355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Маркус Чоун (Чаун) » Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной » Текст книги (страница 6)
Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной
  • Текст добавлен: 15 октября 2016, 05:45

Текст книги "Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной"


Автор книги: Маркус Чоун (Чаун)


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 10 страниц)

Работа лазера тоже основана на «овечьем поведении». Стоит атому испустить в неком направлении фотон определенной частоты, как сразу увеличивается вероятность, что соседний атом испустит фотон той же частоты и тот полетит «в ногу» с первым. А когда есть два фотона, увеличивается вероятность того, что к ним присоединится третий. В мгновение ока образуется целая лавина фотонов – все мчатся сквозь пространство в одном направлении, и у всех одни и те же свойства. Такая «стимулированная эмиссия» порождает световые волны, бегущие строго «в ногу», их гребни и впадины идеально выстроены, и в этом причина беспрецедентной яркости лазера.

Вот и все, что можно сказать об одной из возможностей, открывающейся двум взаимодействующим неразличимым частицам. А как там обстоят дела с другой возможностью, когда стрелы отстоят друг от друга на пол-оборота? Ну что же, если стрелы разнесены на пол-оборота, они указывают в разных направлениях и, таким образом, гасятдруг друга. Вообразите, что вы проходите пять километров по стреле, указывающей на северо-запад, а затем пять километров по стреле, указывающей на юго-восток, то есть в обратном направлении. Вы вернетесь туда, откуда начали свой путь. Поэтому, если две стрелы разошлись на пол-оборота и, следовательно, погасили друг друга, высота волны оказывается равной нулю. Вероятность события отсутствует. Оно просто не произойдет. Точка.

Если две идентичные частицы ведут себя подобным образом, у них нет никаких шансов попасть в одну точку. Говоря более обобщенно, они даже не могут делать одну и ту же вещь. Мало того что их поведение никак не назовешь стадным или «овечьим», они выказывают абсолютно антиобщественный характер и относятся друг к другу с безграничной антипатией. Эта антипатия и носит название «принцип запрета Паули».

Вот ведь что удивительно! Из одного только факта, что две частицы неразличимы, следуют – вследствие интерференции неразличимых возможностей – две поразительно отличающиеся друг от друга модели поведения. С одной стороны, идентичные частицы могут вести себя антиобщественно, а с другой стороны, они могут быть стадом. Вопрос вот в чем: пользуется ли природа этими двумя открывающимися перед ней возможностями? Есть ли частицы, которые демонстрируют стадное, «овечье» поведение, и частицы, глубоко антиобщественные по сути? Ответ: да, есть. Фундаментальные частицы природы действительно распадаются на два отдельных лагеря. Те, которые предпочитают сбиваться в стадо, известны как «бозоны», а те, которые проявляют антиобщественное поведение, именуются «фермионами». Но что определяет принадлежность конкретной частицы к лагерю бозонов или фермионов? Ответ таков: ее «спин».

Спин, и почему он так важен

Спин – еще одно из тех квантовых свойств, которые не имеют аналога в повседневном мире. Несмотря на картинку, которую он вызывает в воображении, – фигуристка, исполняющая вращение на льду, – на самом деле спин говорит нам, как выглядит частица, если ее рассматривать под разными углами, или, что равноценно, как она будет выглядеть, если вы станете ее вращать. Как и все остальное в микроскопическом мире, от электрического заряда до видимого света, спин порционен. Иными словами, существует квант спина. Частица с двойным целым спином, или спином 2, останется такой же, как была, если вы повернете ее на пол-оборота, – представьте себе стрелу с двумя наконечниками. Частица со спином 1 не изменит своего вида, если вы дадите ей совершить полный оборот, – здесь можно вообразить просто обычную стрелу. Но природа на этом не остановилась. Она допускает существование частицы со спином 1/2 (по техническим соображениям квант спина на самом деле составляет половину целого спина). Такая частица – и в это почти невозможно поверить – обретет свой изначальный вид, только если ее прокрутить на два полных оборота.

Если квантованный спин – нечто новое под солнцем, то спин 1/2 – нечто новое вдвойне.Вообразите, что вам ни за что не обрести свой прежний вид, если вы обернетесь один раз вокруг оси, – вы вновь станете самим собой, только если повернётесь вокруг оси два раза.Между тем именно это и происходит с электронами – самым типичным примером частиц, обладающих полуцелым спином. Дело в том, что стрела, отображающая высоту квантовой волны электрона, сделав один полный оборот, указывает в направлении, противоположном первоначальному. Только после двух оборотов она будет указывать направление, соответствующее стартовому.

