355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Марк Махлин » Аквариум в школе » Текст книги (страница 2)
Аквариум в школе
  • Текст добавлен: 5 октября 2016, 20:46

Текст книги "Аквариум в школе"


Автор книги: Марк Махлин


Соавторы: Людмила Солоницына
сообщить о нарушении

Текущая страница: 2 (всего у книги 10 страниц)

Зеленые водоросли используют в сельском хозяйстве в качестве удобрений. В ряде мест харовые водоросли применяют для известкования полей.

Крупные клетки нителлы (рис. 1) используют как модель для изучения внутриклеточных процессов в научных исследованиях, так как многие процессы в клетке нителлы типичны для всех клеток живых существ. На клетках нителлы изучают распределение внутриклеточного электрического потенциала, проницаемость оболочки для разных питательных веществ и избирательность оболочки к этим веществам.

Из водорослей изготовляют войлок, теплоизоляционный и водонепроницаемый материалы, картон, низшие сорта бумаги. Из кладофоры биохимически можно получать спирт и ацетон.

В школьном аквариуме хорошо живут с лета до весны спирогира, кладофора, нителла, улотрикс, мужоция, зигнема. Их можно использовать в учебном процессе. Найти в природе эти водоросли не трудно.

Спирогира – одна из самых распространенных нитчатых водорослей. Растет в стоячих и медленно текущих водах. Ведет неприкрепленный образ жизни. Длинные неветвящиеся и скользкие нити ее таллома переплетены в клубки ярко-зеленого цвета, образуя так называемую тину. В тине вместе со спирогирой встречаются зигнема и мужоция.

Кладофора – широко распространенная водоросль. Ее таллом состоит из многоразветвленных жестких нитей в виде подводного кустика. На нитях нет слизи.

Нителла и другой близкий ей вид – хара – по форме напоминают высшие растения (хвощ или роголистник). Их таллом разрастается в виде стебелька и мутовчато отходящих от него веточек, которые, в свою очередь, тоже ветвятся. Стебелек харовых достигает нескольких десятков сантиметров и разделен узлами на междоузлия. Обитают харовые в виде хрупких дернинок на дне спокойных чистых вод. Хара плохо адаптируется в аквариумах, так как предпочитает сильно известкованную воду. Изучение ее строения затруднено тем, что таллом этой водоросли покрыт корочкой извести. Соли кальция в составе минеральной золы хары составляют до 55 % по массе. Поэтому для школьного аквариума больше подходит нителла. Ее узнают по нежно-зеленым зарослям (рис. 1).

Рис. 1. Блестянка гибкая (нителла)

Улотрикс обитает в быстро текущей воде, представляет собой длинные (в Неве до 30 см), неразветвленные нити, состоящие из коротких цилиндрических клеток. Нити образуют дернинки, которые прикрепляются к различным подводным предметам чуть ниже уровня воды.

Мужоция живет в реках, прудах, озерах, канавах. Ее нити меняют цвет от бледно-серого до ярко-зеленого. Объясняется эта особенность движением хроматофора внутри клеток. Он пластинчатый, протянут во всю длину клетки и свободно передвигается в ней. При ярком освещении хроматофор поворачивается к источнику света ребром, его почти не видно и нить становится бледно-серой с чуть заметным зеленоватым оттенком. При недостаточном освещении хроматофор поворачивается широкой стороной к источнику света и нити наливаются интенсивным зеленым цветом.

Зигнема обитает в стоячих и проточных водоемах. Нити ее иногда развиваются в больших количествах.

Каждый вид водорослей собирают обычно летом или в начале сентября в отдельные банки с небольшим количеством воды. Воду из водоема для подлива к культурам водорослей наливают также в отдельную большую банку. Водоросли в виде дернинок, клубков нельзя оставлять надолго неразобранными, так как они могут погибнуть. Не позже чем через сутки нужно все разобрать, освободить от представителей фауны и разложить в приготовленные заранее сосуды.

Водоросли лучше живут и развиваются в стеклянных невысоких сосудах с широким дном (кристаллизаторы, чашки Коха, для небольших количеств водорослей – чашки Петри), особенно если их в сосудах значительно меньше, чем воды. Большинство водорослей предпочитают нейтральную или слабощелочную среду (рН 7,0 – 7,6). Если среда кислая, в нее для нейтрализации можно по каплям внести раствор соды (Na2CO3).

