355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Мартин Форд » Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей » Текст книги (страница 2)
Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
  • Текст добавлен: 3 марта 2021, 21:31

Текст книги "Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей"


Автор книги: Мартин Форд


Жанр:

   

Публицистика


сообщить о нарушении

Текущая страница: 2 (всего у книги 3 страниц)

Иошуа Бенджио

“ИИ, который существует сейчас и может появиться в обозримом будущем, не понимает и не чувствует нормы морали".

Директор Монреальского института алгоритмов обучения (MILA), доктор computer science, профессор кафедры информатики и математических методов Монреальского университета, соруководитель проекта Learning in Machines & Brains Канадского института перспективных исследований (CIFAR)

Иошуа Бенджио широко известен как один из пионеров глубокого обучения. Он активно продвигал исследования нейронных сетей, в частности обучение без учителя, и стал соавтором книги «Глубокое обучение»[8]8
  Бенджио И., Гудфеллоу Я., Курвилль А. Глубокое обучение / Пер. с англ. А. Слинкина. – М.: ДМК пресс, 2017. – 652 с.: ил. Книга бесплатно доступна по адресу https://www.deeplearningbook.org.


[Закрыть]
– одним из основных учебников по одноименному предмету.

Мартин Форд: Вы играете ведущую роль в исследованиях ИИ, поэтому начать мне хотелось бы с вопроса о том, какие исследовательские проблемы стоят на пути к сильному ИИ.

Иошуа Бенджио: До создания ИИ, сравнимого с человеческим, нам еще очень далеко. Нужно понять, к примеру, почему невозможно создать машину, которая понимала бы окружающую действительность так же, как человек. Чего нам не хватает: обучающих данных или вычислительных мощностей? Многие считают, что причина состоит в отсутствии необходимых базовых компонентов, например, умения видеть причинно-следственные связи в данных, которое позволяет делать обобщения и находить правильные ответы в условиях, отличных от тренировочных.

Человек может представить, как он переживет новый для себя опыт. Например, если вы никогда не попадали в автомобильную аварию, вы все равно сможете прокрутить у себя в голове такую ситуацию и принять правильное решение. Обучение с учителем помогает компьютеру находить статистические закономерности в поставляемых данных, которые заранее классифицированы и размечены людьми.

Многие исследования пока не дали значимых результатов. Компьютер не может автономно приобретать знания о мире, воздействовать на него и наблюдать результат воздействия. Ответы на вопрос, как это реализовать, ищем не только мы.

М. Ф.: Какие проекты в настоящее время можно считать первостепенными в области глубокого обучения? Мне первым делом вспоминается программа AlphaZero. Есть ли другие?

И. Б.: На мой взгляд, из множества интересных проектов наиболее перспективны те, в которых агент в виртуальном мире пытается решать задачи, попутно изучая все с ними связанное. Такими проектами занимаемся мы в MILA, а также компании DeepMind, OpenAI, Университет Беркли, Facebook и Google в рамках проекта Google Brain. Это новые горизонты.

Но это долговременные исследования. Мы работаем не над конкретными вариантами применения глубокого обучения, а над тем, как научить агента осмысливать окружающую среду, говорить и понимать так называемый обоснованный язык (grounded language).

М. Ф.: Что означает этот термин?

И. Б.: Раньше компьютеры обучались языку, знакомясь с множеством текстов. Причем они достигали понимания только через связь слова с называемой им реалией. В отличие от робота, человек может сопоставить слово не только с объектом из реального мира, но и с вариантами изображения этого объекта.

Многочисленные исследования в области обучения обоснованному языку сводятся к попыткам научить роботов понимать язык хотя бы на уровне отдельных слов и выражений и реагировать соответствующим образом. Это очень интересное направление, необходимое для реализации таких вещей, как диалог с роботами, личные помощники и т. п.

М. Ф.: То есть, по сути, идея состоит в том, чтобы дать агенту свободу в смоделированной среде, позволив ему учиться, как это делают дети?

И. Б.: Именно так. Более того, мы пользуемся результатами исследований в области детского развития и изучаем, какие этапы проходит новорожденный в первые месяцы жизни, постепенно приобретая представления о мире. До сих пор не совсем понятно, какие умения являются врожденными, а какие получены путем изучения.

