355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Матвей Бронштейн » Атомы и электроны » Текст книги (страница 1)
Атомы и электроны
  • Текст добавлен: 16 октября 2016, 21:58

Текст книги "Атомы и электроны"


Автор книги: Матвей Бронштейн



сообщить о нарушении

Текущая страница: 1 (всего у книги 11 страниц)

Атомы и электроны

Предисловие редколлегии

Этой книгой Академия наук СССР начинает издание новой серии научно-популярных книг. Предназначены эти книги главным образом для школьников – учеников старших классов. Но мы надеемся, что большинство книг будут интересны и многим другим читателям – учителям, студентам, всем тем, кто интересуется естественными науками, их успехами и историей.

Серия создана по инициативе редколлегии популярного в нашей стране журнала «Квант» и ставит перед собой те же цели, что и этот журнал. Главные из них – формирование у читателя марксистско-ленинского мировоззрения, коммунистических черт личности, пробуждение интереса к активным занятиям физикой, математикой, астрономией и оказание помощи в этих занятиях.

Для того чтобы эти цели были достигнуты, читателю нужно не просто читать книги, но и работать над ними – решать задачи, доказывать теоремы, ставить описанные опыты.

Мы надеемся, что эта серия поможет нашей молодёжи в овладении знаниями, необходимыми теперь в любой сфере их будущей деятельности.

Мы ждём от читателей предложений, замечаний и советов, какие книги следует издать, на какие темы. Все эти предложения будут приняты с благодарностью.

Редколлегия серии

Предисловие редактора

Книга, предлагаемая вниманию читателей, впервые увидела свет в 1935 г. Она предназначалась для школьников старших классов, а её автор был примерно в два раза их старше: Матвею Петровичу Бронштейну в то время не было ещё 30 лет. Он работал в Ленинграде, в теоретическом отделе прославленного Физико-технического института, который справедливо называют колыбелью советской физики. Исследования Бронштейна охватывали целый ряд областей теоретической физики – астрофизику, физику полупроводников и атомных ядер.

Сейчас вошло в моду слово «хобби» – увлечение, часто не имеющее ничего общего с основной профессией человека. Одним из самых сильных увлечений М. П. Бронштейна была популяризация физики. К 1936 г. вышли четыре его книги для юношества. Одна из них особенно полюбилась читателям и сделала имя автора известным далеко за пределами того сравнительно небольшого в 30-е годы круга физиков, в котором Матвея Петровича и без того хорошо знали.

Эта книжка – «Солнечное вещество» – о необыкновенной истории открытия благородного газа гелия – была переиздана в 1959 г. В предисловии к ней Л. Д. Ландау, товарищ Бронштейна по Ленинградскому университету и Физико-техническому институту, писал:

«Книга „Солнечное вещество“, принадлежащая перу безвременно погибшего талантливого физика Матвея Петровича Бронштейна, – незаурядное явление в мировой популярной литературе. Она написана с такой простотой и увлекательностью, что читать её, пожалуй, равно интересно любому читателю – от школьника до физика-профессионала. Раз начав, трудно остановиться и не дочитать до конца».

Л. Д. Ландау убедился в этом на собственном опыте, подготавливая книгу к переизданию. В это время он был ведущим в нашей стране физиком-теоретиком, «профессионалом» самого высокого класса, академиком, Героем Социалистического Труда; в 1962 г. его работы по исследованию жидкого гелия Шведская Академия наук удостоит Нобелевской премии по физике.

Книга М. П. Бронштейна «Атомы, электроны, ядра» отличается теми же высокими достоинствами и блеском, что и «Солнечное вещество». Матвей Петрович сравнивает в ней учёных с искусными сыщиками, умеющими по самым незначительным и незаметным следам раскрывать картину физического явления, задавать Природе такие вопросы, чтобы ответы на них восстанавливали всю цепь событий, приводящих к результату, зафиксированному в искусном эксперименте. Эта книга читается как талантливо, прекрасным языком написанный детективный роман. Только действующие лица этого романа, за которыми следят внимательные и проницательные учёные, не преступники, а атомы, электроны, ядра.

