355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Мария Виноградова » Связь активности актиноидов с дипольной структурой их атомов ч.3 (СИ) » Текст книги (страница 1)
Связь активности актиноидов с дипольной структурой их атомов ч.3 (СИ)
  • Текст добавлен: 12 октября 2016, 00:25

Текст книги "Связь активности актиноидов с дипольной структурой их атомов ч.3 (СИ)"


Автор книги: Мария Виноградова


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 1 (всего у книги 1 страниц)

СВЯЗЬ АКТИВНОСТИ АКТИНОИДОВ С ДИПОЛЬНОЙ СТРУКТУРОЙ ИХ АТОМОВ ч.3

2. Относительно структуры дополнительной атомной массы из 51 и 49 диполей, суть – энергии связи некоторых актиноидов.

При анализе таблицы 1 обнаруживаем, что в графе 3 отражено общее число диполей, сформировавших атом, и замечаем, что это ни что иное, как массовое число атома. В самом понятии массового числа заключён смысл общего единого количества диполей, сформировавших атом, без деления нуклонов на протоны и нейтроны в ядре.

Обращает на себя внимание, что дипольные структуры атомов УШ группы содержат целочисленное количество 4-х дипольных структур квадруполя гелия, что характерно так же для некоторых актиноидов – урана и плутония.

Как уже подчёркивалось, квадруполь атома гелия – прочнейшая и совершеннейшая из атомных конструкций. Но такая конструкция, как в квадруполе гелия, встречается и в строении других, сложных атомов в качестве фрагментов их последнего формирующегося слоя. Дипольный механизм синтеза атомов обусловливает и особенности распада сверхсложных атомов, выявляя идентичность строения продуктов распада первичному квадруполю атома гелия. Квадрупольный осколок распада – неслучайное образование, это – наружный фрагмент последнего синтезируемого слоя, который формируется в два этапа. Формирующийся элемент отличается от предыдущего, последнего 2-мя диполями, а от предпоследнего – 4-мя диполями, образующими квадруполь. Так и при альфа-распаде с выделением радиогенного «гелия», порядковый номер исходного атома и продукта распада обязательно отличаются на 2 единицы, а массовое число на 4 единицы.

Например, при распаде радия и образовании радона, или эманации радия:

88Ra17686Rn172 + 2He4

Далее при аналогичном распаде радона с образованием полония:

86 Rn17284Po168 + 2He4 ,

что было доказано прямыми опытами Резерфорда и Содди следующим образом. В запаянном сосуде с помещённым в нём газом радоном в спектре его излучения появляются спектральные линии гелия. Продукт ядерного распада радона полоний 84Ро

в свою очередь является альфа-излучателем – все его изотопы радиоактивны и распадаются с выделением квадруполя гелия:

84Po16882Pb164 + 2He4.

Распад заканчивается на изотопе свинца 82Рb. Образованием стабильных изотопов свинца завершаются так же радиоактивные превращения урана 92 U и тория 90Th.

Так что гелий и самый первый и самый прочный из синтезируемых водородной звездой элементов имеет структуру квадруполя. Поэтому когда идёт обратный процесс, то есть распад когда-то синтезированных элементов, то самым прочным и единственно сохраняющимся фрагментом остаётся именно квадруполь.

Далее преобразуем таблицу 1 и дополним её таблицей 2 таким образом, чтобы выявить особенности дипольного строения некоторых актиноидов и энергии их дипольных связей.

В таблице 2 атомная масса элемента обозначена как А, число диполей в структуре или что то же – массовое число – как М. Энергия связи дипольной структуры в атомных единицах массы

А – М (а.е.м.).

Нечётной атомной массе А сопутствует нечётное число связей (А – М), так как массовое число М элемента – всегда чётное. Это удвоенный порядковый номер элемента или удвоенный заряд ядра атома (начиная с гелия), для изменения которого на единицу необходимо и достаточно присоединение двух диполей.

Энергия связи дипольной структуры, приходящаяся на 1 исходный диполь (А – М) / М а.е.м./а.е.м. или в нейтрино n/M (нейтрино/диполь).

Энергия связи дипольной структуры, приведённая к итоговому деформационному состоянию атома с напряжёнными диполями: (А – М) / А а.е.м./а.е.м

или в нейтрино n/А (нейтрино/а.е.м.).