Но какое отношение имеет спин к антиобщественному или стадному поведению частиц, к тому, подчиняются они принципу запрета или нет? Это ключевой вопрос.

Представим себе те самые две неразличимые частицы, которые сходятся и взаимодействуют в одной и той же точке. Вспомним: поскольку частицы неразличимы, высота квантовой волны для данного события представляет собой сумму высот квантовых волн для того варианта, когда частицы снялись со своих «родных» точек, и того варианта, когда они поменялись местами. Эти два варианта можно представить в виде двух стрел-стрелок на циферблате. Природа допускает две ситуации: стрелы могут указывать в одном направлении и складываться,или же они могут указывать в противоположные направления и гаситьдруг друга. Последнее подводит нас к принципу запрета Паули – а именно нулевой вероятности того, что две частицы окажутся в одном месте или будут делать одно и то же.

А что случится, если поменяются местами два электрона – частицы с полуцелым спином? Представьте себе два электрона в виде двух идентичных футбольных мячей, лежащих рядышком. Поскольку нам важно следить за их ориентацией в пространстве, вообразите, что они лежат бок о бок по линии восток – запад и в западном направлении у каждого торчит маленький красный флажок. Теперь заставьте мячи поменяться местами.

И сделайте это следующим, весьма странным образом. Сначала перекатите западный мяч по поверхности восточного так, чтобы он сделал пол-оборота (допустим, флажок уцелеет, если его приплюснуть мячом). В этом случае красный флажок, торчавший в сторону запада, сначала укажет на север, а затем на восток. Иными словами, западный мяч совершит пол-оборота по часовой стрелке. Теперь представьте мячи в их прежней позиции и совершите тот же маневр с восточным мячом. Он перекатится по поверхности западного мяча. При этом флажок, указывавший на запад, сначала обозначит на направление на юг, а затем – на восток. Иначе говоря, восточный мяч совершит пол-оборота против часовой стрелки.

Между тем чистый эффект от этой перемены мест двух мячей выражается в том, что один мяч совершил полный оборот относительно второго. А теперь вспомним: частица с полуцелым спином должна совершить два полных оборота, чтобы стрела, отображающая высоту ее волны, оказалась в том месте, где она была вначале. Если частица совершит всего лишь один оборот, то стрела укажет в противоположном направлении. А ведь именно это и требуется, чтобы погасить две возможности, открывающиеся в том случае, когда две идентичные частицы сходятся и взаимодействуют. Таким образом, частицы с полуцелым спином, подобные электрону, должны быть фермионами. Эти творения природы – антиобщественные частицы, они подчиняются принципу запрета Паули. А частицы с целым спином, чьи стрелы возвращаются в исходную позицию после одного оборота (таким образом, когда идентичные частицы сходятся, возможности не гасятся), должны быть бозонами – другими творениями природы, частицами, которым свойственно стадное поведение [34]34
  На самом деле все частицы с полуцелым спином —1/2, 3/2, 5/2 и так далее – фермионы, а частицы с целым спином – 0,1,2 и так далее – бозоны. (Прим. автора).


[Закрыть]
.

Атомы таковы, каковы они есть, потому что электроны – это фермионы, подчиняющиеся принципу запрета Паули [35]35
  Доказать, что частицы со спином 1/2 (или, в общем случае, частицы с полуцелым спином) подчиняются принципу запрета, было очень непросто. Только в 1940 году – спустя 16 лет после того, как он сформулировал принцип запрета, – Паули доказал так называемую теорему о связи спина со статистикой. (Прим. автора).


[Закрыть]
. Попытайтесь сблизить два электрона – они будут сопротивляться изо всех сил. Вот эта чудовищная антипатия, желание во что бы то ни стало разбежаться и не дает электронам сидеть друг на друге. Принцип запрета разрешает только одному электрону – не больше! – пребывать в одном квантовом состоянии. Поэтому первая, ближайшая к ядру оболочка атома может содержать только один электрон, вторая – четыре, третья – девять и так далее. Но постойте-ка. Разве максимальная вместимость первой оболочки не два, второй – не девять, а следующей – не 18 электронов? Все правильно. Принцип запрета действительно не разрешает двум идентичным частицам находиться в одном и том же месте. Однако электроны нашли способ быть не-идентичными. Все дело в их спине.

