Текст книги "Целостный инженеринг"
Автор книги: Марат Телемтаев
Жанр:
Политика
сообщить о нарушении
Текущая страница: 13 (всего у книги 46 страниц) [доступный отрывок для чтения: 17 страниц]
3.8. Единство субъектов, объектов и результатов производственных политик
• Вопрос единства субъектов, объектов и результатов производственных политик рассмотрим на примере совокупности «социальная, экономическая, экологическая политики».
Для совокупности «социальная, экономическая, экологическая производственные политики» решение всех трех проблем в единстве обеспечивают общие модели метода системной философии.
Технологии решения тогда должны основываться на одной общей модели технологии деятельности. В данном случае технологии решения социальных, экономических и экологических задач должны быть построены как системные технологии, обеспечивающие единство объектов, субъектов и результатов этих трех политик.
Необходимо тогда найти решения следующих задач [19]:
– единство проблемы, которую совместно должны решить производственные социальная, экологическая и экономическая политики. Эта задача решается путем выбора общей модели для триады проблем производственных социальной, экономической, экологической политик, а также путем установления взаимных ограничений на постановку этих проблем;
– единство результата производственных социальной, экономической, экологической политик. Эта задача решается путем выбора общей модели для триады результатов производственных социальной, экономической, экологической политик, а также путем установления взаимных ограничений на модели результатов;
– единство ресурсов для осуществления производственных социальной, экономической, экологической политик. Эта задача решается путем выбора общей модели для триады ресурсов производственных социальной, экономической, экологической политик, а также путем установления взаимных ограничений на модели ресурсов;
– единство метода получения результатов производственных социальной, экономической, экологической политик. Эта задача решается путем выбора общей модели для триады методов производственных социальной, экономической, экологической политик, а также путем установления взаимных ограничений на методы;
– единство модели ограничений на проблемы, результаты, ресурсы и методы формирования и реализации производственных социальной, экономической, экологической политик. Эта задача решается путем выбора общей модели для триады ограничений производственных социальной, экономической, экологической политик, а также путем согласования ограничений на модели проблем, результатов, ресурсов, ограничений;
– единство процесса решения (или процесса апробации выбранного варианта решения) для триады проблем производственных социальной, экономической, экологической политик. Эта задача решается путем выбора соответствующей общей модели системной технологии решения.
Может быть осуществлен, например, такой цикл. Вначале производится решение на модели социальной политики с учетом ограничений со стороны экономической и экологической политик. Затем производится решение на модели экономической политики с учетом ограничений со стороны социальной и экологической политик. И, далее, производится решение на модели экологической политики с учетом ограничений со стороны экономической и социальной политик. После этого производится взаимное согласование полученных вариантов решений и выбор приемлемого решения. Если приемлемое решение не найдено, то в этом случае производится новый цикл решения с учетом рекомендаций полученных по предыдущему этапу и т.д.;
– единство оценки результатов производственных социальной, экономической, экологической политик. Эта задача решается путем выбора общей модели для триады оценки результатов производственных социальной, экономической, экологической политик;
– единство координации постановки проблем, формулирования результатов и целей, формирования ограничений, выбора методов. Эта задача решается путем выбора общей модели координации для триады производственных социальной, экономической, экологической политик.
3.9. ДНИФ-модель социальной, экологической и экономической производственных политик
• Необходимость единства социальной, экологической и экономической политик производства не вызывает сомнений [16-19]. Социальная, экономическая и экологическая политики должны описываться одной общей моделью системы в виде национальной политики, формируемой в соответствии с национальной идеей народа страны. Это условие направлено на устранение тех несовершенств стратегии экономического роста, которые связаны с ее абсолютизацией и слабой связью с целями социального и экологического развития.
Рассмотрим особенности общей модели системы для производственной социальной политики.
Объект производственной социальной политики может моделироваться в двух основных вариантах. Во-первых, как это часто происходит, можно принимать во внимание только один субъект производственной социальной политики – производственный коллектив в целом. Во-вторых, может приниматься во внимание множество субъектов социальной политики производственной системы: специалист, управленец, профсоюз, социальная группа подразделения, социальная группа производственной системы в целом, семьи работающих, неправительственные организации и т.д.