Прочность (энергия) связи диполей в атомах элементов УШ группы и некоторых актиноидов . Таблица 2.

Пери

ода

Эле

мент

Атомная

масса

А

а.е.м.

Массовое

число

М

а.е.м.

Число

4-х

дип.

струк

тур

М/4

Энергия связи

диполей в

атомах

А – М

а.е.м.

Число

излуч.

нейтрино

п = А-М

а.е.м./

0.000841

а.е.м.

Число

на 1 ди

поль

п/М

нейтрино

На единицу

атомной

массы

п/А

1

Не

4.0026

4

1

0.0026

3

0.75

0.749

2

Ne

20.17

20

5

0.17

202

10.1

10.01

3

Ar

39.94

36

9

3.94

4684

130

117

4

Kr

83.80

72

18

11.80

14030

195

167.4

5

Xe

131.30

108

27

23.30

27705

256

211

6

Rn

222

172

43

50

59453

346

267.8

7

Ra

226

176

44

50

59453

337.8

263

7

U

235

184

46

51

60642

329.5

258

7

U

236

184

46

52

61831

336

261.9

7

Pu

239

188

47

51

60642

322.5

253.7

7

Pu

240

188

47

52

61831

328.8

257.6

7

237

186

Нет

Целых

51

60642

326

255.8

7

U

233

184

46

49

58264

316.6

250

7

U

234

184

46

50

59453

323.1

254

7

Ра

231

182

Нет

Целых

49

58264

320

252

7

Ас

227

178

Нет

Целых

49

58264

327.3

256.6

1

2

3

4

5

6

7

8

9

Как видно из таблицы 1 предыдущего параграфа, в ней нет данных о конечном элементе № 118 седьмого периода, а именно о его атомной массе. Она нам неизвестна.

Как показано Новой космогонией / 1-3 / и подтверждено геофизикой, месторождения элементов седьмого периода, в том числе актиноидов: урана №92 и трансурановых элементов заключены всего в относительно тонком, двадцатикилометровом верхнем слое Земли.

А по мере продвижения к центру Земли их концентрация падает.

Элементы 7-го периода обладают естественной радиоактивностью, что обусловлено современным состоянием эфирной среды и возрастом синтеза. Элементы 7-го периода имеют возраст от 5.2 млрд. лет до 3.3 млрд. лет, прошедших с момента сброса Юпитером 7-й оболочки и попадания её на формирующуюся Землю / 3, 4 /.

Атомный распад начинается с самых последних синтезированных элементов с неустойчивой громоздкой структурой, так что элементы 11-го ряда уже распались, начиная с элемента № 118.

Элементам 10-го ряда, к которому принадлежат актиноиды, и посвящён настоящий анализ.

Особое место среди актиноидов занимает уран – главный элемент атомной энергетики.

Характерно, что внешняя электронная оболочка ионов урана всегда заполнена целиком; валентные же электроны находятся в предыдущем электронном слое, в подоболочке.

Природным изотопам урана свойственно два вида распада. Альфа-распад, когда от ядра урана отпочковывается ядро гелия – дважды ионизованного атома гелия.

И самопроизвольное спонтанное деление. Последнее случается очень редко – примерно с одним ядром из миллиона распавшихся, без какого-либо вмешательства извне, – атом разваливается на две или более частей.

Систематическое исследование урана началось с 1896 года после открытия радиоактивности Анри Беккерелем. Было установлено, что интенсивность излучения урановых препаратов пропорциональна числу атомов урана, содержащихся в них. Конкретный вид распада урана в виде альфа-лучей был обнаружен в 1939 году.

Далее в результате нейтронной бомбардировки урана неожиданно выяснился огромный порядок высвобождаемой энергии: из одного атома урана высвобождалось примерно 200 МэВ. И подтвердилось предположение физиков о том, что процесс взаимодействия атома урана с нейтроном сопровождается испусканием дополнительных нейтронов.

Теперь рассмотрим, какой основной процесс лежит в основе взаимодействия – захвата нейтрона атомом актиноида. Как его можно охарактеризовать – как распад или всё-таки синтез? По этому вопросу космогоническая теория /1, 2/ однозначно говорит, что внутриатомная энергия как результат внутриатомного взаимодействия выделяется в результате синтеза составляющих атом структур. Как мы уже теперь знаем – это дипольные структуры.