Прямой солнечный свет недопустим при содержании водорослей в искусственных условиях. Их помещают на северо-восточном, северном или в крайнем случае на восточном окне. Зимой благоприятна температура не выше 10 – 12 °С, летом – 16 – 18 °С. Зимой водоросли подсвечивают, используя люминесцентные лампы на расстоянии 6—7 см от сосудов. Можно использовать лампы накаливания, но их следует опускать в отдельный (без водорослей) сосуд с водой, иначе может быть перегрев, вызывающий гибель культур. Оптимальный вариант светового режима водорослей в зимний период – это сочетание естественного и искусственного освещения. Водоросли лучше выживают при добавлении в воду питательного раствора Кнопа*.

* Раствор Кнопа был составлен для высших растений, но позже его с успехом стали применять для культур водорослей. Состав раствора на 1 л воды: Са(NО3)2 – 0,25 г; MgSO4 – 0,06 г; КН2РО4 – 0,06 г; КСl – 0,08 г; Fe2Cl6 – 1 капля 1-процентного раствора.

Зеленые водоросли используют на уроках. Например, изучал клетку в натуре и последовательно на таких объектах, как водоросли, папоротники, высшие растения, простейшие животные, учащиеся с большой степенью самостоятельности и интереса приходят к выводу о единстве строения, о родственных связях, о единстве происхождения различных организмов.

Использование аквариумных водорослей поможет также в изучении понятия ароморфоза (переход от одноклеточности к многоклеточности). При изучении в VI классе одноклеточных зеленых водорослей учитель обычно демонстрирует наземную водоросль плеврококк, у которой одиночные клетки иногда на некоторое время соединяются между собой. При изучении нитчатых водорослей и рассматривании под микроскопом спирогиры учащиеся наблюдают многоклеточность, но в самой примитивной форме – нить из одного ряда клеток; при демонстрации кладофоры наблюдают дальнейшее усложнение морфологии – кустики из однородных нитей.

Рассматривая под микроскопом при изучении темы «Клетка» клетки кожицы лука, учащиеся V класса, конечно, испытывают эмоциональный подъем, так как впервые в жизни самостоятельно готовят препарат, работают с микроскопом. Но впечатление, возникающее при знакомстве с нителлой, незабываемо. Клетки ее очень красивы, окрашены в изумрудный цвет. Так как они достаточно крупные (отчетливо видны при увеличении в 30 – 40 раз), их легко рассмотреть под лупой. Расстояние между узлами стебелька – это одна клетка. Иногда длина этих клеток достигает 15 – 20 мм при толщине до 0,5 мм (обычно клетки растений имеют 50 мкм в поперечнике).

Учащиеся приходят в восторг от наблюдения за движением цитоплазмы*. Это для них открытие. Причем

учитель может организовать урок так, что открытие станет самостоятельным, и это принесет особую радость учащимся. Движение – один из признаков живого. Школьники наглядно убеждаются в том, что клетки, а следовательно все растения,– это живые организмы.

* Для того, чтобы хорошо было видно движение цитоплазмы, нителлу нужно предварительно выдержать 1 – 2 ч в теплой воде с температурой 30 – 35 °С. За 15 мин до приготовления препарата в воду добавить спирт из расчета 8 – 10 капель на 100 см3.

Рассмотрение строения клеток спирогиры в VI классе при изучении нитчатых водорослей позволяет развить понятие о многообразии растительных клеток.

Для приготовления препарата спирогиры ее выдерживают в течение 2 – 3 сут. в дистиллированной воде. При этом хроматофоры раздвигаются, что облегчает их рассмотрение, и ядро становится доступным для обозрения. Крахмальные зерна хорошо видны при окрашивании препарата слабым раствором йода.

Другие нитчатые водоросли – улотрикс, зигнема, мужоция – сохраняют общие признаки, а именно нитчатый тип строения, но отличаются друг от друга разнообразием форм хроматофоров. Так, у улотрикса он похож на незамкнутый поясок, у зигнемы – звездчатый (2 хроматофора), у мужоции – в виде пластинки.

Изучение этих водорослей возможно только во внеклассной работе, результаты которой используются на уроке при изучении соответствующего материала. В уголке живой природы могут быть поставлены различные опыты с водорослями: выяснение оптимальных условий их содержания, образование запаса питательных веществ, дыхание и т. п. Составленные учителем задания, особенно для учащихся средних классов, помогут им более четко и правильно выполнить эти наблюдения.