Несколько лет назад я предложил для машинного обучения практику, которая используется при дрессировке животных – обучение по плану (curriculum learning). Обучающие примеры в этом случае демонстрируются не произвольно, а в последовательности, целесообразной для обучения. Процесс начинается с простых концепций, которые после их освоения учеником можно использовать как «кирпичики» для объяснения более сложных понятий.

М. Ф.: Я бы хотел поговорить о работе над сильным ИИ. Очевидно, что важной составляющей этого процесса вы считаете обучение без учителя. Что еще необходимо сделать?

И. Б.: Мой друг Ян Лекун сравнивает этот процесс с подъемом на гору. Сначала все радуются, насколько высоко забрались, но по мере приближения к вершине встречается множество других гор. Сейчас при разработке сильного ИИ четко видна ограниченность используемых подходов. Пока мы искали способы обучения более глубоких сетей, взбираясь на первую гору, создаваемые системы исследовались очень узко – на том этапе было важно просто подняться на несколько шагов вверх.

Как только применяемые техники обучения дали первые удовлетворительные результаты – мы приблизились к вершине первой горы, – стали заметны ограничения. И это следующая гора, которую нужно будет покорять. Поэтому невозможно сказать, сколько еще открытий потребуется.

М. Ф.: А вы можете хотя бы примерно оценить количество гор? Или период времени, который потребуется на создание сильного ИИ? Просто поделитесь своими прогнозами.

И. Б.: Не вижу смысла говорить о сроках. Невозможно предсказать, когда именно будет открыта дверь, от которой у нас нет ключа. Могу только заверить, что в ближайшие годы никаких прорывов не будет.

М. Ф.: Считаете ли вы перспективными глубокое обучение и нейронные сети в целом?

И. Б.: Да, многолетний прогресс в области глубокого обучения и нейронных сетей означает, что открытые концепции будут активно использоваться и дальше. Возможно, именно они помогут понять, каким образом мозг животных и человека осваивает сложные понятия. Но этого недостаточно для создания сильного ИИ. В настоящее время мы видим ограниченность имеющихся систем и собираемся улучшать и развивать их.

М. Ф.: Я знаю, что Институт искусственного интеллекта Пола Аллена (AI2) работает над проектом Mosaic, в рамках которого компьютеру пытаются помочь обрести разум. Считаете ли вы, что это важная задача? Ведь, возможно, разум рождается в процессе обучения?

И. Б.: Я уверен, что он возникает именно как результат обучения. Разум не может появиться только потому, что кто-то положил вам в голову какие-то знания. По крайней мере, у людей так.

М. Ф.: Глубокое обучение – основной путь к созданию сильного ИИ или потребуются гибридные системы?

И. Б.: Изначально ИИ был условным понятием, ни о каком обучении речи не шло. В центре внимания была способность машины делать последовательные выводы и объединять фрагменты информации. А глубокое обучение нейронных сетей можно назвать познанием снизу вверх. Все начинается с восприятия, в котором мы закрепляем понимание мира машиной. Затем можно строить распределенные представления и фиксировать связи между множеством переменных.

Отношения между такими переменными мы с братом изучали в 1999 г., что дало толчок к появлению в области естественного языка таких подходов, как векторное представление слов или распределенные представления слов и предложений. В них слово описывается характером активности в мозге или набором чисел. Слова со сходными значениями связываются со сходными числовыми комбинациями.

В настоящее время на базе этих подходов пытаются решать классические проблемы ИИ, связанные с умением рассуждать и понимать, программировать и планировать. «Строительные блоки», обнаруженные при изучении восприятия, сейчас пробуют распространять на когнитивные задачи более высокого уровня (психологи называют это действиями Системы 2). Я полагаю, именно таким способом мы будем двигаться к сильному ИИ. Это нельзя назвать гибридной системой; скорее, мы пытаемся работать над классическим ИИ, используя как строительный материал концепции из глубокого обучения. Можно сказать, что требуются альтернативные пути достижения цели.

М. Ф.: То есть вы считаете, что все сведется к нейронным сетям с различными архитектурами?

И. Б.: Да. Ведь человеческий мозг состоит из нейронных сетей. Нужно придумать архитектуры и обучающие техники, позволяющие решать задачи, поставленные перед классическим ИИ.

М. Ф.: Обучения и тренировки будет достаточно или потребуется какая-то дополнительная структура?