Обращаемся к таблице № 2, дополняющей таблицу №1 уточняющими показателями в отношении энергии связи дипольных структур актиноидов.

Среди элементов 7-го периода на первый план выступают атомы актиноидов, имеющие энергию связи – дополнительную атомную массу в размере 51 и 49 атомных единиц массы (графа 6 таблицы 2). Это уран-235, плутоний-239, уран-233 – актиноиды, атомы которых имеют нечётные атомные массы и обладают способностью захватывать по одному нейтрону с последующим рождением двух и более нейтронов и осуществлять цепную реакцию выделения энергии.

У урана-235 при атомной массе 235 а.е.м. и массовом числе – удвоенном атомном номере 2х92= 184 а.е.м. число дополнительных диполей и в то же время энергия внутриатомной связи составляет (А – М) = 235-184= 51 а.е.м.

Отсюда вырисовывается особая роль числа 51 – числа дополнительных диполей или связности атомов урана-235 в сравнении с ближайшей связностью 50, характерной для некоторых атомов, атома радия или радона в том числе, и отличающейся от первой на 1 а.е.м.

Нечётное число дипольных связей предполагает незавершённость 2-х или 4-х дипольной структуры, готовой к завершению её внедряющимся диполем-нейтроном, то есть к нейтронному синтезу.

Однако нептуний-237 как продукт нейтронного синтеза трансурана, тоже имея энергию связи в 51 а.е.м., то есть нечётную дополнительную атомную массу, в то же время не готов к подобному процессу, характерному для урана и плутония. Анализ таблицы 2 показывает, что его массовое число не содержит целочисленного количества 4-х-дипольных структур. Что, видимо, затрудняет беспрепятственное отщепление поверхностного слоя. Более того, при вылетании альфа-частицы из нептуния Ne , то есть при его альфа распаде, образуется протактиний Ра, массовое число которого так же не содержит целочисленного количества 4-х-дипольных структур. «Искусственный» радиоактивный ряд нептуния не содержит изотопа радона Rn, на котором окончился в своё время синтез 6-го периода.

Основное внимание уделим наиболее активным актиноидам – урану-235 и плутонию-239.

Дополнительное число излученных нейтрино при синтезе изотопа урана-235 определяется с учётом энергетической характеристики нейтрино Е= 0,000841 а.е.м. /1-3/ как n = (А-М) / Е

n = 51/ 0,000841 = 60642 нейтрино (графа 7 таблицы 2).

При захвате атомом урана одного диполя-нейтрона его атомная масса увеличивается на 1 а.е.м., за счёт чего дополнительная атомная масса увеличивается до 52 а.е.м. (графа 6).

Этой энергии связи в 52 единицы атомной массы соответствует другое число излученных нейтрино как её энергетическая характеристика: n = 52/ 0,000841 = 61831 нейтрино (графа 7).

Разница в энергии внутриатомной связи дипольной структуры урана-235 до и после захвата нейтрона-диполя составляет Дn = 61831 – 60642 = 1189 нейтрино (на 1 а.е.м.).

Если в основе распада атома урана лежит отщепляющаяся структура с энергией связи 50 а.е.м. (радона или радия), то её энергетическое содержание n= (A-M)/E :

n = 50/ 0.000841= 59453 нейтрино (графа 7).

Разница в энергии внутриатомной связи дипольной структуры урана-236 и этой структуры:

Дn = 61831– 59453 = 2х 1189 нейтрино (2 а.е.м.).

Если от атома урана отщепится его внутриатомная структура с энергией связи менее 50 а.е.м. , например, 49 а.е.м., как у актиния и у франция, урана-233 и протактиния, то разница в энергии внутриатомной связи дипольной структуры урана-236 и этой отщепляющейся структуры составляет Дn = 61831 – 58264 = 3 х 1189 нейтрино (3 а.е.м.).

Аналогично для плутония-239 энергия внутриатомной связи составляет (А – М) =239 – 2х94= 51 а.е.м. Дополнительное число излученных нейтрино соответственно (А – М)/ Е = n = 51/0,000841= 60 642 нейтрино.

Энергетическая характеристика структуры после захвата нейтрино аналогична урану:

n = 52/ 0,000841= 61831 нейтрино.