Электрон, обладающий спином, подобно всем движущимся электрическим зарядам, действует как магнит (несмотря на то что спин – его внутреннее свойство и на самом деле электрон вовсе не вращается). По сути, именно спин отвечает за магнетизм железа и за возбуждение магнитного поля в электрической катушке, что дало нам электромоторчики в фенах и миксерах и динамо-машины, вырабатывающие электричество по всей планете. Манипуляции, которые магнитные поля производят со спином электронов, позволяют также хранить огромное количество данных (и извлекать эти данные) на жестких дисках компьютеров и айподов.

В магнитном поле спин электрона ведет себя как крошечная стрелка компаса. Только эта стрелка компаса – квантовая.В отличие от знакомой всем стрелки обычного компаса, она не способна устанавливаться в любом положении (лишь бы это положение соответствовало направлению на Северный магнитный полюс) – у нее есть только две возможности: указывать по направлению поля или против него [36]36
  Первый намек на существование спина дало то наблюдение, что «вращение» электрона направлено по магнитному полю. Когда электрон в атоме перепрыгивает из одного состояния в другое – совершает так называемый квантовый скачок, – он испускает или поглощает свет с энергией, равной разнице между энергиями в этих состояниях. Однако в магнитном поле свет может иметь два немного различных значения энергии – чуть больше и чуть меньше положенного. Объясняется это тем, что спин электрона может быть направлен по полю или против поля и каждому из этих направлений соответствует свое значение энергии, немножко отличное от второго. Интересно, что Паули сформулировал свой принцип запрета до того,как американские физики голландского происхождения Сэмюэл Гаудсмит (1902–1978) и Джордж Уленбек (1900–1988) открыли собственно спин электрона в 1925–1926 годах. Хотя Паули ничего не ведал про спин, он тем не менее знал о двузначности ( zweideutigkeit)энергетических состояний электрона в магнитном поле. (Прим. автора).


[Закрыть]
. Можно сказать, что эти две возможности соответствуют двум вариантам «вращения» электрона – по часовой стрелке и против часовой стрелки. Ну что же, получается, что «по-часовой» и «противо-часовой» электроны не идентичны друг другу и, таким образом, они могут занимать в пространстве одно и то же место, то есть находиться в одном и том же квантовом состоянии. Вот почему каждая атомная оболочка может содержать в два раза больше электронов, чем следовало ожидать.

Теперь можно развить прозвучавшее ранее объяснение, почему земля под нашими ногами твердая [37]37
  См. главу 2. (Прим. автора).


[Закрыть]
. Да, атомы сжимаются под нашим весом, но электроны в этих атомах начинают суетиться быстрее, отчего становятся еще больше похожи на рассерженных пчел: они сопротивляются тому, что их втискивают в столь маленькое пространство. Однако в то время, как этот эффект, в силу принципа неопределенности Гейзенберга, объясняет существование самих атомов и дает исчерпывающее толкование того, почему простейший атом – водород с его единственным электроном – сопротивляется сжатию, для всех более тяжелых атомов в игру вступает другой фактор. И этот фактор – принцип запрета Паули. Только два электрона, не более того, могут делить одно и то же квантовое состояние. В каждом стручке могут сидеть только по две горошины. Когда ваш вес сжимает атомы в земле, их, эти атомы, раздвигает объединенный эффект принципа неопределенности Гейзенберга и принципа запрета Паули.

Итак, теперь мы можем со всей определенностью сказать, о чем же говорит нам многообразие нашего мира. Оно говорит, что атомы бывают разных видов, а это обстоятельство, в свою очередь, сообщает нам о том, что непременно должен существовать эдикт, воспрещающий электронам в атомах сидеть друг на друге. Этот эдикт – принцип запрета Паули – сам по себе оказывается неизбежным следствием двух вещей: неразличимости электронов и того факта, что они обладают полуцелым спином. Вот она – фантастическая «машина различий» Ее Величества природы.

Принцип запрета – не единственный эффект, носящий имя Паули. Ученый обладал особенностью, о которой ходили легенды: если он находился рядом, в экспериментальном оборудовании неизменно происходило короткое замыкание или же оно взрывалось, а то и просто разваливалось, превращаясь в бесформенную груду. «Эффект Паули» был настолько ужасен, что физик-экспериментатор Отто Штерн [38]38
  Отто Штерн (1888–1969) – немецкий физик, выдающийся экспериментатор. В числе его заслуг – открытие спина, измерение атомных магнитных моментов, демонстрация волновой природы атомов и молекул, открытие магнитного момента протона. Лауреат Нобелевской премии по физике в 1943 г.