И. Б.: Она уже существует, просто отличается от привычной структуры представления знаний, которую мы наблюдаем в энциклопедиях или формулах. Она имеет архитектуру нейронной сети и довольно широкие допущения по поводу окружающего мира и вершины собственных возможностей. Чтобы реализовывать в нейронной сети механизм внимания, такая структура требует большого количества предварительных знаний. Оказывается, данные имеют решающее значение для таких вещей, как машинный перевод.

Уже существует множество предположений в разных предметных областях о мире и о внедряемой функции, которые в виде архитектур и целей содержались в технологии глубокого обучения. Именно этому посвящено большинство современных научных работ.

М. Ф.: Говорят, что новорожденные развивают навык распознавания лиц с первых дней жизни. Очевидно, что это возможно благодаря некой структуре в мозге. Это не просто реакция нейронов на пикселы.

И. Б.: Ошибаетесь! Это именно реакция нейронов на пикселы, кроме того, в мозге ребенка присутствует особая структура, которая распознает нечто круглое с двумя точками внутри.

М. Ф.: Я считаю, что она существует с момента рождения.

И. Б.: Разумеется. И все то, что мы проектируем в нейронных сетях, тоже существует с самого начала. Работа исследователя в области глубокого обучения напоминает процесс эволюции. Знания вводятся как в виде структуры, так и через обучение.

При желании можно создать нечто, позволяющее сети распознавать лица, но в этом нет смысла, так как ИИ быстро обучается. Поэтому мы работаем над решением более сложных проблем.

Никто не говорит об отсутствии врожденных знаний у людей, детей и животных. Более того, у большинства животных знания исключительно врожденные. Муравью не приходится долго учиться, он действует в соответствии с заложенной в него программой. Но чем выше существо в иерархии интеллекта, тем большую роль в его жизнедеятельности начинает играть обучение. Человека отличает именно соотношение врожденных и приобретенных навыков.

М. Ф.: Я бы хотел уточнить некоторые из этих концепций. В 1980-е гг., после периода забвения, снова появился интерес к нейронным сетям, но речи о множестве слоев и глубине еще не шло. Вы участвовали в развитии глубокого обучения. Не могли бы вы простыми словами объяснить, что это такое?

И. Б.: Глубокое обучение – это совокупность методов машинного обучения. Но если в случае классического машинного обучения компьютеры учатся по прецедентам, глубокое обучение больше напоминает процесс, происходящий в мозге человека.

Эти методы работы над ИИ появились как продолжение более раннего изучения нейронных сетей. Слово «глубокие» указывает на появление у сетей дополнительных уровней, со своими вариантами представления информации. Мы надеемся, что углубление сетей позволит машине представлять более абстрактные вещи.

М. Ф.: То есть под слоями вы подразумеваете уровни абстракции? И если в качестве примера взять изображение, то первым уровнем будут пикселы, затем контуры и т. д.?

И. Б.: Да, все правильно.

М. Ф.: Правда ли то, что компьютеры до сих пор не понимают, что такое объект?

И. Б.: До некоторой степени компьютер понимает. Скажем, кошка понимает, что такое дверь, но не так, как человек. Даже люди обладают разными уровнями понимания многих вещей, а наука призвана углубить это понимание. Люди интерпретируют образы в контексте трехмерного мира благодаря стереоскопическому зрению и опыту познания. Человек получает не визуальную, а физическую модель объекта. Компьютер интерпретирует изображения на примитивном уровне, но для множества приложений этого достаточно.

М. Ф.: Правда ли, что глубокое обучение стало возможным благодаря методу обратного распространения ошибки, основная идея которого состоит в том, что информацию об ошибке можно отправить от выходов сети к ее входам, корректируя каждый слой в зависимости от конечного результата?

И. Б.: Да, метод обратного распространения стал краеугольным камнем успехов глубокого обучения. Он позволяет присваивать данным коэффициенты доверия (credit assignment), то есть рассчитывать, как для корректного поведения всей сети должны измениться внутренние нейроны. В контексте нейронных сетей об этом методе заговорили в начале 1980-х гг., когда я только начинал работать самостоятельно. Одновременно с Яном Лекуном метод развивали Джеффри Хинтон и Дэвид Румельхарт (David Rumelhart). Идея не новая, но примерно до 2006 г. особых успехов в обучении глубоких сетей не наблюдалось. Сейчас мы имеем механизм внимания, память и способность не только классифицировать, но и генерировать изображения.

М. Ф.: Существуют ли аналоги обратного распространения в человеческом мозге?