Разница в энергии внутриатомной связи дипольной структуры плутония-239 до и после захвата нейтрона Дn составляет также 1189 нейтрино.

Доля дополнительной атомной массы от основной в атоме урана после захвата нейтрона (А-М)/А составляет 52 /236 =0.2203 , так что изменение энергии связи исчисляется следующим числом нейтрино как 1189 х 0.2203= 261.9 нейтрино. Эти данные мы обнаруживаем в графе 9 таблицы 2 относительно числа нейтрино, приходящихся на единицу атомной массы деформируемой в процессе синтеза дипольной структуры урана n / A = 261.9 нейтрино на единицу атомной массы.

И далее для плутония аналогично: доля дополнительной атомной массы от основной после захвата нейтрона (А-М)/А определяется как 52/240-= 0.2166

с изменением в процессе синтеза энергии связи, оцениваемом количеством n / A = 1189 х 0.2166= 257.6 нейтрино на а.е.м. (графа 9 таблицы 2).

Как оценить изменение энергии внутриатомной связи в актиноиде, если известно, сколько нейтрино освобождается в этом деформационном процессе деформации уплотнения дипольной структуры в реакции синтеза?

В обоих случаях выскакивают 1189 нейтрино, но в первом случае энергия связи уже была более прочная, чем во втором случае: 0.2203 ≥ 0.2166.

Тогда и выделяющаяся энергия в ответ на это изменение будет более существенная, правда, очень незначительно: 1189 х 0.2203= 261.9 нейтрино на единицу атомной массы ≥ 1189 х 0.2166 = 257.6 нейтрино на единицу атомной массы (графа 9 таблицы 2).

В электронВольтах при энергии одного нейтрино 0.783 МэВ в уране от одного атома

Выделяется 261.9 нейтрино/а.е.м. х 1 а.е.м. х 0.783 МэВ = 205 МэВ.

А в плутонии выделяется соответственно 257.6 нейтрино/а.е.м. х 1 а.е.м. х 0.783 МэВ =

201 МэВ атомной энергии.

Практически порядок получаемой энергии один и тот же, в среднем около 200 МэВ, что и отмечается в соответствующей технической литературе.

Однако точное вычисление получаемой от актиноидов энергии стало возможным только после соответствующего анализа процессов, происходящих в их дипольной структуре: деформации уплотнения в результате синтеза диполя-нейтрона с дипольной структурой атома. Это – деформационный процесс уплотнения-сжатия, который неизбежно ведёт к нейтринным излучениям в анализируемых процессах атомного синтеза и других взаимодействиях эфира с веществом / 1 – 5 /.

Итак, вскочивший нейтрон деформировал атом актиноида, а энергия синтеза во всех 3-х случаях выделилась в количестве 1189 нейтрино.

Выделившейся энергии как раз достаточно, чтобы отделить от захватившего нейтрон атома актиноида максимально возможное количество диполей. А каково оно?

Обращаемся к графе 8 таблицы 2, где показано число нейтрино, приходящихся на 1 диполь, в зависимости от дипольной структуры атома, полученной им при звёздном синтезе.

Как видно из таблицы, эта величина разная для разных атомов.

Определим для урана-236, сколько диполей от атома могут отщепиться указанным пучком нейтрино?

1189/ 336 = 3.53 диполя ≥ 3, но ≤ 4 .

Аналогично определяется число диполей, которое может отщепиться от атома плутония:

1189/328.8 = 3.61 диполь ≥ 3, но ≤ 4.

Далее для урана-234: 1189/ 323.1 = 3.67 диполей ≥ 3, но ≤ 4.

Во всех этих трёх случаях может отщепиться не более 3-х диполей.

В качестве примера может послужить возможный процесс альфа-распада атома урана-236 с отщеплением атомов гелия и атома радона, непрочно связанных с ним энергией связи такой величины (А-М)U – (A-M)Rn = (52 – 50) = 2 а.е.м., при которой рождается 2 диполя-нейтрона:

92U235 + 0n192 U236 + У нейтрино 86Rn222 + 3 2He4 + 2 0n1

ДА =236 – (222+12) = 2 а.е.м. ; ДМ = 184 – (172+12) = 0 а.е.м. ; Д(А-М) = 2 – 0 = 2 а.е.м.