Основываясь на сформулированном в [16] принципе неубывающего разнообразия форм жизнедеятельности, можно сказать, что модель осуществления производственной социальной политики должна быть основана на Принципе неубывающего разнообразиясубъектов и объектов социальной политики.
На примере национальной социальной политики можно утверждать [16-19], что нация – «социум в целом», как изначально единственный субъект социальной политики нации стоит перед некоторой неразрешимой проблемой «жизни социума в целом». История подтверждает этот вывод: когда весь народ берется за разрешение социальной проблемы в целом, это приводит к малопродуктивным действиям в виде революций и гражданских войн. Единственный положительный результат революций и гражданских войн – изменение принципов формирования множества субъектов и объектов социальной политики. Не приводит, как известно, к разрешению социальных проблем и выделение из состава нации единственного субъекта социальной политики в виде производства.
Единственный реальный путь разрешения этой проблемы – переход от «социальной жизни в целом» к целостной картине социальной жизни в виде системы взаимодействующих и взаимозависимых разнообразных форм жизни: человек, семья, этнос, молодежь, пенсионеры, СМИ и т.д. Этот путь приводит к необходимости неубывающего разнообразия субъектов социальной политики для разрешения проблем развития социума.
Этот вывод справедлив и для любой производственной политики – экономической, экологической, молодежной, женской политик и для всех других производственных политик. Для целей развития производства необходимо неубывающее разнообразие субъектов и объектов производственных политик.
В этом случае субъектами и объектами социальной производственной политики становятся специалист, управленец, профсоюз, социальная группа подразделения, социум производственной системы в целом, семьи работающих, неправительственные организации и т.д. И умение управлять социальной производственной политикой основано тогда на выборе общей модели системы для совокупности объектов социальной политики.
• В качестве такой модели общей системы для социума наиболее правилен выбор модели семьи [16-19]. Традиционная семья для любых этносов – это трехпоколенная семья. В такой семье имеются поколения предков, живущих современников и будущих поколений. Трехпоколенная семья – это объединение людей, как правило, представителей разных этносов, в лице предков, современников и будущих членов семьи. Это, также и объединение людей разных возрастов – пенсионеров, трудоспособных людей, людей детского и юношеского возраста и людей, которые еще не родились. Это объединение людей с разным социальным положением и разных профессий и т.д. Традиционный неписаный кодекс семьи включает три основных правила: каждый член семьи, возвращаясь домой, находит поддержку, понимание и участие; каждый член семьи поддерживает каждого другого члена семьи во всех обстоятельствах жизни; каждый член семьи действует в интересах выживания, сохранения и развития семьи и каждого ее члена. Модель трехпоколенной семьи – ДНИФ-семья, как установлено в [16-19].
На основании изложенного можно утверждать, что:
субъекты производственной социальной политики должны представлять общую модель производственного социума, как объекта социальной политики, в виде ДНИФ-модели.
Разработка и реализация социальной политики нации тогда наилучшим образом соответствует решению проблемы выживания, сохранения и развития производства-социума.
Рассмотренные предложения формирования общей модели системы для производственной социальной политики вполне можно использовать при проведении инженеринга для формирования и реализации экономической, экологической и других политик, а также для совокупностей политик, программ, проектов развития производства.
Глава 4. Модели системы (для всех этапов инженеринга)
4.1. Принцип системности моделирования
4.2. Особенности моделирования частей систем
4.3. Модель грамотности и доступности производственной системы
4.4. Модель вложенности сфер производства
4.5. Модель жизненного цикла производственной системы
4.6. Общая математическая модель системной технологии производства и управления
4.7. Классификация общих моделей производственной системы
В этой главе показана возможность применения общих моделей систем, в т.ч. и предложенных системной философией [14-16], к построению модели производственной системы при осуществлении инженеринга. Эти модели применяются для описания социальных, экологических, экономических систем, для описания систем управления, образования, научных исследований, проектирования, производства, экспертизы и других. Здесь эти модели описаны для применения на любом этапе инженеринга производственной системы. В общей форме они изложены в упомянутых работах автора.