[Закрыть]
даже выгнал Паули из своей лаборатории в Гамбурге и предпочитал обсуждать с ним физические проблемы через закрытую дверь. Однако то, что Паули не пускали в лаборатории, порой не помогало. Однажды, когда Паули даже не предполагался где-нибудь на горизонте, у физика Джеймса Франка произошел просто повальный отказ оборудования в его лаборатории в Геттингене. Сверившись с расписанием поездов, ученый обнаружил, что в момент наивысшего хаоса в его хозяйстве поезд, в котором Паули ехал из Цюриха в Копенгаген, сделал пятиминутную остановку на вокзале Геттингена в нескольких километрах от лаборатории [39]39
  Восторженная реплика Джеймса Франка по данному поводу заслуживает того, чтобы ее здесь привести: «Сам радиус действия этого эффекта заставляет признать Паули величайшим теоретиком всех времен!»


[Закрыть]
.

Это может показаться очень странным, но сам Паули был убежден, что «эффект Паули» – абсолютно реальное явление. Будучи закадычным другом швейцарского психиатра Карла Юнга, Паули верил, что его «эффект» – некий психокинетический феномен, демонстрирующий способность человека управлять материей усилием воли: мол, пусть это явление пока необъяснимо, но рано или поздно оно станет достоянием науки.

Принцип запрета имеет интересные философские последствия для нашей охоты за предельными кирпичиками материи. Когда-то люди думали, что эти кирпичики – атомы. Затем атом неожиданно распался на ядро и облако электронов. Хотя главные составляющие ядра еще не упоминались в этой книге, потому что они пока не имели прямого отношения к обсуждавшимся здесь проблемам, тем не менее секрета здесь нет: это «протон» и «нейтрон». И каждая из этих частиц тоже, оказывается, составная. Протоны и нейтроны сделаны из так называемых «кварков», которые, между прочим, как и электроны, имеют полуцелый спин.

Очевидный вопрос: добрались ли мы до самого «низа»? Или нам суждено и дальше разъединять частицы, находя внутри все более и более мелкие «частичечки» (воображение рисует бесконечную последовательность матрешек)? Ну хорошо, попробуем остановиться. И электроны, и кварки подчиняются принципу запрета Паули, а это подчинение обусловлено тем, что все электроны идентичны и все кварки идентичны тоже. Раз нет никакой возможности отличить одну частицу данного вида от другой, то из этого следует, что внутренней структуры у них тоже нет – и не просто нет, а не может быть! – потому что тогда какие-нибудь различия непременно обнаружились бы. Сам факт, что электроны и кварки подчиняются принципу запрета Паули, – это сильный намек на то, что в конце концов мы все же обнаружили фундаментальные кирпичики природы.

Часть 2
Что окружающий мир рассказывает нам о звездах
4. Ошибка лорда Кельвина

С тем, что на солнышке жарко, и спорить нечего, но этот факт говорит нам удивительную вещь: на свете существует источник энергии, в миллион раз более концентрированный, чем динамит



Постигнуть, что может поддерживать такой огромный пожар (если это действительно пожар), – значит раскрыть величайшую тайну. Каждое открытие химической науки в этой области заводит нас в совершенный тупик или, скорее, все дальше уводит нас от возможного объяснения загадки.

Джон Гершель («Очерки по астрономии», 1849) [40]40
  Джон Фредерик Вильям Гершель (1792–1871) – английский астроном и физик, сын Уильяма Гершеля. Был известен также как замечательный оратор и популяризатор науки. Его «Очерки по астрономии», выдержавшие с 1849 по 1893 г. двенадцать изданий, долгое время служили образцом популярной книги по астрономии.


[Закрыть]


Как же много я не знаю об астрофизике. Надо бы почитать книгу того парня в инвалидной коляске.

Гомер Симпсон («Хэллоуин Симпсонов», VI специальный выпуск, 29 октября 1995 г.)

Прогуливаясь летним днем в парке, вы чувствуете теплые успокоительные лучи Солнца на своем лице. Несмотря на то что до Солнца примерно 150 миллионов километров, оно неплохо нас греет. На самом деле Солнце дает Земле тепло уже 4,55 миллиона лет. Это наблюдение может показаться банальным и очевидным, однако тот факт, что Солнце горячее, говорит нам нечто важное о солнечном источнике топлива. Если взять «шашку» этого топлива и шашку динамита, то первая должна содержать в миллион раз больше энергии.