Выделившейся при захвате-синтезе нейтрона атомом плутония-239 энергии связи как раз достаточно, чтобы отделить от него атом с энергией дипольной связи 50 а.е.м. и атомы гелия, связанные с ним энергией связи такой величины (А-М)Pu – (A-M)Ra =( 52-50) = 2 а.е.м., при которой рождается 2 диполя-нейтрона:

94Pu 239 + 0n194 Pu240 + У нейтрино 88Ra226 + 3 2He4 + 2 0n1

ДА = 240 – (226+12) = 2 а.е.м. ; ДМ= 188 – (176+12) = 0 а.е.м. ; Д(А-М) = 2 – 0 = 2 а.е.м.

Как показано на примере 2-х структур, изменения в них после реакции синтеза происходят таким образом, что расширенное воспроизводство нейтронов оказывается возможным, когда соотношение между атомными массами и массовыми числами дипольных связей атомов не падает ниже 2-х атомных единиц массы:

∑ (А2 – А3 ) – ∑ ( М2 – М3 ) ≥ 2 а.е.м.

Здесь индексы 2 и 3 относятся к атомам: 2 –атому, возникшему в реакции синтеза, и 3 – атому или нескольким атомам, отщепившимся от новой структуры под действием энергии излученных нейтрино.

Возможности дипольных структур актиноидов несколько выше. Как было показано ранее, на основе данных таблицы 2 определено максимальное число отщепляющихся диполей: 3.

Но выскочившие диполи не будут энергетически аналогичны первичному свободному нейтрону. Вторичный нейтрон будет отличаться от первичного как более сильно сжатая пружина от менее сжатой.

Разница в их энергиях найдена в таблице 2 и затем помещена в итоговую таблицу 3..

Нейтроны, рождённые ураном-235, приобретут прирост энергии как разность двух строк графы 8 таблицы 2:

(336– 329.5) = 6.5 нейтрино. Соответственно в электронвольтах 6.5 х 0.783 МэВ = 5.08 МэВ.

Нейтроны, рождённые плутонием-239, приобретут прирост энергии как разность двух строк графы 8 таблицы 2: (328.8-322.5) = 6.3 нейтрино. Соответственно в электронвольтах 6.3 х 0.783МэВ = 4.93 МэВ.

Нейтроны, рождённые ураном-233, приобретут прирост энергии как разность двух строк графы 8 таблицы 2:

(323.1-316.6) =6.5 нейтрино. Соответственно в электронвольтах 6.5 х 0.783 МэВ = 5.08 МэВ.

Энергетические результаты процесса нейтронного захвата актиноидами

ураном и плутонием

Таблица 3

Актиноид

Энергия синтеза, выделяющаяся от 1

атома, захватившего нейтрон,

МэВ

Максимальное количество

отщепляющихся диполей от 1 атома ,захватившего нейтрон:

нейтрино / нейтрино на 1 диполь

единиц

Прирост энергии

вторичных

нейтронов,

МэВ

n/A х.1 а.е.м. х 0.783 МэВ

1189 /n /М

(n/М2 – n/М1) х 1 а.е.м. х 0.783 МэВ

Уран-235

205

Не более 3

5.08

Плутоний-239

201

Не более 3

4.93

Уран-233

198.9

Не более 3

5.08

Где n – количество нейтрино,

Индексы 2 и 1 – соответственно для дипольных структур после захвата и до захвата нейтрона в графе 8 таблицы 2.

Что обеспечивает цепное энерговыделение от параллельных реакций синтеза несколькими теперь уже более энергичными нейтронами с несколькими другими атомами, с последовательным вовлечением в процесс всё большего числа атомов.

Представление нейтрона как дипольного образования, а атома в виде дипольной структуры, образовавшейся в результате звёздного синтеза, открывает дальнейшие перспективы по раскрытию существа явления особой активности актиноидов и её связи с дипольной структурой их атомов. В итоге предлагается метод простейшего расчёта основных показателей единичного процесса реакции энерговыделения актиноидов:

– меры выделившейся энергии из одного атома актиноида, захватившего нейтрон,

– количества рождённых вторичных нейтронов от одного атома, захватившего нейтрон, и

– приобретаемой ими дополнительной энергии, в результате чего они становятся быстрыми.

2 июля – 11 ноября 2015

Мария Виноградова

Николай Скопич


    Ваша оценка произведения:

Популярные книги за неделю