Моховидные – представители высших растений. Тело большинства из них состоит из побега, разделенного на стебель, и листьев (фонтиналис). У некоторых представителей, стоящих на более низкой ступени организации, тело – это таллом, слоевище (риччия). Это доказывает сходство слоевищных мхов и низших растений и наряду с другими признаками (неразрывная связь с водной средой, невозможность размножения без нее, сам процесс размножения и развития) указывает на их родственные связи и общность происхождения.

Корней у мохообразных нет, но есть у ряда видов ризоиды – одноядерные, многоклеточные волоски, отчасти заменяющие корни.

Водяные мхи играют значительную роль в жизни пресных водоемов, участвуя в процессах зарастания и

заболачивания. Общее число водяных мхов достигает в некоторых водоемах 15 и более видов. Обычно это видоизмененные прибрежные растения, но при развитии в погруженном состоянии они так видоизменяются, что их трудно определить даже специалистам.

Из отечественных мхов в аквариумах можно успешно выращивать следующие: риччию плавающую, фонтиналис противопожарный.

Рис. 2. Риччия плавающая

Риччия плавающая распространена в теплых районах европейской части СССР, на Кавказе, в Средней Азии, Сибири и на Дальнем Востоке. Принадлежность ее к классу печеночников характеризуется отсутствием побегов. Тело ее состоит из вильчато разветвленного слоевища, образующего плотные подушки на поверхности воды. При хорошем освещении риччия сохраняется в аквариуме всю зиму, и в лабораторных условиях можно наблюдать особенности ее строения, размножения, значение для животного населения аквариума (рис. 2). Демонстрация риччии на уроках ботаники и общей биологии при сравнении с низшими растениями и листостебельными мхами может быть направлена на развитие эволюционного понятия о постепенном усложнении организации растительного мира. Учащиеся на наглядном материале наблюдают это усложнение: одноклеточные → многоклеточные нитчатые → слоевищные → листостебельные растения.

Таким образом, растения аквариума могут быть представлены в учебном процессе как своеобразная модель развития растительного мира.

Рис. 3. Водяной мох обыкновенный

Фонтиналис противопожарный по сравнению с риччией в эволюционном отношении более совершенный организм, обладает ветвящимся стеблем и трехрядно расположенными на нем листьями. Растение прикрепляется к камням и грунту подушкообразным сплетением ризоидов. В СССР фонтиналис распространен повсеместно, но предпочитает чистую воду. Во взмученной воде быстро покрывается грязью и начинает деградировать. В аквариумах фонтиналис успешно растет при хорошем освещении, но не под прямыми солнечными лучами, под которыми он быстро покрывается нитчатыми зелеными водорослями и погибает. Температура воды должна быть не выше 18 – 20 °С. Лучше фонтиналис приживается, если взять его из природного водоема вместе с тем субстратом, к которому он там был прикреплен, например с камнем (рис. 3).

Свое видовое название фонтиналис противопожарный получил в связи с тем, что стебли мха даже в сухом виде не горят, поэтому его используют иногда для законопачивания деревянных построек. Листья фонтиналиса состоят из одного слоя клеток, поэтому их легко рассмотреть под микроскопом. В результате делается вывод о единстве строения клеток различных организмов, что в свою очередь, способствует развитию понятия о единстве происхождения живой природы. Такой вывод формируется на основании уже накопленных учащимися соответствующих наблюдений: рассматривание клеток кожицы лука и других высших растений, водорослей, мха. Кроме того, учащиеся могут проследить эволюцию важнейшего органа растения – листа. У мха учащиеся наблюдают самое примитивное строение листа (один слой клеток), далее у папоротников и последующих в эволюционном отношении растительных организмов они увидят усложнение этого органа.

Наконец, знакомство учащихся с водяными мхами обогащает их знания о многообразии растительного мира и приспособленности его представителей к различным условиям жизни.

Папоротниковидные. Папоротниковидные, так же как и мохообразные,– представители высших споровых растений. Папоротниковидные более сложны по строению (настоящие корни и хорошо развитые листья). В процессе эволюции эти растения приспособились к различным условиям среды, в том числе и к водной среде. В условиях школьного аквариума из папоротниковидных можно содержать представителей следующих родов: цератоптерис, марсилея, сальвиния (рис. 4, 5).