И. Б.: Хороший вопрос. Дело в том, что нейронные сети не пытаются скопировать мозг, хотя и появились как попытка смоделировать некоторые происходящие в нем процессы. Мы полностью не понимаем, как работает мозг. Нейробиологи пока не соединили результаты своих наблюдений в общую картину. Возможно, наша работа сможет дать доступную для проверки гипотезу. Ведь метод обратного распространения до сих пор считался уделом компьютеров, но не человеческого мозга. Прекрасные результаты, которые он дает, заставляют подозревать, что, возможно, мозг умеет проделывать похожие штуки. Я участвую в исследованиях, которые могут дать ответ на этот вопрос.

М. Ф.: В период «зимы ИИ», когда общий интерес к нему угас, вы вместе с Джеффри Хинтоном и Яном Лекуном продолжали свои исследования. Как вам удалось добиться таких успехов, как сейчас?

И. Б.: К концу 1990-х гг. нейронные сети вышли из моды, и ими практически никто не занимался. Но моя интуиция говорила, что мы упускаем что-то важное. Ведь благодаря композиционной структуре они могли представить богатую информацию о данных, базируясь на множестве «строительных блоков» – нейронов и их слоев. Лично меня это привело к лингвистическим моделям, то есть к нейронным сетям, которые моделировали текст, используя векторные представления слов. Каждое слово в них связано с набором чисел, соответствующих различным атрибутам, которые изучаются машиной автономно. Тогда этот подход не получил широкого распространения, но в настоящее время эти идеи используются почти во всем, что связано с моделированием языка на основе данных.

Обучать глубокие сети мы не умели, но проблему решил Джеффри Хинтон своей работой по быстрым алгоритмам обучения ограниченной машины Больцмана (restricted Boltzmann machine, RBM). В моей лаборатории велась работа над связанными с ней автокодировщиками, которые дали начало таким моделям, как генеративно-состязательные сети (generative adversarial networks). Благодаря им появилась возможность обучения более глубоких сетей.

М. Ф.: А что такое автокодировщик?

И. Б.: Это специальная архитектура, состоящая из двух частей: кодировщика и декодера. То, что кодировщик сжал – декодер восстанавливал, причем так, чтобы выход был максимально близок к оригиналу. Автокодировщики превращали входную необработанную информацию в более абстрактное представление, в котором проще было выделить семантический аспект. Затем декодер восстанавливал по этой высокоуровневой абстракции исходные данные. Это были первые работы по глубокому обучению.

Через несколько лет мы обнаружили, что для обучения глубоких сетей достаточно изменения нелинейности. Вместе с одним из моих студентов, который работал с нейробиологами, мы решили попробовать блоки линейной ректификации (rectified linear unit, ReLU). Это пример копирования работы человеческого мозга.

М. Ф.: И к каким результатам это привело?

И. Б.: Раньше для активации нейронных сетей использовали сигмоиду, но оказалось, что с функцией ReLU гораздо проще обучать глубокие сети с большим количеством уровней. Переход случился примерно в 2010 г. Появилась огромная база данных ImageNet, предназначенная для отработки и тестирования методов распознавания объектов на изображениях и машинного зрения. Чтобы заставить людей поверить в методы глубокого обучения, нужно было показать хорошие результаты на примере этой базы. Это смогла сделать группа Джеффри Хинтона, которая использовала в качестве основы работы Яна Лекуна, посвященные сверточным сетям. В 2012 г. эти новые архитектуры позволили значительно улучшить существующие методы. За пару лет на эти сети переключились все, кто занимался компьютерным зрением.

М. Ф.: То есть именно в этот момент началось настоящее глубокое обучение?

И. Б.: Нет, совокупность факторов, ускоривших глубокое обучение, целиком сложилась только к 2014 г.

М. Ф.: То есть к моменту, когда этим занялись не только университеты, но и такие компании, как Google, Facebook и Baidu?

И. Б.: Именно так. Процесс ускорения начался чуть раньше, примерно в 2010 г., благодаря таким компаниям, как Google, IBM и Microsoft, которые работали над нейронными сетями для распознавания речи. Эти нейронные сети к 2012 г. Google начала использовать на смартфонах Android. Тот факт, что одну и ту же технологию глубокого обучения смогли применить как для компьютерного зрения, так и для распознавания речи, оказался по-настоящему революционным. Это привлекло внимание к сфере ИИ.

М. Ф.: Удивляет ли вас тот факт, что нейронные сети, с которыми вы много лет назад начали работать, стали центральным элементом проектов в таких крупных компаниях, как Google и Facebook?

