25. Лицевая панель врезки для интерфейса RS-232C.

Проверка. Первоначальную проверку врезки для интерфейса RS-232C следует выполнить без ее подключения к микрокомпьютеру.

Вставьте две новые батареи типа РРЗ и включите устройство, о наличии питания должен сигнализировать светодиод D11. Переключатели S1 и S101 должны находиться при этом в положении Передача; оба светодиода MARK и SPACE светиться не должны. Поочередно подайте в гнезда Передача с каждой стороны зоны соединений сигналы от гнезд MARK и SPACE. При этом должен, светиться соответствующий светодиод; если он не светится, тщательно проверьте монтаж, включая и соединения с печатной платой.

Затем устройство необходимо проверить в паре с работающим микрокомпьютером. Оно включается последовательно в сигнальный тракт RS-232C с помощью коротких ленточных кабелей, оканчивающихся соответствующими 25-контактными разъемами. Конфигурация устройства устанавливается для обычной работы, т. е. соединяются перемычками гнезда 2–6 и 20. Первоначально целесообразно задать самую медленную скорость передачи, например 50 бод, и «заставить» систему передавать в периферийное устройство файл подходящей длины. Затем необходимо просмотреть сигналы на всех линиях и реакцию системы на разрыв некоторых линий, в частности RTS и CTS.

Компоненты. Резисторы (угольные, 0,25 Вт, 5 %): R1 = R4 = R7 = R8 = 1 кОм; R101 = R104 = R107 = R108 = 1 кОм; R5 = R6 = R105 = R6 = 4,7 кОм; R9 = R11 = R109 = R110 = 270 Ом; конденсаторы: С1 = С2 = 10 мкФ (танталовые, 25 В); полупроводниковые приборы: IC1, IC101 – TL082; D1—D4, D6, D101—D104, D106 – 1N4148; D5, D105 – BZY88C3V9; D7, D8, D107, D108 – BZY88C3V0; D9, D109 – зеленые светодиоды; DIO, Dll, D110 – красные светодиоды.

Дополнительные детали: S1, S101 – поворотные однополюсные переключатели на 12 положений (ограничитель поставлен на семь положений); S2 – миниатюрный тумблер, двухполюсный, на два положения; держатели для светодиодов (5 шт.); 8-контактное гнездо для микросхемы (2 шт.); 25-контактный разъем типа D (2 шт.); корпус устройства с размерами 220x156x100 мм; односторонние пистоны (15 шт.); часть печатной платы Veroboard с размерами 60x64 мм; болты, гайки и стойки (4 комплекта); гнезда типа BNC (2 шт.); гнезда диаметром 1 мм (31 черное, 31 красное); перемычки для печатных плат длиной 10,16 мм; ручки (2 шт.); провода для питания ст батареи РРЗ с зажимами (2 шт.).


    Ваша оценка произведения:

Популярные книги за неделю