Рис. 4. Водяной папоротник капустовидный

Рис. 5. Марсилея четырехлистная

Представители рода цератоптерис широко представлены в тропических пресных водах повсеместно, в природе это однолетние растения, обитающие как в воде, так и по берегам водоемов, на сильно увлажненных низменностях. Стебель у них короткий, толстый, вертикальный, листья мелко рассеченные и располагаются розеткой. Корневая система хорошо развита. Цвет листьев светло-зеленый, нижняя, сторона плавающих листьев за счет обширных аэрокамер приобретает серебристый оттенок. Черешки листьев толстые, мясистые, и в них тоже много аэрокамер.

В погруженном положении цератоптерис достигает в высоту 70 – 80 см. Надводные его листья в хороших условиях развиваются в длину до 120 см при ширине 60 см (замеры произведены в оранжереях ленинградского Ботанического сада Академии наук СССР).

У молодых листьев верхушка спирально закручена. Погруженные растения спор не образуют, но хорошо и быстро размножаются вегетативно с помощью выводковых почек, появляющихся по краям листьев. Из этих почек развиваются дочерние растения. Иногда крупные кусты буквально усыпаны вполне развитыми, с листьями и густыми корнями, молодыми растениями. Освобождаются они от материнского растения только после загнивания или обламывания его листьев. Интересно, что старые, побуревшие листья часто сохраняют эти почки и в благоприятных условиях вскоре скрываются под светло-зеленой зарослью молодых растений. Части листа длиной до 0,5 см2 имеют такую же способность к развитию. Условия развития – клетки листового края на этих кусочках.

Листья папоротника и их части легко прилипают к любому опущенному в воду предмету, к телу животных и перьям водоплавающих птиц. Не удивительно, что цератоптерис распространился по всей тропической зоне.

На некоторых листьях папоротника, возвышающихся над поверхностью воды, с нижней их стороны можно видеть сорусы, в спорангиях которых созревают споры. Надводные и плавающие листья цератоптериса, в отличие от погруженных, имеют развитые механические ткани и устьица на верхней стороне. Они обладают способностью не смачиваться, капли воды скатываются с них серебристыми шариками. У форм, существующих на границе сред воды и воздуха, проходит мощный восходящий ток воды от корней к листьям, в связи с чем появились хорошо развитые трахеиды. У этих растений корневая система особенно развита. Погруженные листья ассимилируют всей поверхностью листьев, и корки служат им в основном для закрепления на субстрате. Цератоптерисы обитают в районах с периодически меняющимся уровнем воды и хорошо приспособились к этим колебаниям.

Благодаря своей декоративности и быстрому вегетативному размножению разновидности папоротника – цератоптериса – василистниковидного, суматранского и плавающего – приобрели большую популярность у многих школьных аквариумистов. Их используют как декоративные растения и как объекты наблюдений и исследований. Условия содержания: обилие света, температура воды 22 – 28 °С, мягкая вода (при жесткости выше 5 % листья покрываются беловатой корочкой солей кальция, поры их закупориваются и растения разрушаются). Плавающая форма папоротника требует и влажного теплого воздуха над водой, но большое содержание паров воды приводит к тому, что капли ее перестают скатываться с поверхности листьев и они загнивают. Листья чувствительны и к воде, конденсирующейся на покровном стекле. Стекло рекомендуется устанавливать над аквариумом под наклоном, чтобы вода могла с него стекать по стенкам.

Несмотря на то, что цератоптерисы – однолетние растения, в аквариуме при хороших условиях они могут прожить и более одного года. Известны случаи их жизни в аквариумных условиях до трех лет. Молодые растения легко перезимовывают при подсветке электролампами.

Водные папоротники используются как на уроках, так и во внеклассной работе.

При изучении клетки в курсе ботаники можно показать учащимся через микроскоп клетки молодого листа цератоптериса. Под микроскопом хорошо видны хлорофилловые зерна, движение цитоплазмы, сходство со строением клеток других растений. Клетки цератоптериса окрашены в изумрудный цвет, и впечатление от наблюдения эмоционально обогащает учащихся.

Папоротники – интересный объект для опытов по вегетативному размножению. В частности, цератоптерис размножается листом и кусочками листа.

На примере водных папоротников при сравнении их с фонтиналисом можно убедиться в эволюционном усложнении этих организмов. Это усложнение проявляется прежде всего в развитии корневой системы и в усложнении главного ассимилирующего аппарата – листа. Если у фонтиналиса учащиеся наблюдали упрощенное строение листа (один слой клеток), то у папоротников ясно выражено многослойное клеточное строение листа с проводящими путями.