Есть два рода хороших книг. От одних через много лет сохраняется общее благоприятное впечатление, другие же запоминаются даже в деталях. Быть может, это индивидуальная особенность памяти, но, так или иначе, книгу Матвея Петровича, впервые прочитанную более 30 лет тому назад, я сразу же запомнил во всех подробностях. Ещё одно наблюдение: книги, понравившиеся в детстве, могут произвести совершенно иное впечатление при повторном чтении, уже в зрелые годы. Многие из опасения утраты таких впечатлений воздерживаются от перечитывания когда-то любимых авторов и книг – вне зависимости от того, относятся ли эти книги к жанру художественной или научно-популярной литературы. В последнем случае, пожалуй, такие опасения особенно основательны. Ведь за годы, прошедшие от юности до «взрослости», быстро развивающаяся наука может настолько далеко уйти вперёд, что упрощёнными оказываются сами теории и концепции, а не только популярная их трактовка, как бы хорошо она ни была выполнена.

Книги М. П. Бронштейна блестяще выдерживают испытание временем. Через тридцать с лишним лет после первого знакомства с «Атомами, электронами, ядрами» я с не меньшим удовольствием прочёл эту книгу, хотя и по-другому оценивая те или иные её разделы и абзацы. Причина здесь, помимо очевидного таланта Матвея Петровича, которого – вслед за С. И. Вавиловым, Я. И. Перельманом, А. Е. Ферсманом – следует считать одним из пионеров советской научно-популярной литературы, ещё и в том, что из прогресса науки совсем не следует необходимость отказа от всех её предшествующих завоеваний. Развитие исследований в области микромира может служить тому хорошим подтверждением. Открытия Рентгена, Беккереля, супругов Пьера и Марии Кюри, Резерфорда по-прежнему составляют фундамент ядерной физики, являясь первой и замечательной главой её истории.

Необычайно углубились наши сведения об элементарных частицах, из которых построена материя, были открыты – с тех пор, как книга Бронштейна увидела первое издание – десятки новых удивительных частиц, обнаружено явление цепного распада урана, синтезированы заурановые элементы периодической системы Менделеева, нашли техническое применение силы, заключённые в ядрах атомов. Но всё это не поколебало значения всколыхнувших воображение современников открытий, сделанных в последние годы прошлого и первые десятилетия нашего века, о которых и рассказано в книге Бронштейна. В настоящем выпуске «Библиотечки „Квант“» публикуется её первая часть; вторая часть, содержащая увлекательный рассказ о ядрах и их штурме, будет издана позднее.

Теперь – небольшая биографическая справка о Матвее Петровиче Бронштейне. Он родился в 1906 г. в Виннице в семье врача. Его детство пришлось на годы первой мировой войны, революции и гражданской войны – он практически не учился в средней школе и прошёл её программу самостоятельно. Работая на заводе в Киеве, молодой человек заинтересовался физикой; первые его шаги на этом поприще направлял известный советский физик Пётр Саввич Тартаковский. Девятнадцатилетним юношей, студентом электромеханического техникума, Бронштейн опубликовал свою первую работу, посвящённую спектру рентгеновского излучения. Она была напечатана в известном в те годы немецком физическом журнале. Именно на его страницах – и примерно в то же время – были опубликованы знаменитые работы Гейзенберга и Борна, с которых началась современная квантовая механика. В нём постоянно печатались в 20-е годы советские физики; иногда их статьи занимали около трети объёма журнала: экспериментальная и теоретическая физика страны Советов выходила на международную арену.

Творческая активность Бронштейна была удивительной: три статьи он опубликовал в 1925 г., ещё три – в следующем. Двадцатилетним студентом первого курса физико-математического факультета Ленинградского государственного университета он был, таким образом, автором шести статей по квантовой физике!