Чтобы понять, почему это так, для начала надо спросить: почему Солнце горячее? Ответ до удивления прост. Солнце горячее, потому что у него большая масса. Поместите в одном месте большую массу чего бы то ни было, и собственное тяготение этой массы будет неизбежно прижимать все части «чего бы то ни было» ближе друг к другу. Чем больше масса, чем мощнее собственное тяготение, тем с большей силой будет сжиматься материя. Если вы когда-нибудь накачивали камеру велосипедным насосом, то знаете, что насос нагревается. На самом деле прежде всего нагревается воздух в насосе, потому что он сжимается. Солнце горячее именно по этой причине.

В сущности, не имеет особого значения, из чего состоит масса. Солнце в основном «сделано» из водорода и весит примерно миллиард миллиардов миллиардов тонн [41]41
  Если кому-то хочется знать точнее – пожалуйста: масса Солнца составляет 1,99 •10 30кг.


[Закрыть]
. Однако соберите в одном месте миллиард миллиардов миллиардов тонн бананов или миллиард миллиардов миллиардов тонн микроволновок, и результат будет тем же: пылающий шар газа, не менее горячий, чем Солнце. Совершенно безразлично, какой материал вы возьмете: сила тяжести такой гигантской массы сжимает материю столь мощно, что температура глубоко внутри составляет миллионы градусов. При этой головокружительно высокой температуре атомы сталкиваются так яростно, что у них просто срывает электроны. В результате получается электрически заряженный газ, или «плазма», – некое анонимное состояние, которое при таких экстремальных условиях становится уделом любой материи, вне зависимости от того, водород это, бананы или микроволновки [42]42
  Единственное, в чем проявляется состав сгораемого тела, так это в том, насколько быстро оно теряет тепло, а последнее зависит от количества свободных электронов, поскольку именно свободные электроны, как выяснилось, прекрасно умеют «рассеивать», или перенаправлять, излучаемое тепло, тормозя его выход из центра тела во внешнее пространство. Объект, состоящий преимущественно из водорода, располагает всего одним свободным электроном на каждое атомное ядро, чтобы удерживать внутреннее тепло, тогда как у объектов, состоящих из более тяжелых атомов, свободных электронов больше. (Прим. автора).


[Закрыть]
.

Тот факт, что Солнце имеет большую массу, объясняет, почему оно горячее – но, конечно же, только для конкретного мгновения. Он не объясняет, почему Солнце остаетсягорячим. В конце концов, наше светило беспрерывно теряет тепло, излучая его в пространство, и по этой причине оно должно остывать. Однако этого не происходит, из чего можно сделать вывод: что-то восполняет тепло по мере его потери. Но что именно?

На Земле самый привычный для нас источник тепла – горение, сжигание чего бы то ни было. Еще в 434 году до нашей эры греческий философ Анаксагор [43]43
  Анаксагор из Клазомен (ок. 500 до н. э. – 428 до н. э.) – древнегреческий философ, математик и астроном, основоположник Афинской философской школы.


[Закрыть]
размышлял о том, что Солнце охвачено пожаром. «Солнце – это огромный раскаленный камень», – сказал он. В сущности, он пошел даже немного дальше и с трогательной точностью объявил, что Солнце представляет собой «раскалённую металлическую глыбу или камень размером во много раз больше Пелопоннеса» [44]44
  Анаксагор мог позволить себе быть точным – ведь он первым понял, что Луна непрозрачна, а потому, проходя перед Солнцем, отбрасывает на Землю тень. Он смог оценить размер тени со слов очевидцев – главным образом моряков – во время кольцеобразного солнечного затмения 478 года до нашей эры. Тень накрыла Пелопоннесский полуостров, из чего Анаксагор сделал вывод: Луна «столь же велика, сколь и Пелопоннес», а Солнце, следовательно, «во много раз больше Пелопоннеса». (Прим. автора).


[Закрыть]
. Для сжигания требуется кислород. В школе на уроках физики это демонстрируют, накрывая стеклянным колпаком горящую свечу. Когда последние частицы кислорода пожираются пламенем, огонь шипит и гаснет. Так же и Солнцу для горения требуется источник кислорода. Оставим в стороне совершенно пустячный вопрос: интересно, а где оно может получить такой практически неистощимый источник газа? – и вместо этого зададим вопрос более уместный: что же такое горящее Солнце?

К топливу, которое сжигается на Земле, относятся древесина, нефть, уголь, даже динамит, который при сжигании выделяет тепло столь быстро, что не горит, а взрывается. Горение – это химическая реакция, то есть процесс, при котором электроны перегруппировываются вокруг атомов, поэтому древесину, нефть, уголь, динамит и так далее собирательно называют «химическим топливом» [45]45
  См. главу 3. (Прим. автора).