И. Б.: Конечно, изначально этого никто не ожидал. В области глубокого обучения был сделан ряд важных, удивительных открытий. Я уже упоминал, что распознавание речи появилось в 2010 г., а о компьютерном зрении стали говорить в 2012 г. Пару лет спустя начался прорыв в сфере машинного перевода, который в 2016 г. привел к появлению сервиса Google Translate. В этом же году началось активное развитие программы AlphaGo. Всего этого мы не ожидали. Помню, как в 2014 г. я просматривал результаты генерации подписей к изображениям и поражался тому, что компьютер смог это сделать. Если бы годом раньше меня спросили, реально ли подобное, я бы ответил «нет».

М. Ф.: Это действительно нечто потрясающее. Конечно, осечки иногда происходят, но в большинстве случаев мы имеем поразительно точный результат.

И. Б.: Осечки неизбежны! Системы пока не обучены на достаточном количестве данных, кроме того, требуется изрядно продвинуться в фундаментальных исследованиях, чтобы они действительно научились распознавать объекты на изображениях и понимать язык. Пока до этого далеко, но ведь даже современного уровня производительности мы изначально не ожидали.

М. Ф.: А как вы пришли к исследованиям в области ИИ?

И. Б.: В юности я активно читал научную фантастику. Подозреваю, что это могло на меня повлиять. Именно оттуда я узнал об ИИ и трех законах робототехники Азимова, и у меня появилось желание изучать физику и математику. А чуть позже мы с братом заинтересовались компьютерами. На сэкономленные деньги мы приобрели компьютер Apple IIe, а затем Atari 800. Программного обеспечения тогда было мало, поэтому мы научились писать программы на языке BASIC.

Я так увлекся программированием, что занялся изучением вычислительной техники, а затем получил ученую степень в области computer science. В 1985 г., во время обучения в магистратуре, я начал читать статьи о первых нейронных сетях, в том числе работы Джеффри Хинтона. Это было любовью с первого взгляда. Я сразу понял, что хочу работать именно в этой сфере.

М. Ф.: Какой совет вы могли бы дать тем, что хочет заниматься глубоким обучением?

И. Б.: Прыгайте в воду и начинайте плавать. Сейчас информация любого уровня доступна в виде учебников, видео и библиотек с открытым исходным кодом. В сети можно бесплатно прочитать книгу «Глубокое обучение», соавтором которой я являюсь. В ней много информации для новичков. Студенты старших курсов зачастую тренируются, читая научные работы и пытаясь самостоятельно воспроизвести описанные там результаты, затем стараются попасть в лаборатории, проводящие исследования такого рода. Сейчас самое благоприятное время для карьеры в сфере ИИ.

М. Ф.: Из ключевых фигур в сфере глубокого обучения вы единственный, кто занимается только наукой. Большинство по совместительству сотрудничает с различными компаниями. Почему вы выбрали этот путь?

И. Б.: Я всегда высоко ценил научное сообщество, свободу работать на общее благо, делая вещи, которые, как я считаю, могут сильно повлиять на происходящее. Мне нравится работать со студентами, как психологически, так и с точки зрения продуктивности исследований. Уйти работать в индустрию – значит лишиться многого из этих вещей.

Кроме того, я хочу остаться в Монреале, а переход в индустрию означает переезд в Калифорнию или Нью-Йорк. Однажды я подумал, что можно попробовать создать новую Кремниевую долину для ИИ. В результате появился MILA, где проводятся фундаментальные исследования, задающие темп работы над ИИ во всем Монреале. Мы сотрудничаем с научно-исследовательским центром Vector Institute в Торонто и компанией Amii в Эдмонтоне в рамках канадской стратегии по продвижению ИИ в науке и экономике с пользой для социума.

М. Ф.: Раз уж вы упомянули об экономике, хотелось бы поговорить о рисках в этой сфере. Я много писал о том, что ИИ может привести к новой промышленной революции и потере множества рабочих мест. Как вы относитесь к этой гипотезе? Не преувеличена ли в данном случае угроза?

И. Б.: Нет, она не преувеличена. Непонятно только, когда это произойдет – в ближайшее десятилетие или намного позже. И даже если завтра мы полностью прекратим фундаментальные исследования в области ИИ, те результаты, которых мы уже достигли, позволят кому-то получить социальное и экономическое преимущество за счет простого создания новых товаров и услуг.