Блестяще закончив университет, Бронштейн в 1930 г. поступил в теоретический отдел Физико-технического института.

В ноябре 1935 г. – в год выхода книги «Атомы, электроны, ядра» – Матвей Петрович Бронштейн защитил докторскую диссертацию на тему о квантовании гравитационного поля. Одним из оппонентов Бронштейна был член-корреспондент АН СССР И. Е. Тамм, впоследствии – академик, Герой Социалистического Труда, лауреат Нобелевской премии по физике. В своём отзыве о работе диссертанта он писал:

«В диссертации М. П. Бронштейна впервые, и притом совершенно последовательным и исчерпывающим образом, произведено квантование поля тяготения – путём соответствующего изменения и обобщения методов квантовой электродинамики».

Матвей Петрович ввёл понятие о квантах гравитационного поля – гравитонах, аналогичных квантам электромагнитного поля – фотонам. Подобно тому, как квантовая электродинамика рассматривает электромагнитное взаимодействие как результат обмена фотонами, так и тяготение, по Бронштейну, есть результат обмена гравитонами между тяготеющими массами: гравитоны испускаются одним телом и поглощаются другим.

К этим работам Бронштейна в наши дни вновь обращаются в связи с успехами современной астрофизики. Во всём мире идут настойчивые поиски гравитационных волн и разрабатываются утончённые методы их регистрации. Внешним показателем значительности вклада Матвея Петровича в развитие этой области теории тяготения может служить то обстоятельство, что его статья, содержавшая изложение основных результатов докторской диссертации, опубликованная в 1936 г., включена в сборник основополагающих работ по теории тяготения, изданный в 1979 г. в нашей стране в связи со 100-летним юбилеем со дня рождения Альберта Эйнштейна.

Время прихода М. П. Бронштейна в ФТИ совпало с развитием в институте исследований по атомному ядру и физике полупроводников. В работах обоих этих направлений Матвей Петрович принимал деятельное участие. Он был одним из руководителей и, пожалуй, самым активным участником ядерного семинара ФТИ.

Бронштейн пользовался большим авторитетом не только у своих коллег: его талант оценил Нильс Бор во время своего первого визита в нашу страну в мае 1934 г. Ранняя смерть (1938 г.) трагически оборвала его работу в области теоретической физики как раз тогда, когда от него можно было ожидать особенно больших свершений: это было время «бури и натиска» в ядерной физике и физике полупроводников, это была заря современной астрофизики.

Прекрасный физик, Матвей Петрович был человеком блистательных гуманитарных способностей и удивительной памяти. Ему никогда и ничего не надо было перечитывать: прочитав, он запоминал навсегда. Корней Иванович Чуковский в шутку говорил, что, если бы погибла цивилизация, Матвей Петрович мог бы заново написать всю энциклопедию – от первого и до последнего тома.

Бронштейн читал в подлиннике «Дон-Кихота» и физические статьи на японском языке, переводил с латинского на русский стихи замечательного поэта Древнего Рима – Катулла и украинских поэтов. Прекрасно знал и любил русскую поэзию и выделял из поэтов нашего века Александра Блока.

Бронштейн был великолепным педагогом. Его лекции в Ленинградском университете оставили глубокий след у тех студентов, которым посчастливилось его слышать.

Бронштейн был человеком смелым, независимым, острым на язык. Но его товарищи, которым иногда приходилось бывать объектами таких шуток, не обижались на них, потому что знали: за колючестью Матвея Петровича стоит душевность, чуткость, доброта.

Особенной любовью Бронштейна пользовались дети – и отвечали ему взаимностью. Он умел с ними разговаривать как с равными – заинтересованно и уважительно. Недаром же его книги нашли дорогу к сердцам школьников! Новое издание книги Бронштейна будут сейчас читать внуки и внучки тех, кому она предназначалась почти полвека тому назад. Будем надеяться, что это чтение окажется для них столь же увлекательным, как в своё время для их дедушек и бабушек, а для очень многих – определит будущие занятия и профессию, поможет понять и полюбить ту науку, бескорыстному служению которой была посвящена короткая и яркая жизнь Матвея Петровича.