[Закрыть]
. Получается, что в Солнце тоже сжигается химическое топливо? Может ли оно быть, например, гигантской пылающей глыбой угля – глыбой больше миллиона километров в поперечнике? Это может показаться идиотской идеей. Однако в девятнадцатом веке, когда ученые впервые начали всерьез задумываться, что же питает Солнце, это было вовсе не смешно. В конце концов, они жили в индустриальном обществе, где стало возможным высвобождать энергию, сжигая уголь.

Дабы понять, что такое Солнце – глыба горящего угля или что-то еще, – надо оценить, как много тепла оно излучает в космос. Только вооружившись такой оценкой, можно определить, действительно ли глыба горящего угля величиной с Солнце способна выполнить такую работу. Решающие измерения произвели в XIX веке французский физик Клод Пуйе (1790–1868) и, независимо от него, английский астроном Джон Гершель. Последний был сыном Уильяма Гершеля, который в 1781 году обнаружил планету, не известную в древности, – он открыл Уран [46]46
  Первоначально Гершель окрестил Уран «Звездой Георга» ( Georgium Sidus) в честь короля Великобритании Георга III. Не так уж много людей знают это. (Прим. автора).


[Закрыть]
. В 1834 году Джон Гершель приплыл в Кейптаун с заданием дополнить звездные карты Британского адмиралтейства картами Южного полушария неба. С женой, детьми, телескопом и пожитками он долго бродил по кишащим бегемотами болотам, пока не нашел место для обсерватории на возвышенности рядом с городом. Сейчас этот пригород Кейптауна называется Обсерваторией. И здесь в 1837 году, в часы дневного отдыха между ночными наблюдениями, Гершель успешно измерил тепловую отдачу Солнца.

Гершель и Пуйе пришли примерно к одному и тому же выводу: ежегодно Солнце выделяет достаточно тепла, чтобы растопить на Земле слой льда толщиной 31 метр. Возможно, это покажется не очень впечатляющим, но надо принять во внимание, что солнечное тепло распространяется не только в направлении нашей маленькой планеты – оно расходится во всех направлениях. Из этого можно сделать только один вывод: солнечного тепла достаточно для того, чтобы каждый год растапливать 31-метровый слой льда не только на Земле, но повсюду на расстоянии радиуса земной орбиты. Другими словами, оно может растопить сферическую оболочку, толщина которой – 31 метр, а поперечник – 300 миллионов километров! Вообразите себе надувной пляжный мяч, который настолько велик, что вмещает в себя околосолнечную орбиту Земли, и еще вообразите, что его внутренняя поверхность покрыта слоем льда толщиной 31 метр. Вот сколько льда Солнце может растопить за один год. Этого льда достаточно – тут можно прибегнуть к другому сравнению, – чтобы слепить из него примерно 500 земных шаров.

Вооружившись оценкой количества тепла, выделяемого Солнцем, ученые девятнадцатого века задумались: а возможно ли, чтобы наше светило и впрямь работало на угле? Первым, кто произвел необходимый эксперимент, был немецкий врач Юлиус фон Майер (1814–1878). В 1848 году он измерил количество тепла, получаемое при сжигании крупного куска угля в жаровне. Затем он изменил масштаб и математически «раздул» глыбу до размеров Солнца. Вопрос был следующий: как долго такое количество угля может поддерживать солнечное тепло, измеренное раньше Гершелем и Пуйе, пока глыба не превратится в тлеющий уголек? Ответ фон Майера был совершенно четок: не более пяти тысяч лет. Поразительно короткий срок! Он был слишком коротким даже для буквальных толкователей Библии, которые считали, что Земля была создана вечером 22 октября в 4004 году до Рождества Христова [47]47
  Эта оценка была сделана в 1658 году ирландским архиепископом Джеймсом Ашшером. (Прим. автора).


[Закрыть]
.

Итак, уголь был исключен из источников топлива, поддерживающих высокую температуру Солнца. Впрочем, та же участь постигла и остальные виды химического топлива, включая динамит. Что же тогда питает Солнце энергией? Фон Майер выдвинул невероятное предположение. Он пришел к мысли, что Солнце поддерживается в горячем состоянии за счет метеоритов, постоянно на него падающих. Идея проста. Представим, что вы берете большой камень и с высокой скалы бросаете его на покрытый галькой пляж. Камень ускоряется во время падения и врезается в гальку. Существуют разные виды энергии – химическая, звуковая, электрическая и так далее. Согласно закону сохранения энергии, который фон Майер, кстати, признал одним из первых, энергия не может быть создана или уничтожена, она может лишь перейти из одного вида в другой. В случае с падающим камнем «гравитационная потенциальная энергия» – энергия, заключенная в гравитационном «силовом поле», которое удерживает все на Земле, – переходит в «энергию движения». Камень падает на пляж со звуком, подобным пистолетному выстрелу. Целые галечные камешки и их осколки шрапнелью разлетаются в разные стороны. Температура камня и потревоженной гальки при этом немного повышается, да что там камень и галька, чуть-чуть повышается даже температура воздуха, коль скоро он сотрясается от звука удара. И тем не менее все подчиняется закону сохранения энергии. Одна форма энергии – энергия движения камня – переходит в другие формы: в энергию движения разлетающейся гальки, звуковую энергию, тепловую и так далее.