4.1. Принцип системности моделирования [19]
• Понятие модели системы. Понятие модели некоторого объекта, содержащегося в среде деятельности, возникает в связи с необходимостью изучения возможностей использования этого объекта для решения проблем, решения задач, достижения целей деятельности. Поэтому такой объект логично называть также изучаемым объектом.
Будем исходить из следующего определения:
«Модель изучаемого объекта – вспомогательный объект, дающий ответы на вопросы в отношении изучаемого объекта».
Для систем:
«Модель изучаемой системы – вспомогательная система, дающая ответы на вопросы в отношении изучаемой системы».
В свою очередь, для производственной системы –
«Модель изучаемой производственной системы – вспомогательная система, дающая ответы на вопросы в отношении изучаемой производственной системы».
Для частей производственной системы –
«Модель изучаемой части производственной систем – вспомогательная система, дающая ответы на вопросы в отношении изучаемой части производственной системы».
Модель изучаемой системы можно называть также и моделирующей системой, а изучаемую систему – моделируемой системой.
Составление единой модели какой-либо производственной системы в точном виде невозможно и по этой причине производственные системы представимы, как и любые другие реальные системы, с помощью некоторого множества известных моделей систем. Каждая такая известная модель системы позволяет ответить на некоторый комплекс вопросов в отношении построения и функционирования определенной производственной системы или в отношении определенного типа производственной системы.
Каждая известная модель системы имеет один или несколько известных главных признаков, которые рассматриваются в виде аксиом в теории этой модели. Построенная на основе некоторых принятых аксиом теория определенной модели может ответить на вопросы в отношении реальной системы, в том случае если реальная система удовлетворяет условиям того же набора аксиом. Другими словами, реальная моделируемая система и используемая модель должны удовлетворять одному набору аксиом.
Используя полученное условие с помощью общего Принципа системности системной философии сформулирован [19] Принцип системности моделирования в виде:
для формирования и осуществления системной деятельности совокупность «моделируемая система и моделирующая система» необходимо представлять общим набором аксиом построения системы.
Тогда справедлив следующий Принцип системности моделирования для производственной системы:
для формирования и осуществления целостных производственной системы совокупность «моделируемая производственная система и моделирующая система» необходимо представлять общим набором аксиом построения системы.
Термин "система" охватывает очень широкий спектр понятий. Например, существуют горные системы, системы рек и солнечная система. Человеческий организм включает опорно-двигательную, сердечно-сосудистую, нервную, лимфатическую и другие системы. Мы ежедневно участвуем в системах транспорта и связи (авиа– и железнодорожный транспорт, транспорт нефти и газа, телефон, телеграф и т.д.), в экономических системах.
Исаак Ньютон назвал "системой мира" предмет своих исследований.
Модель системы понимается и как план, метод, порядок, устройство.
Поэтому и неудивительно, что этот термин получил среди ученых, конструкторов, производственников, управленцев и др. специалистов такое распространение.
Невозможно получить ответы на вопросы в отношении реальных систем с помощью одной модели системы. Поэтому метод системной философии использует весь спектр моделирующих систем для описания структур и процессов системы, а также для описания их взаимодействий с внешними средами системы и элементов системы и с внутренними средами системы и элементов системы. С другой стороны, использование прикладной теории моделирования в трактовке системной философии позволяет получать ответы и проводить инженеринг производственной системы с применением минимального числа моделей систем.
4.2. Особенности моделирования частей систем
– элементы системы
– границы системы
– процесс и структура системы
– система-субъект управления производством
– проект
Рассмотрим особенности моделирования элементов, границ, процессов и структур производственной системы [14-19].
• Элементы системы. Для практики моделирования элементов производственной системы полезно рассмотреть следующий пример.
В 1793 г., когда Э. Уитни сконструировал первую хлопкоуборочную машину, он столкнулся с двумя основными трудностями при организации их производства. Первая – производство было ремесленным, т.е. требовало привлечения высококвалифицированных ремесленников, умеющих изготовить изделие от начала до конца. Вторая – в это время имело место массовое переселение ремесленников в числе других групп населения на запад США.