Уже собрано огромное количество данных, которые мы пока не используем. Например, в здравоохранении применяется лишь малая доля доступной информации. А ее становится все больше, потому что каждый день оцифровываются новые данные. Производители аппаратных средств совершенствуют процессоры для глубокого обучения, что без сомнения изменит наш мир.

Конечно, прогресс в этой сфере замедляют социальные факторы. Общество не может моментально измениться, даже если технология идет вперед семимильными шагами.

М. Ф.: Реально ли решить проблему безработицы введением безусловного базового дохода?

И. Б.: Я думаю, это может сработать, но сначала нужно избавиться от морального ограничения, согласно которому у неработающего человека дохода быть не должно. Мне такая точка зрения кажется ненормальной. Думаю, нужно ориентироваться на то, что лучше для экономики и для счастья людей. Имеет смысл провести эксперимент, чтобы попытаться найти ответ на эти вопросы.

А единого ответа не будет. Позаботиться о людях, которые в результате новой промышленной революции останутся не у дел, можно разными способами. Мой друг Ян Лекун сказал, что если бы в XIX в. можно было предвидеть последствия промышленной революции, возможно, люди смогли бы избежать множества страданий. Если бы еще тогда, а не в 1950-х мы создали систему социальной защиты, которая сейчас существует в большинстве западных стран, сотни миллионов людей жили бы намного лучше. А ведь для новой революции, скорее всего, потребуется гораздо меньше столетия, и потенциальные негативные последствия могут быть еще сильнее.

Мне кажется, думать об этом нужно уже сейчас. Искать варианты, позволяющие минимизировать нищету и оптимизировать глобальное благополучие. Думаю, выход есть, но мы вряд ли его найдем, если будем держаться за старые ошибки и религиозные убеждения.

М. Ф.: Если все произойдет скоро, это станет еще и политической проблемой.

И. Б.: Поэтому нужно быстро реагировать!

М. Ф.: Совершенно справедливо. А чем еще, кроме влияния на экономику, может грозить ИИ?

И. Б.: Лично я активно выступал против роботов-убийц.

М. Ф.: Я слышал, что вы подписали письмо корейскому университету, который, по слухам, собирался заниматься их разработкой.

И. Б.: Да, и это помогло. Корейский институт передовых технологий (KAIST) сообщил, что они не будут разрабатывать автономные военные системы.

Отдельно я хотел бы коснуться такого важного вопроса, как включение людей в цикл управления. ИИ, который существует сейчас и может появиться в обозримом будущем, не понимает и не чувствует нормы морали. Разумеется, критерии добра и зла в разных культурах могут отличаться, тем не менее для людей они крайне важны.

Это касается не только роботов-убийц, но и роботов вообще. Представьте себе работу судьи. Для решения таких сложных моральных вопросов нужно понимать человеческую психологию и иметь моральные ценности. Нельзя передавать право принятия судьбоносных решений бездушной машине. Нужны социальные нормы или законы, гарантирующие, что в обозримом будущем компьютеры не получат таких полномочий.

М. Ф.: Здесь я мог бы с вами поспорить. Ваш взгляд на людей и их суждения крайне идеалистический.

И. Б.: Возможно. Но лично я предпочту, чтобы меня судил несовершенный человек, а не машина, не понимающая, что она творит.

М. Ф.: Но представьте себе автономного робота-охранника, который начинает стрелять только в ответ, когда в него попадает пуля. Человеку это недоступно, и потенциально именно такое поведение может спасти другие жизни. Теоретически, если запрограммировать такого робота правильно, он будет избавлен от расовых предрассудков. И в результате он получит преимущество перед человеком. Вы согласны?

И. Б.: Допускаю, что когда-нибудь такое станет возможным. Но вопрос в понимании машиной контекста задачи. Об этом компьютеры не имеют ни малейшего представления.

М. Ф.: Какие еще угрозы может нести ИИ?

И. Б.: Пока это практически не обсуждается, но после происшествий в Facebook и в Cambridge Analytica проблема может выйти на первый план. Она касается рекламы. Применение ИИ с целью воздействия на людей несет опасность для демократии и морально недопустимо. Общество должно позаботиться о предотвращении подобных явлений.

Например, в Канаде запрещена реклама, направленная на детей. Считается, что манипулировать уязвимыми умами аморально. Разумеется, уязвимы не только дети, иначе реклама бы просто не работала.