Тепловая энергия – самая рядовая форма энергии, нижняя ступенька лестницы, конечный шлак Вселенной. Это энергия беспорядка, случайности, хаотичного движения микроскопических атомов. В конечном итоге, когда звук падения камня рассеивается в воздухе, а галечная шрапнель успокаивается, заняв новые места на пляже, все, что остается, – это тепло. Таким образом, когда камень падает на пляж, происходит, в сущности, не что иное, как трансформация гравитационной энергии в тепловую. Именно эту трансформацию и имел в виду фон Майер, когда он предположил, что источник солнечного тепла – метеориты, дождем сыплющиеся на наше светило. Заменим поверхность Солнца пляжем, а космические камни – метеориты – земным камнем, и вот пожалуйста: перед нами идея фон Майера в самом общем виде.

«Метеоритная гипотеза» была с восторгом подхвачена Уильямом Томсоном (1824–1907), более известным как лорд Кельвин. Именно Кельвину, одному из величайших ученых XIX столетия, мы обязаны температурной шкалой, которой до сих пор пользуются все ученые, и первым трансатлантическим телеграфным кабелем. Он также считал вопрос о том, что именно поддерживает высоченную температуру Солнца, одной из главных, хотя и трудно разрешимых проблем эпохи. Кельвин внимательно рассмотрел метеоритную гипотезу. Однако, будучи подвергнута пристальному изучению, она рассыпалась в прах. Чтобы обеспечить выход солнечной энергии, соответствующий измерениям, слой метеоритного мусора, накапливающегося на поверхности Солнца, должен расти со скоростью десять метров в год. Это повлекло бы за собой некоторый прирост диаметра Солнца – впрочем, слишком маленький, чтобы его можно было обнаружить экспериментально, так что ахиллесова пята идеи была не в этом. Кельвин предположил, что космический мусор, падающий на Солнце, должен пребывать в некой области пространства, которая ближе к Солнцу, чем к Земле. Если бы это было не так, то при движении Земли по орбите вокруг Солнца наша планета сама подбирала бы этот мусор, отчего менялись бы орбитальная скорость Земли и продолжительность года. Однако подобных эффектов никто не наблюдал. А если весь мусор, падающий на Солнце, пребывает в некой области внутри земной орбиты, то возникает другая проблема: этот мусор должен обладать небольшой, но ощутимой силой собственного тяготения. По расчетам Кельвина, ее было бы достаточно, чтобы повлиять на движение внутренних планет – Меркурия и Венеры – по своим орбитам. И снова та же картина: подобный эффект никем не наблюдался.

К 1862 году Кельвин [48]48
  Надо сказать, что в 1862 г. Уильям Томсон еще не был лордом Кельвином. Королева Виктория пожаловала ученому пэрство с титулом «барон Кельвин» в 1892 г. Однако в литературе чаще встречается именно лорд Кельвин, а не Уильям Томсон – вне зависимости от того, о каком периоде жизни ученого идет речь. Автор данной книги повсюду именует Уильяма Томсона просто Кельвином. Это, разумеется, неточность (если не сказать фамильярность). «Кельвин» – не имя и не фамилия, а титул, который полностью звучит так: «1-й барон Кельвин из Ларгса» (при этом Ларгс – город, а Кельвин – река, близ которой располагалась лаборатория Уильяма Томсона, работавшего и преподававшего в Университете Глазго). Тем не менее авторское «Кельвин» повсюду сохранено.


[Закрыть]
распрощался с метеоритной гипотезой.