Предоставим же слово ему самому.

В. Френкель

Глава первая. Загадка радиоактивности

В этой книжке вы найдёте рассказы о проницательных сыщиках, разгадывающих самые головоломные загадки, самые непонятные тайны на свете. Но только не думайте, что эта книжка будет похожа на другие книжки о сыщиках – на книжки об отважном Нате Пинкертоне или о хладнокровном Шерлоке Холмсе, о которых вы с таким увлечением читали в детстве. Сыщики, которых вы встретите здесь, очень мало напоминают обычных героев детективных книжек. Они не служат в полиции, не преследуют по пятам знаменитых преступников, не носят револьвера в кармане и полицейского значка под отворотом пиджака. Возможно, что они даже удивились бы, если бы узнали, что их называют сыщиками. Они – учёные люди, по целым дням сидящие в лабораториях, склоняясь над своими приборами, фотографическими снимками, листами с вычислениями. Да и тайны им приходится раскрывать не такие, как Шерлоку Холмсу или Нату Пинкертону. В этой книжке не будет ни загадочных пятен крови на измятой траве, говорящих о нераскрытом убийстве, не будет таинственных подземелий, адских машин, поддельных банковских чеков. Тайны, с которыми имеют дело герои нашей книжки, совсем не такие: это тайны невидимых маленьких частиц, из которых построено всё на свете: вода, воздух, лёд, железо, дерево, да и мы сами, – это тайны электричества, тайны лучей света, тайны далёких мерцающих звёзд. Многие из этих тайн ещё и до сих пор не разгаданы; другие разгаданы уже давно, третьи – совсем недавно. Для того, чтобы разгадать эти тайны, нашим сыщикам понадобилось ещё больше проницательности, остроумия, упрямства, настойчивости и мужества, чем понадобилось бы самому Шерлоку Холмсу для того, чтобы раскрыть самое загадочное преступление на свете.

Как и всякая другая книжка о сыщиках, наша книжка начинается с головоломной загадки, которую нашим сыщикам предстояло разгадать. Дело было зимой, в самом начале 1896 года. Эта зима была одной из самых замечательных зим в истории: в течение этой зимы немецкий профессор Рентген сделал поразительное открытие, навеки обессмертившее его имя, – открытие лучей, которые теперь всем известны под названием рентгеновских. Сейчас уже все привыкли к этим лучам, которые свободно проходят через дерево, через человеческое тело, через тонкие металлические листики, – все мы много слышали о рентгеновских лучах и давно перестали им удивляться, – но представьте себе, как удивились люди, слышавшие об этом открытии в первый раз!

Среди людей, которых восхитило и поразило до глубины души великое открытие Рентгена, был и тот, с приключений которого начинается наша книжка. Он был профессором химии в Париже. Звали его Анри Беккерель.