ПОКРЫТОСЕМЕННЫЕ, ИЛИ ЦВЕТКОВЫЕ РАСТЕНИЯ

Покрытосеменные – наиболее высокоорганизованные растения на земном шаре. Наиболее характерно для них наличие цветка, в завязи которого укрыты семяпочки. После оплодотворения из завязи развивается плод с семенами внутри. Способность к видообразованию у покрытосеменных очень хорошая. Поэтому среди покрытосеменных много видов водных растений, чрезвычайно интересных по своим биологическим особенностям.

Общие экологические признаки различных видов водных растений появляются в результате естественного отбора. Основные средства приспособленности растений к современным условиям жизни в воде: 1) рассечение листовых пластинок на мелкие нитевидные доли, что обеспечивает растению увеличение поверхности при поглощении световых лучей, кислорода, углекислого газа, минеральных солей; 2) сильное развитие аэрокамер в связи с недостаточным количеством воздуха в воде, что уменьшает также плотность растения, способствующую вертикальному положению в воде и вынесению на поверхность воды листьев и цветков; 3) отсутствие устьиц за исключением верхней поверхности плавающих листьев, так как газообмен происходит через всю поверхность водных растений; 4) слабое развитие кутикулы, утратившей свою защитную функцию; 5) слабое развитие корневой системы или отсутствие ее, так как функцию поглощения воды и растворенных в ней солей выполняет вся поверхность растения; 6) отсутствие сосудов в связи с утратой необходимости проводить воду и минеральные соли, что связано с поглощением их любой частью растения (характерно только для полностью погруженных растений); 7) частичная редукция механической ткани в связи с большей, чем воздушная среда, плотностью воды; механическая ткань сохраняется только в центральных частях стебля в виде тяжей, которые позволяют растению испытывать натяжение, противостоять движению воды; 8) частичное или полное отсутствие дифференциации ткани листа на губчатую и столбчатую, что связано с недостаточным проникновением света даже на небольшую глубину; 9) сравнительно быстрый рост водных растений, благоприятные условия для которого обеспечиваются водной средой; 10) способность к вегетативному размножению намного большая, чем у наземных видов, что позволяет водным растениям выживать в сложных условиях обитания в водной среде; 11) выделение поверхностью слизи, что уменьшает трение органов друг о друга, предохраняет ткани от выщелачивания, защищает зимующие почки от охлаждения и спасает на некоторое время растения от высыхания при • понижении уровня воды. Все эти общие черты приспособленности в той или иной степени можно наблюдать у аквариумных цветковых растений.

Вместе с тем водные растения отличаются друг от друга и видовыми приспособительными признаками. Например, некоторые виды рдестов могут существовать только при связи с тремя средами – водой, почвой и атмосферой. Роголистник живет без почвы, при соприкосновении с атмосферой погибает, и ему достаточно только водной среды.

По отношению к почве, воде и атмосфере водные растения можно разделить на несколько экологических групп: 1. Жизнедеятельность происходит в основном в толще воды. 2. Необходимые условия жизни вида – вода и атмосфера. 3. Растения связаны только с водой и почвой. 4. Растения нуждаются в почве, воде и атмосфере (укоренены на дне, листья плавающие). 5. Растения частично возвышаются над водой, будучи укорененными в почве.

Рис. 6. Элодея канадская

К первой группе растений относятся элодея канадская, элодея зубчатая, роголистник темно-зеленый, пузырчатка обыкновенная, альдрованда пузырчатая, ряска трехдольная.

Элодея канадская принадлежит к семейству водокрасовых (рис. 6). Родина – пресные водоемы Америки. В XIX в. этот вид спонтанно акклиматизировался в Англии, а затем в Европе.

Элодея канадская быстро освоила водоемы нового ареала, вытеснив многие аборигенные растения. За быстрое распространение этот вид получил название «водяная чума». В Европу попали только женские экземпляры растения (оно двудомное), позднейшие попытки целенаправленно акклиматизировать мужские экземпляры эффектов не дали, так как пригодные для обитания экологические ниши уже были заняты женскими растениями. Поэтому быстрое распространение элодеи обеспечивалось исключительно вегетативным размножением. В настоящее время элодея канадская широко распространена в водоемах европейской части СССР, а в последнее десятилетие все чаще встречается и в Сибири, например в Ангаре, в районе Иркутска.