Вместо этого он воодушевился другим предположением: идеей, что Солнце сохраняет высокую температуру, потому что оно медленно сжимается. «Гипотеза сжатия» была детищем шотландского гидрографа Джона Джеймса Уотерстона (1811–1883), который, независимо от фон Майера, в 1853 году тоже пришел к метеоритной идее. Кстати, научный доклад именно Уотерстона, а не фон Майера привлек внимание Кельвина к метеоритной гипотезе. Красота идеи сжатия Солнца состояла в том, что это сжатие, по сути, неизбежно. Солнце – гигантский газовый шар; сила тяготения делает все возможное, чтобы сжать этот шар, между тем как сила раскаленного газа, рвущегося наружу, делает все от нее зависящее, чтобы расширить его. Эти две противоположные силы находились бы в полном, даже изысканном равновесии, если бы не одна проблема: Солнце постоянно теряет тепло, излучая его в пространство. Потеря тепла лишает газ его способности рваться наружу, пренебрегая гравитацией. Получается, что сила тяготения не просто владычествует, но набирает все больше и больше власти, а из этого следует только один вывод: Солнце должно сжиматься.

При сжатии газовый шар разогревается. Вновь вспомним о нагреве воздуха в велосипедном насосе [49]49
  Более сложное объяснение этого явления требует использования закона сохранения энергии. В процессе откачивания энергия движения поршня превращается в тепловую энергию воздуха позади поршня – другими словами, вызывает хаотичное, бешеное движение молекул воздуха. (Прим. автора).


[Закрыть]
. Можно представить сжатие газа и по-другому – в виде очень медленного метеоритного дождя. Однако в данном случае речь идет не о малом количестве вещества в виде камней, стремительно пронзающих гравитацию Солнца (как это было бы при метеоритном нагреве), а о том, что сквозь поле тяготения Солнца очень медленно «проваливается» огромное количество вещества – собственно, вся масса светила. Оба механизма «подключены» к одному и тому же могучему источнику, первичному источнику энергии во Вселенной – гравитации. А гравитационная энергия, как понял Уотерстон, потенциально куда больший резервуар энергии, чем любое химическое топливо.

Вычисления Уотерстона показали, что если бы Солнце сжималось на 280 метров в год – это всего лишь 10 миллионных от его диаметра, и такое сжатие абсолютно не заметно с Земли, – то подобной убыли хватило бы, чтобы восполнять постоянно отдаваемое космосу тепло. Идея сжатия была весьма многообещающей, но ее требовалось проверить. Кельвин и его немецкий современник Герман фон Гельмгольц нашли способ сделать это. Если Солнце сжимается сегодня, рассудили ученые, оно должно было сжиматься и в прошлом. Когда-то давным-давно Солнце, надо полагать, было гигантским газовым облаком, намного б ольшим, чем даже нынешняя Солнечная система. Кельвин и Гельмгольц рассчитали, какое количество гравитационной энергии должно было превратиться в тепло, пока это колоссальное облако сжималось до того объема Солнца, который известен сейчас. А затем они задались вопросом: как долго это тепло могло поддерживать сияние Солнца на уровне, наблюдаемом в современную эпоху? И получили ответ: не более 30 миллионов лет.

Продолжительность жизни в 30 миллионов лет – гораздо больше, чем пять тысяч лет для Солнца, работающего на угле. Но, как ни удивительно, этого все равно недостаточно. Существуют серьезные доказательства со стороны геологии и биологии, что Земля – а следовательно, и Солнце, коль скоро его возраст никак не меньше возраста Земли, – значительно старше, чем это получалось по оценке Кельвина и Гельмгольца.

И геологи, и биологи распознали процессы, которые коренным образом изменили лик Земли, но эти процессы протекают столь невероятно медленно, что их ход оставался незаметным на протяжении всей человеческой истории. Если говорить о геологии, то горы, когда-то бывшие морским дном, о чем свидетельствуют окаменелые морские твари на их вершинах, взметнулись к небу, достигнув многокилометровой высоты. Если говорить о биологии, то населяющие Землю существа, при всем их потрясающем многообразии, судя по разным признакам, эволюционировали из простейшего общего предка, преобразуясь из одной формы в другую под управлением дарвиновского естественного отбора. Эти превращения сформировали земную поверхность, ее флору и фауну. Но чтобы это произошло, потребовалась умопомрачительная, неохватная прорва времени. Не просто десятки миллионов, а сотни миллионов, может быть, даже миллиарды лет.

Картина понятная: точная оценка возраста Земли и Солнца нужна для того, чтобы узнать наверняка, как долго горит Солнце и какое количество энергии требуется солнечному источнику питания. Такую оценку не могли дать ни биология, ни геология – вся надежда была на физику. И, как ни парадоксально, в данном случае именно непредсказуемость квантового мира помогла создать лучшее, что только можно придумать в области предсказуемости, – квантовые «часы».


    Ваша оценка произведения:

Популярные книги за неделю