20 января 1896 года – день, когда начинается история, которую мы хотим рассказать, – Анри Беккерель отправился, по своему обыкновению, на собрание Парижской Академии наук. Собрание должно было быть очень интересное: все знали, что один из академиков – знаменитый математик Пуанкаре – получил от самого Рентгена подробное письмо о только что открытых лучах. К письму Рентген приложил фотографические снимки: это были первые фотографии, сделанные не обыкновенными видимыми лучами света, а рентгеновскими лучами. В повестке, которая была заранее разослана всем парижским учёным, было напечатано, что на этом собрании Пуанкаре прочитает вслух полученное им письмо и покажет фотографии. Задолго до начала заседания огромный зал Парижской Академии наук был переполнен. Сюда пришли не только профессора, но и студенты многочисленных высших школ города Парижа, пришли с неизменными своими блокнотами и маленькими фотографическими аппаратами корреспонденты всех газет, чтобы в тот же день поместить в вечерних выпусках сенсационные отчёты о заседании Академии и о письме знаменитого Рентгена, пришла и просто любопытствующая публика – «публика с улицы», как её презрительно называли студенты и профессора. Когда в наступившей тишине Пуанкаре начал громко читать по-немецки полученное им письмо, все присутствующие приложили к уху ладони, чтобы получше расслышать (а особенно внимательный вид был у тех, которые ни слова не понимали по-немецки но ни за что не хотели в этом признаться). Но вот чтение окончилось и среди известных парижских учёных, сидевших в первых рядах кресел, началось публичное обсуждение письма Рентгена. В этом обсуждении принял участие и Беккерель. Его очень заинтересовал вопрос о том, из какого именно места рентгеновской трубки выходят открытые Рентгеном лучи. А нужно сказать, что эта трубка была не такая, как те усовершенствованные рентгеновские трубки, которые употребляются теперь. В теперешних трубках то место, из которого во все стороны расходятся рентгеновские лучи, – это массивный кусок тугоплавкого металла. А в первой трубке, которую построил Рентген, лучи расходились от одного местечка на стекле трубки. Когда трубка работала, на её стеклянной стенке появлялось маленькое светящееся пятнышко. Оно светилось холодным зеленовато-жёлтым светом, и как раз от него во все стороны расходились рентгеновские лучи. Сами рентгеновские лучи невидимы глазу, но зелёно-жёлтое свечение на стекле трубки, конечно, видимо, и, значит, одно и то же местечко на стекле трубки испускает и видимые глазу лучи зеленовато-жёлтого света, и невидимые рентгеновские лучи. Вот это-то холодное зелёно-жёлтое свечение на стеклянной стенке трубки, о котором говорил в своём письме Рентген, страшно поразило Беккереля – он даже прервал чтение Пуанкаре и попросил его снова перечесть поразившее его место письма. И Беккерелю пришла в голову неожиданная мысль: а что, если свечение стекла рентгеновской трубки как раз и есть настоящая причина испускания рентгеновских лучей? Эта мысль взволновала Беккереля. Холодное зеленовато-жёлтое свечение, испускаемое стеклянной стенкой трубки, о котором говорилось в письме Рентгена, напомнило Беккерелю другой, хорошо ему знакомый свет – свет, испускаемый «флюоресцирующими» веществами. Флюоресцирующие вещества – вот что было любимой научной специальностью Анри Беккереля, постоянным предметом его мыслей, разговоров и даже ночных снов, что же это за такие вещества, изучению которых Беккерель посвятил несколько десятков лет своей жизни?

Флюоресцирующие вещества – это такие, которые в темноте не светятся, но стоит только поставить их на яркий солнечный свет, как они начинают светиться. Существует, например, такой минерал флюорит (его ещё иначе называет плавиковым шпатом); сам по себе он не светится, но, как только на него попадут яркие солнечные лучи, он тотчас же начинает испускать синевато-фиолетовый свет. Флюорит – это одно из самых известных флюоресцирующих веществ; даже самоё слово «флюоресцировать» происходит от слова «флюорит»: оно, собственно говоря, означает «вести себя как флюорит». Многие другие вещества тоже сильно флюоресцируют: например, раствор сернокислого хинина, выставленный на солнце, светится голубыми лучами, раствор хлорофилла – красными. Флюоресцирует даже и обыкновенный керосин, хотя довольно слабо: если бутылку с керосином поставить на солнце, то она начинает испускать слабенькое синее сияние.

Обо всех этих веществах вспомнил Анри Беккерель, как только услышал о зеленовато-жёлтом свете, похожем на свет флюоресцирующих веществ (так и писал Рентген в своём письме), которым сопровождается испускание рентгеновских лучей.