Во-вторых, реклама негативно влияет на состояние рынка, потому что за счет нее крупные компании мешают своим малоизвестным конкурентам. Современные технологии на базе ИИ позволяют еще точнее доносить посыл до целевой аудитории. Страшно то, что так людей можно заставить ухудшать собственную жизнь. Я имею в виду, например, политическую рекламу. С инструментами, которые позволяют влиять на людей, следует быть очень осторожными.

М. Ф.: Как вы можете прокомментировать предупреждения Илона Маска и Стивена Хокинга о смертельной угрозе, которую несет суперинтеллект, и о рекурсивном улучшении? Стоит ли об этом беспокоиться в данный момент?

И. Б.: Лично меня эти вопросы не волнуют. Исходя из текущего состояния дел, эти сценарии попросту нереалистичны. Они не совместимы с тем путем, по которому сейчас создается ИИ. Через несколько десятилетий все может измениться, но в настоящий момент – это научная фантастика. По крайней мере, с моей точки зрения. Более того, эти страхи отвлекают от насущных проблем, над которыми мы могли бы работать.

Кроме роботов-убийц и политической рекламы, существует, к примеру, проблема системной предвзятости в данных, ведущая к усилению дискриминации. Правительство и бизнес могут повлиять на это. Поэтому вместо обсуждения рисков, которые могут появиться в долгосрочной перспективе, нужно уделять внимание актуальным угрозам.

М. Ф.: А что вы думаете о работе в этой сфере, которую проводит Китай и другие страны? Например, вы упоминали об ограничениях на автономное оружие, но проблема в том, что некоторые страны могут игнорировать соглашение. Есть ли в данном случае повод для беспокойства?

И. Б.: Как ученый я не считаю это проблемой. Чем больше исследователей во всем мире работает над какой-то темой, тем лучше. Если Китай много инвестирует в исследования в сфере ИИ, это прекрасно; в конце концов, пользоваться результатами мы будем вместе. Хотя меня и пугают мысли о том, что китайское правительство может использовать технологию в военных целях. Системы, умеющие распознавать лица и следить за людьми, позволяют за считаные годы построить общество «Большого Брата». Технически это вполне осуществимо и представляет большую опасность для демократии. Это то, о чем мы должны беспокоиться. Подобное возможно при автократии.

Что же касается гонки вооружений, не нужно смешивать роботов-убийц и применение ИИ в военных целях. Я не считаю, что следует полностью запретить ИИ в армии. Если ИИ будет использован для создания оружия, уничтожающего роботов-убийц, это хорошо. Аморально создание таких роботов, а не применение ИИ военными. Ведь работать можно и над оборонительным оружием.

М. Ф.: То есть вы считаете, что нужен свод правил работы над автономным оружием?

И. Б.: Свод правил требуется везде. По крайней мере, в областях, где применение ИИ будет влиять на общество. Нужно разработать правильные социальные механизмы, которые смогут гарантировать, что ИИ не будет использован во вред.

М. Ф.: И вы думаете, правительство в состоянии заняться этим вопросом?

И. Б.: Доверять решение этого вопроса компаниям точно не следует, потому что их в основном заботит увеличение прибыли. Конечно, они будут пытаться сохранить популярность у пользователей и клиентов, но их действия не совсем прозрачны.

Я думаю, что основную роль тут должно сыграть правительство, точнее даже международное сообщество.

М. Ф.: Считаете ли вы, что выгоды от ИИ в целом перевешивают связанные с ним риски?

И. Б.: Выгоды смогут перевесить риски, если мы будем действовать мудро. Именно поэтому так важно принимать правильные решения. И не хочется, закрыв глаза, мчаться вперед; нужно видеть все подстерегающие нас опасности.

М. Ф.: Где, по вашему мнению, все это должно обсуждаться? В аналитических центрах и университетах? Или требуется политическая дискуссия как на национальном, так и на международном уровне?

И. Б.: Нужна именно политическая дискуссия. В частности, на встрече Большой семерки, куда меня пригласили, был поставлен вопрос: «Какой путь развития ИИ может оказать положительное влияние на экономику и позволит сохранить доверие людей?» Потому что общество обеспокоено. И устранить это беспокойство поможет только открытая дискуссия, в которой смогут участвовать все желающие. Потому что ИИ и связанные с ним проблемы должны быть понятны любому человеку.


    Ваша оценка произведения:

Популярные книги за неделю