В связи с этим Э. Уитни искал способы выпуска машин без ремесленников высокой квалификации. Для этого Э. Уитни ввел разделение труда, разбив весь процесс выпуска машины на отдельные операции, выполнявшиеся отдельными рабочими. Кроме этого, ему пришлось решить, как сказали бы сейчас, проблемы унификации и взаимозаменяемости узлов и деталей машины. Таким образом, если до этого рабочие-ремесленники работали каждый отдельно, обособленно, то теперь они должны были действовать согласованно друг с другом. На этой основе он объединил рабочих, говоря современным языком, в производственную систему по выпуску хлопкоуборочных машин.
На данном примере можно видеть, что функции рабочих, процессы, которые каждый из них осуществлял, становятся качественно другими при объединении их в производственную систему.
Субъекты, объекты и результаты деятельности при превращении их в элементы систем качественно изменяются, между ними появляются взаимосвязи, что позволяет создать структуру системы. Элементарные процессы, осуществляемые отдельными элементами системы, взаимодействуют между собой и образуют процесс системы.
В рассматриваемом примере процесс системы – это производственный процесс в системе по выпуску хлопкоуборочных машин. Этот процесс уже предъявляет к квалификации рабочего другие требования. Рабочий с квалификацией, удовлетворяющей требованиям хотя бы одного элементарного процесса системы, может стать элементом производственной системы, если он отвечает требованиям умения работать в этой системе, напр., требованию коммуникабельности.
В результате в системах наблюдается синергетическое взаимодействие, так как в них наблюдается взаимное дополнение и усиление элементов.
Следовательно, для формирования и осуществления производственной системы совокупность элементов производственной системы должна удовлетворять следующим основным условиям:
каждое рабочее место – элемент производственной системы, должно осуществлять элементарный производственный процесс, адекватный назначению системы, и
взаимодействия между рабочими местами – элементами производственной системы, должны дополнять и усиливать возможности элементов и системы в целом.
Очевидно, что осуществить эти условия построения производственной системы, как и большинство других условий построения производственной системы, можно также с помощью регулярного инженеринга (реинженеринга) производственной системы.
• Границы системы. Обязательным компонентом модели производственной системы должно являться описание ее границ с внешней средой и границ с внутренней средой ее элементов.
• Определение модели границ системы с ее внешней средой проводится следующим образом.
Если составить модели всех элементов системы и причинно-следственных отношений между ними, то все элементы, которые связаны причинно-следственными отношениями между собой, а также причинно-следственные отношения только между элементами системы входят в модель системы.
Совокупность причинно-следственных отношений, которые связывают элементы системы с элементами внешней среды на входе и на выходе системы, описывают границы системы с внешней средой.
Если описать все причинно-следственные отношения, направленные к системе от внешней среды, то мы получим модель границы системы с внешней средой на ее входе. Если описать все причинно-следственные отношения, направленные от системы к внешней среде, то мы получим модель границы системы с внешней средой на ее выходе.
• Определение модели границ системы с внутренней средой ее элементов проводится следующим образом. Если описать элемент системы, как систему (назовем ее микросистемой), то все элементы микросистемы и причинно-следственные отношения только между ними войдут в модель элемента, как микросистемы.
Два причинно-следственных отношения между элементом и системой (одно на его входе и другое на его выходе) составят модель границы системы с внутренней средой данного элемента.
Эти причинно-следственные отношения между элементом и системой являются также и причинно-следственными отношениями этого элемента с двумя другими элементами этой системы.
Совокупность пар причинно-следственных отношений между элементами системы и системой составят модель границы системы с внутренней средой ее элементов.
По этой причине необходимо при моделировании взаимодействий между элементами системы учитывать не только желаемые целесообразные, в смысле цели создания системы, взаимодействия между ними, но и те воздействия, которые могут «пойти» по каналам взаимодействия из внутренней среды ее элементов. В производственной системыах, как и в других системах, такие воздействия могут происходить в результате взаимодействия внутренней среды работающего (микросистемы данной производственной системы) с внешней средой системы. Это могут быть воздействия климата, социальной среды, городского транспорта, страховых компаний, профсоюза, семьи, магнитного поля Земли, морально-волевых качеств работающего и т.д.
• Процесс и структура системы. Производственные системы можно изучать в процессе инженеринга только при наличии моделей процесса и структуры управления.