«Как знать, – подумал Беккерель, – может быть, флюоресценция и рентгеновские лучи всегда неразлучны; может быть, не только стекло рентгеновской трубки, флюоресцируя, испускает рентгеновские лучи, но и плавиковый шпат, и сернокислый хинин, и хлорофилл, и даже самый обыкновенный керосин, который торговцы развозят в своих тележках по парижским улицам и продают домашним хозяйкам, – может быть, даже и этот керосин испускает рентгеновские лучи в то время, как флюоресцирует на солнечном свету».

Вот какая мысль запала в голову Беккереля, и он в волнении ушёл домой, решив поскорее приступить к опытам, чтобы проверить свою догадку.

Несколько дней размышлял Беккерель о том, какой бы сделать опыт, чтобы узнать, действительно ли флюоресцирующие вещества испускают и рентгеновские лучи в то самое время, пока они светятся. В конце концов Беккерель придумал вот что: он возьмёт фотографическую пластинку, завернёт её в чёрную бумагу для того, чтобы ни один солнечный луч не мог упасть на эту пластинку, положит сверху кусок какого-нибудь флюоресцирующего вещества, а затем выставит всё это на солнце. Если верно, что флюоресцирующее вещество, освещённое солнцем, не только светится видимым светом, но и испускает невидимые глазу рентгеновские лучи, то эти лучи пройдут через чёрную бумагу и отпечатаются на фотографической пластинке. Если же рентгеновских лучей нет, то ничего на пластинке не отпечатается – ведь от всех видимых лучей она прекрасно защищена обвёрткой из чёрной бумаги. Надо сказать, что за много лет своей работы над флюоресцирующими веществами Анри Беккерель собрал огромнейшую коллекцию этих веществ: нигде в мире, ни в одном музее не было такой. Долго стоял Беккерель перед своим шкафом с флюоресцирующими веществами, желая выбрать такое, которое флюоресцировало бы посильнее.

«Вероятно, – думал Беккерель, – чем сильнее вещество флюоресцирует, тем больше оно испускает рентгеновских лучей, а значит, мне будет тем легче и удобнее их обнаружить».

Наконец, после долгих колебаний, он остановился на веществе, которое он когда-то – лет за пятнадцать перед этим – сам приготовил в своей химической лаборатории. Это вещество называлось «двойная сернокислая соль урана и калия». У Беккереля было несколько лепёшек этого вещества с таким длинным названием. Все они прекрасно флюоресцировали: стоило только им попасть на солнце, как они начинали испускать яркое зелёное сияние. Беккерель положил лепёшку с двойной сернокислой солью урана и калия на фотопластинку, завёрнутую в чёрную бумагу, и выставил всё это на солнце. Через несколько часов он проявил и отфиксировал пластинку. К его радости, оказалось, что на пластинке действительно отпечаталось изображение лепёшки. Выходило, что он был прав: флюоресцирующие вещества действительно испускают рентгеновские лучи.

Беккерель был очень доволен собой: ведь столько лет никто (да и он сам) не замечал, что флюоресцирующие вещества испускают рентгеновские лучи, и вот теперь ему впервые посчастливилось это заметить. Но всё-таки он не торопился напечатать в журнале Академии наук сообщение о своём открытии. Как часто бывает, что самое несомненное, казалось бы, открытие потом оказывается просто ошибкой! Поэтому Беккерель решил повторить свой опыт ещё раз, и ещё раз, пока, наконец, он не убедится, что всё это действительно так и что никакой ошибки быть не может. Он взял несколько ещё нетронутых фотопластинок, завернул их в чёрную бумагу и стал их выставлять на солнце, положив на каждую из них кусочек флюоресцирующего вещества. Такие опыты он делал довольно долго – несколько недель, как вдруг случилось странное происшествие, которое показало Беккерелю, что дело не так просто, как ему казалось раньше. Произошло вот что: пока Беккерель трудился в своей лаборатории, придумывая всё новые и новые опыты для изучения тех рентгеновских лучей, которые испускает флюоресцирующая, лепёшка двойной сернокислой соли урана и калия, наступили пасмурные дни. Напрасно Беккерель выносил на балкон свои фотографические пластинки с лепёшками сернокислой соли, – солнце было закрыто тучами, и лепёшки упорно не хотели флюоресцировать. Пришлось Беккерелю прекратить свои опыты, запереть все свои пластинки и лепёшки в ящик стола и ждать солнечных дней.