Листья элодеи собраны в мутовки по 3 – 4, мелкие, обычно длиной 7 – 12 мм, продолговатые, по краям мелкозубчатые (это заметно только в лупу). Стебель тонкий, ломкий, длиной 40 – 60 см, ближе к поверхности воды ветвится. Цветки образуются в пазухах верхних листьев на тонкой и длинной трубке, похожей на цветоножку: у них три белых лепестка. Корневая система развита слабо, ассимиляция идет всей поверхностью растения. В природе встречается в прудах, тихих заводях речек и озер, предпочитает слабопроточные воды. В некоторых водоемах (Московская область) образует большую сырую биомассу—более 4 кг на 1 м2.

Заросли элодеи населены огромным количеством беспозвоночных пресных вод и охотно посещаются рыбами. Эти же заросли служат субстратом для икры рыб, среди ветвей элодеи первое время прячутся и кормятся стаи мальков. Растения употребляются в пищу многочисленными водными обитателями, в том числе карповыми рыбами, окунем, ондатрой. Но есть интересные наблюдения, в результате которых установлено, что прудовик обыкновенный использует в пищу 40 видов высших растений, а элодею канадскую отвергает даже при сильном голоде.

Пищевая ценность элодеи очень высока: белков она содержит более 18 %, жира – около 3 %. Каротин, содержащийся в элодее, превращается в организме животных в витамин А. Элодею используют и на корм скоту с различными кормовыми добавками. Заготавливается высушиванием, силосованием; из нее приготовляют витаминную муку. При избытке растений или при расчистке водоемов употребляется как зеленое удобрение.

При сборе элодеи на экскурсии следует обратить внимание на серый налет, обычно покрывающий листья и стебли растений. Чем выше жесткость воды природного водоема, тем больше на листьях налета. Это осадок соли кальция СаСО3, выделенный растением в процессе ассимиляционной деятельности. Световой период фотосинтетического процесса связан с поглощением растворенного в воде углекислого газа. Когда его в воде недостаточно, растения начинают вырабатывать углекислый газ из гидрокарбоната кальция:

Са(НСО3)2 = СО2

потребляется

растениями

+ H2O + CaCO3

выпадает

в осадок

Ночью, когда растения не поглощают углекислый газ, он снова накапливается в водоеме в результате дыхания растений и животных, и при взаимодействии углекислого газа с нерастворимым в воде карбонатом кальция (CaCO3) образуется угольная кислота (H2CO3). В кислой среде карбонат кальция превращается в гидрокарбонат Са(НСО3)2, т. е. реакция идет в обратном направлении. Заросли элодеи могут вызвать ночью замор – удушье рыб в результате бурного обратного процесса реакции к появления избытка углекислоты в воде.

Осенью элодея образует зимующие почки, которые опускаются на дно и пережидают зиму в состоянии покоя. Иногда внезапные холода осенью или на мелководье вызывают вмерзание неопавших почек и стеблей в лед. Куски льда с вмерзшими частицами элодеи следует поместить в холодную воду и оттаивать в прохладном помещении (быстрое оттаивание в теплой воде вызовет гибель растения). Затем оттаявшие стебли и почки элодеи выставляют на солнечное окно или освещают электролампами. Вскоре почки трогаются в рост. Перезимовавшие в природе веточки элодеи хорошо и быстро разрастаются в аквариумах. При многолетнем содержании в аквариуме элодея постепенно мельчает, замедляет рост. Для содержания в школьном аквариуме следует рекомендовать более красивый и легко разрастающийся в искусственных водоемах вид элодеи из Аргентины – элодею зубчатую*, или эгерию. Зубчатая элодея – тропическое растение, не имеет сезонных циклов и растет в аквариумах круглый год, легко размножается вегетативно. Стебли длинные, более толстые, ярко-зеленые. Заостренные на концах ланцетовидные листья собраны в мутовки, которые расположены тем чаще на стебле, чем ярче освещение. Длина листьев до 15 мм, стебли достигают в длину 2 м. Хорошо растет при температуре воды от 16 до 30°С, у поверхности воды стебли обильно ветвятся. Растение очень ломкое, большое количество обломков стеблей выделяет в воду сок, который содержит, по-видимому, ядовитые вещества (улитки это растение не едят). Элодея зубчатая может свободно располагаться в толще воды и при этом хорошо себя чувствовать, но аквариум выглядит красивее, если элодея посажена пучками стеблей. При посадке нужно прижать их нижние концы камнем.