Процесс производственной системы моделируется как некоторая совокупность целесообразных элементарных преобразований ресурса – элементарных процессов производства продукта производственной системы. Все эти преобразования моделируются, как функции времени.
Процесс производственной системы – это то, с помощью чего производственная система реализуется во времени. Модели производственного процесса – временные модели.
Структура производственной системы моделируется как некоторая совокупность элементов производства (людей, машин, аппаратов, оборудования, автоматизированных рабочих мест), внутри каждого из которых локализовано протекание определенного элементарного процесса производственной системы. Все эти элементы производственной системы имеют «привязку» к определенному месту в пространстве (вода, воздух, земля, космическое пространство).
Структура производственной системы – это то, с помощью чего производственная система реализуется в пространстве. Модели производственной структуры – пространственные модели.
• Для моделирования процессов и структур систем часто используется принцип «черного ящика», согласно которому для предсказания поведения системы (или ее подсистемы) не обязательно точно знать, как именно устроены ее процесс и структура. Этот принцип широко применяется при моделировании таких больших систем, как производственные системы, на основе анализа характеристик информации о входных и выходных потоках и ресурсов системы.
Для моделирования производственных процессов используются машинные модели двух видов: аналоговые и дискретные.
Аналоговые модели – это, как правило, модели процессов систем в виде обыкновенных дифференциальных уравнений и уравнений в частных производных, решаемые на аналоговых и цифровых вычислительных машинах.
Дискретные модели, т.е. модели с развитой системой логических переходов и условий, описываемой с помощью аппарата дискретной математики (математическая логика и теория алгоритмов, теория языков и языковых процессоров, алгебраические системы и др.), решаются с помощью цифровых вычислительных машин.
Существуют также модели процессов систем, ориентированные на решение с помощью аналогово-цифровых комплексов. В большинстве случаев модели процессов производственной системы являются непрерывно-дискретными.
Для решения задач моделирования производственных процессов в процессе инженеринга эффективными являются имитирующие модели. Для этих моделей не ставится задача наибольшего соответствия структуры модели структуре моделируемого процесса. Основная задача – наиболее достоверное воспроизведение реакции моделируемой системы на внешние, в том числе и на входные воздействия в виде изменений характеристик преобразуемого системой ресурса. Подбор совокупности операторов преобразования входной информации в выходную информацию производится с помощью статистических математических методов.
Модель процесса структурируется в виде блоков в соответствии с достоверными представлениями о структуре производственной системы. Каждый блок модели имитирует поведение определенной системы, являющейся подсистемой исследуемой производственной системы. Имитирующие модели позволяют корректировать набор операторов преобразования в соответствии с текущим поведением моделируемой системы, создавать имитационные и деловые игры для принятия решений по проектированию, управлению, развитию производственных систем.
Процессы в производственной системыах часто моделируются с помощью «неформальных» графических моделей. Графические модели позволяют наглядно изобразить в виде схем, графиков, других простых и сложных графических конструкций частные и общие качественные и количественные характеристики моделей производственной системы. Неформальные модели являются, как правило, этапом, предшествующим построению формальных математических, экономических и экономико-математических моделей производственной системы.
Формальные математические модели производственных процессов могут быть дифференциальными (в форме дифференциальных уравнений), логическими (в форме уравнений математической логики), теоретико-множественными, алгебраическими (в форме алгебраических уравнений и систем), графовыми (в форме ориентированных и неориентированных графов), комбинаторными (в виде моделей размещения объектов в соответствии со специальными правилами), смешанными.
Модели производственных процессов и систем могут быть стохастическими и детерминированными, т.е. учитывающими (в первом случае) и не учитывающими (в другом случае) случайный характер изменений характеристик производственных процессов и преобразуемых системой ресурсов.
Для построения стохастических моделей процессов систем используют специальные методы моделирования процессов и структур, основанные на аппарате теории вероятностей, математической статистики, теории размытых множеств. Здесь стохастические модели не рассматриваются, хотя эти модели могут эффективно использоваться системной технологией инженеринга производственной системы.
• Процессы и структуры производственной системы можно моделировать для целей инженеринга с использованием функционального, морфологического и информационного подходов.