1 марта 1896 года Беккерель (от скуки или от нечего делать) вздумал проявить одну из таких фотопластинок, положенных им в ящик письменного стола. Эту фотопластинку он пробовал за несколько дней перед этим – 26 февраля – выставить на солнце вместе с лепёшкой сернокислой соли; пластинка была, как всегда, завёрнута в чёрную бумагу, а между ней и лепёшкой он ещё положил маленький медный крестик для того, чтобы узнать, смогут ли рентгеновские лучи, испускаемые лепёшкой, пройти не только через чёрную бумагу, но и через слой меди. Солнце показывалось из-за туч очень редко, а потому Беккерель очень скоро убрал свою пластинку в ящик вместе с лежащим на ней крестиком и лепёшкой.

Когда через несколько дней, 1 марта, Беккерель вздумал проявить эту пластинку, он ожидал, что изображение лепёшки, которое отпечатается на пластинке, будет очень слабенькое: ведь солнце появлялось на короткое время, и лепёшка флюоресцировала очень недолго. Но когда пластинка была проявлена и Беккерель на неё взглянул, он едва от удивления не выронил её из рук: на пластинке отпечаталось резкое тёмное изображение лепёшки – такое резкое, какое никогда не получалось в прежних опытах Беккереля, в которых лепёшка ярко флюоресцировала в течение нескольких часов. А на фоне тёмного изображения лепёшки выделялось светлое изображение креста: лучи, испускаемые лепёшкой, не смогли пройти сквозь медь креста, как прошли через чёрную бумагу, и поэтому под крестом пластинка осталась такой, какой была, – незачернённой.

Удивление Беккереля было безгранично. Ведь, лёжа в тёмном ящике стола, лепёшка не могла флюоресцировать, как она флюоресцирует на солнечном свету, а между тем изображение на фотопластинке получилось резкое и отчётливое, как будто бы невидимые лучи, проходящие через чёрную бумагу, действовали на пластинку очень долго. Выходило, что лепёшка продолжала и в темноте посылать свои невидимые глазу лучи, действующие на фотографическую пластинку. Зачем же было тогда выставлять лепёшку на солнце, когда даже в темноте она испускает те же самые лучи? Лепёшка двойной сернокислой соли урана и калия – и на солнце, когда она ярко флюоресцирует, и в темноте, когда она не светится вовсе, – одинаково испускает какие-то невидимые глазу лучи, похожие на лучи Рентгена. Вот какой неожиданный для себя вывод должен был сделать Анри Беккерель в этот пасмурный день 1 марта 1896 года. Его первоначальная догадка о том, что флюоресценция неразлучно связана с испусканием рентгеновских лучей, всё-таки в конце концов оказалась неверной. Но вместе с тем Беккерель увидел, что двойная сернокислая соль урана и калия обладает каким-то загадочным свойством, о котором до тех пор никто не подозревал.

И вот Беккерель принимается за новую работу: он должен исследовать открытое им свойство двойной сернокислой соли урана и калия, найти, с чем это свойство связано, какие особенности двойной сернокислой соли урана и калия делают её способной испускать невидимые глазу лучи. И Беккерель роется в своей коллекции флюоресцирующих веществ, берёт оттуда одно вещество за другим и делает с каждым таким веществом опыт: не испускает ли и оно такие же лучи, какие испускает двойная сернокислая соль урана и калия? Несколько недель напряжённой работы, и Беккерель приходит к следующему заключению: из всех флюоресцирующих веществ, взятых им для опыта, только те испускают невидимые глазу лучи, в состав которых входит уран (уран – это металл, который вместе с другим металлом – калием – входит в состав двойной сернокислой соли урана и калия). Флюоресцирующие вещества, в которых нет урана, не испускают никаких невидимых глазу лучей, – держать ли их на солнце или в тёмном шкафу, – а те флюоресцирующие вещества, в которых содержится уран, всегда испускают невидимые лучи, заставляющие – фотографическую пластинку чернеть, – даже если она завёрнута в плотную бумагу. И они испускают эти невидимые лучи и днём и ночью, совершенно независимо от того, освещены ли они и светятся ли они или нет.