* Элодея зубчатая выделена в самостоятельный род эгерия.

Корни у элодеи немногочисленные, в виде отдельных белых неветвящихся нитей, функция которых – закрепление растения на субстрате. Функцию поглощения выполняет вся поверхность тела.

Элодея используется в курсе ботаники и общей биологии для рассмотрения пластид при большом увеличении микроскопа. Это округло-овальной формы образования зеленого цвета. В теме «Лист» используют элодею для демонстрации мутовчатого расположения листьев, тем более что среди комнатных растений, используемых при изучении листорасположения, очень редко встречаются растения с мутовчатым расположением листьев. При изучении вегетативного размножения растений на уроке можно использовать результаты опыта, поставленного в уголке живой природы.

С этой целью за месяц до урока надо отрезать и поместить в хорошо освещенный сосуд верхушки стебля, черенок стебля снизу, часть стебля с двумя мутовками, часть стебля с одной мутовкой, отрезок стебля между мутовками. За месяц от этих отрезков (кроме последнего) начинают расти новые стебельки.

Рис. 7. Роголистник темно-зеленый

Роголистник темно-зеленый (семейство роголистные) – одно из самых распространенных растений в пресных водоемах нашей страны и представляет исключительный интерес как пример полной адаптации к водной среде (рис. 7). Роголистник – единственное из наших водных растений, цветущее под водой. Как и другие растения этой группы, роголистник утратил тесную связь с почвой, корней у него нет. Изредка можно наблюдать отходящие от стеблей белые неветвящиеся нити, но они представляют собой видоизмененные ветки, играющие роль якоря.

Листья роголистника темно-зеленые, вильчато рассечены на 2 – 4 доли. На одной из сторон мутовками расположены беловатые зубчики. При демонстрации растения следует обратить внимание на радиальную симметричность мутовок. Стебли тонкие, ломкие, особенно к концу лета, тянутся на 30 – 80 см, густо ветвятся. Роголистник образует подводные леса в озерах, лесных болотах, речных заводях. Вся масса зарослей легкоподвижна, поэтому на быстрых течениях не растет, растения уносятся водой. Изредка летом при быстром реете отдельные верхушки игольчатых частей листа пронзают поверхностную пленку воды и выходят в воздушную среду, но остаются живыми, пока не обсохнут. Это единственная и не обязательная связь растений с воздушной средой. Цветет на широте Москвы в июле – августе. Цветки однодомные, мелкие, невзрачные, сидят в пазухах листьев. Тычиночные цветки образованы зелеными листочками околоцветника и тычинками (10 – 12, иногда больше), пестичные имеют 8 – 12 листиков в околоцветнике и один пестик. Пыльники на 1/3 заполнены воздухом. Созревая, они отрываются и благодаря воздухоносной полости всплывают (сравните с валлиснерией), но не до поверхности, а держатся около нее. В момент подъема пыльник раскрывается, пыльца попадает в воду. Ее плотность такая же, как у воды, поэтому она остается в стоячей воде на том уровне, где вышла из пыльника. Таким образом, поднимающиеся к поверхности пыльники заполняют пыльцой всю толщу воды до поверхности, а слабые течения в воде, волны в глубине от проплывших рыб и насекомых перемещают пыльцу в слоях воды горизонтально. На рыльцах пестичных цветков есть клейкие вещества, нерастворимые в воде, к ним прилипает пыльца. Опыление, следовательно, происходит легко, и с августа зреют снабженные шипиками плоды.

Роголистник легко размножается вегетативно. От каждого кусочка стебля с мутовкой листьев могут начать жизнь новые растения. Эти обломки легко переносятся птицами и другими животными, а также лодками из водоема в водоем. Зимует растение подо льдом, к осени вся заросль утяжеляется и опускается на дно. Верхушки стеблей, тесно сжимая верхушечные листья, образуют своеобразную почку, которая может зимовать на стебле, а может отвалиться и опуститься на дно. Все эти особенности роголистника способствуют очень раннему пробуждению растения весной по сравнению с другими гигрофитами и быстрому заселению новых территорий и водоемов. Поэтому в ряде мест роголистник – главное растение водоема, затеняет и подавляет другие виды.


    Ваша оценка произведения:

Популярные книги за неделю