Функциональный подход используется для описания процесса производственной системы. Модель процесса производственной системы представляется в виде совокупности функций, преобразующих поступающие ресурсы в конечный результат функционирования производственной системы – знание, товар, услугу, проект, программу, политику. Конечный результат и входные ресурсы управления представляются в виде функций времени. В каждый данный момент времени состояние производственной системы описывается совокупностью информации о характеристиках входных ресурсов и выходных результатов. Функциональная модель предсказывает изменения состояния процесса производственной системы во времени.
Морфологический подход предназначен для моделирования структуры производственной системы, структур ее подсистем. При этом выделяют элементы системы и транспортно-складские связи между ними, предназначенные для обеспечения взаимодействий: информационные, энергетические, материальные и др.
Информационный подход позволяет создать модель преобразования информационного ресурса производства, как для любого элемента и для части системы, так и для преобразования, проводимого производственной системой в целом. Информационный подход позволяет создать информационную модель производственной системы, дающую интегральное описание системы, независимо от ее природы и природы преобразуемых ресурсов.
• Система-субъект управления производством. На всем протяжении жизненного цикла производственной системы ее развитие и взаимоотношения с внешней средой – предмет деятельности системы-субъекта управления производством. При этом система-субъект производственной системы должна обеспечивать достижение системной цели производства. Во-первых, это достижение миссионерской цели производства в интересах внешней среды. И, во-вторых, как известно из предыдущего изложения, комплекс «системная цель» содержит в себе и собственную цель выживания, сохранения и развития производственной системы. К модели системы-субъекта, которая существенно видоизменяется в течение жизненного цикла производственной системы, с позиций метода системной технологии предъявляются определенные требования.
На начальных фазах концептуальной стадии создаваемой производственной системы система-субъект выполняет по отношению к ней аналитические и исследовательские функции. Эти функции связаны с анализом потребностей и возможностей внешней среды в создании данной системы. Система-субъект может представлять собой аналитическую группу, исследовательский коллектив. На последующих фазах концептуальной стадии, если принято решение о создании данной производственной системы, система-субъект выполняет разработку проекта производственной системы. Модель системы-субъекта дополняется моделью проектного коллектива и группы управления проектом. Функции системы-субъекта производственной системы на этой стадии заключается в согласовании проекта с представителями внешней среды по вопросам экологии, экономики, социологии и др., а также в составлении планов реализации проекта производственной системы.
На стадии физической реализации проекта производственной системы задачи системы-субъекта связаны с реализацией производственной системы в пространстве и во времени (структура и процесс). Здесь исследовательские и проектные функции системы-субъекта связаны только с необходимостью корректировки проекта по ходу реализации производственной системы. На этой стадии нарастают функции управления производственной системой, в том числе управления развитием производственной системы. Появляются новые функции системы-субъекта, связанные с подготовкой проекта новой производственной системы, которая сменит рассматриваемую при ее моральном устаревании и выводе из обращения.
На постфизической стадии функции системы-субъекта по отношению к рассматриваемой системе сводятся к сохранению информации о ней на бумажных и компьютерных носителях и в форме образцов; система-субъект на данной стадии представляет собой архив или музей или банк данных.
Можно сказать, что модель системы-субъекта содержит такие подсистемы, как «аналитик», «исследователь», «проектировщик», «эксперт», «лицензиар», «управляющий производством», «система развития», «контролер», «архивариус», которые переживают разные стадии своих жизненных циклов в соответствии с задачами, которые выполняет система-субъект по отношению к рассматриваемой производственной системе.
• Проект.Проект – это наиболее полная модель производственной системы, пригодная для физического осуществления идеи создания и развития системы, и проектировщик – существенная часть модели системы-субъекта производственной системы, которая заслуживает отдельного рассмотрения. Функции проектировщика тесно связаны с инженерингом производства.
Проект системы является наиболее важным видом модели производственной системы, так как именно с помощью проекта система переходит от идеи ее создания к физической реализации. При проектировании систем различают: макропроектирование (внешнее проектирование) и микропроектирование (внутреннее проектирование).
Макропроект можно рассматривать, как совокупность моделей внешней среды, триады систем производственной системы, ее процесса и структуры в целом. Такая совокупность описывает роль производственной триады систем для внешней среды и роль внешней среды для производственной триады систем.