Оставалось сделать ещё последний шаг – взять какое-нибудь вещество, которое содержит в себе уран, но никогда не флюоресцирует, и посмотреть, будет ли оно испускать невидимые лучи. Уран – довольно редкий и дорогой металл, но всё же в лаборатории Беккереля нашлась щепотка чистого урана в виде порошка, и ещё несколько кусочков урана ему на время дали знакомые химики. Сам уран никогда не флюоресцирует, сколько бы его ни освещали солнечные лучи. Но когда Беккерель положил кусочек урана на фотографическую пластинку, завёрнутую в чёрную бумагу, то пластинка, проявленная через несколько часов, почернела от действия невидимых лучей, которые испускал уран. Значит, эти таинственные лучи, которые открыл Беккерель и которые так похожи на лучи, открытые Рентгеном, не имеют ровно ничего общего с флюоресценцией. Сам металл уран обладает чудесным свойством испускать эти лучи; он испускает их и когда находится в чистом виде, и когда соединён с какими-нибудь другими веществами (например, в двойной сернокислой соли урана и калия, где уран соединён с калием, серой и кислородом). Уран испускает эти лучи совершенно независимо от того, освещает ли его в это время солнце или нет. Испускание лучей зависит только от количества самого урана – чем больше урана, тем больше и лучей – и ни от чего другого не зависит. Когда Беккерель, слушая чтение письма Рентгена, вообразил, что испускание рентгеновских лучей связано о флюоресценцией, то в этой мысли не было ничего верного. И если бы он взял для своего опыта не флюоресцирующую сернокислую соль, содержащую в себе уран, а плавиковый шпат или раствор хлорофилла, то из его опытов решительно ничего не вышло бы. Но по счастливой случайности Беккерель выбрал из всей своей огромной коллекции именно сернокислую соль урана и калия, и это помогло ему открыть удивительное свойство урана: способность без всякой видимой причины испускать лучи, похожие на лучи Рентгена.

Отличаются ли лучи, открытые Беккерелем, чем-нибудь существенным от лучей Рентгена – этого и сам Беккерель в первое время не мог решить. Лучи Беккереля, как и лучи Рентгена, невидимы глазу, проходят через, бумагу, дерево, тонкие слои металла, чернят фотографическую пластинку. Очень скоро Беккерель открыл ещё одно замечательное свойство лучей, испускаемых ураном (и каждым веществом, содержащим в себе уран), – способность действовать на заряженный электрометр. Электрометр – это такой прибор, в котором свисают рядом два тоненьких золотых листочка.

Рис. 1. Фотография алюминиевой медали в лучах урана, снятая Беккерелем. Экспозиция – две недели.

Стоит только хоть немножко зарядить электрометр электричеством, как листочки сейчас же начнут отталкиваться друг от друга и немедленно разойдутся врозь на некоторый угол. В таком положении они и останутся, пока с них не стечёт электрический заряд. Обыкновенно электрический заряд стекает очень медленно, и проходит много часов или даже много дней перед тем, как листочки снова сойдутся. Но Беккерель сделал следующий опыт: он положил в коробку электрометра, под самые листочки, свою лепёшку урановой соли, и листочки стали спадать заметно быстрее, а через полтора часа и вовсе сошлись. Сделав несколько опытов, Беккерель увидел, что испускаемые ураном лучи делают воздух способным проводить электричество; поэтому с листочков электрометра заряд утекает через воздух, и листочки спадают.


    Ваша оценка произведения:

Популярные книги за неделю