355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Марат Ка » Свет » Текст книги (страница 2)
Свет
  • Текст добавлен: 21 марта 2022, 02:05

Текст книги "Свет"


Автор книги: Марат Ка



сообщить о нарушении

Текущая страница: 2 (всего у книги 4 страниц)

Опыт Ньютона показывает, что поток света несёт в себе информацию о цвете. Излучение с длиной волны 700 нм даёт ощущение красного цвета, а с длиной волны 550 нм – зелёного. Таким образом, именно длина волны определяет цвет.

2.4 Вывод из опыта Ньютона

Из эксперимента, который провёл Ньютон, можно сделать ещё одно заключение. Оно состоит в том, что белый солнечный свет – это сумма цветных лучей. Смесь всех чистых излучений.

Чистое излучение – это излучение с одной длиной волны. Например, только красное или только жёлтое. Такое излучение в дальнейшем мы будем называть монохроматическим, то есть одноцветным.

2.5 Спектр

Цветная полоска на стене, полученная с помощью опыта Ньютона, это видимая часть спектра солнечного света. Она образована всеми монохроматическими излучениями, входящими в его состав.

Излучения расположены в порядке возрастания длин волн – от 380 до 740 нм. В соответствии с ними в спектре следуют цвета. Самая короткая длина волны у фиолетового цвета, а красный соответствует длинноволновому концу спектра. Между ними располагаются синий, голубой, зелёный, жёлтый и оранжевый.

Как вы могли заметить, в спектре солнечного света нет чёрного. Всё дело в том, что чёрный цвет – это отсутствие света. Ощущение чёрного возникает при снижении интенсивности освещения до нуля. Точно так же происходит, когда мы уменьшаем громкость радио. Звук становится всё тише и, наконец, замолкает.

2.6 Почему цветов – семь?

Цвета в спектре следуют друг за другом непрерывно, в нём нет никаких границ, отделяющих один цвет от другого. На самом деле такое разделение на семь областей является условным. Просто у человека при переходе от одной области к другой возникает ощущение нового цвета, и каждому из них требуется своё имя.

Поэтому в дань традиции и культурному опыту спектр разделили по аналогии с октавой, состоящей из семи нот.

Порядок, в котором располагаются цвета, легко можно запомнить с помощью следующих фраз:

«Каждый Охотник Желает Знать, Где Сидит Фазан»;

«Как Однажды Жак Звонарь Городской Сломал Фонарь».

Каждое слово в этих фразах начинается с той же буквы, что и название соответствующего цвета. Цвета следуют от длинноволнового конца спектра к коротковолновому, то есть от красного к фиолетовому.

2.7 Интенсивность излучения

Как уже было сказано выше, белый свет является смесью всех монохроматических излучений. При этом его образуют излучения определённой интенсивности. Наибольшую интенсивность имеют излучения в жёлтой области, наименьшую – в красной и фиолетовой.

2.8 Спектр монохроматического излучения

При разложении белого солнечного света на составляющие мы получали монохромные цветные лучи.Солнце, отверстие в ставне окна, трёхгранная призма создавали множество подобных лучей. В спектре такого одноцветного света есть излучение только одной длины волны. Все остальные длины волн в нём отсутствуют.

Можно получить монохромный луч одного цвета, если поставить на пути белого света цветное стекло – светофильтр. Это устройство, которое позволяет менять состав света.

Так, оранжевое стекло, например, даст нам оранжевый луч, поскольку поглотит и задержит излучение с другими длинами волн. Спектр такого света будет содержать излучения, сосредоточенные в промежутке между 590 и 625 нм, а в остальной части будет пустым.

2.9 Спектр реального цветного света

Для получения идеального монохроматического излучения, в котором будут волны только одной длины, нужно создать специальные лабораторные условия. В реальной жизни свет, излучаемый Солнцем и лампами или отражённый от различных предметов, всегда имеет сложный спектральный состав. То есть он состоит из суммы монохроматических излучений. В их спектрах содержится множество волн разной длины, и они все там присутствуют в разном количестве.

2.10 Спектры разные, цвет один

Казалось бы, здесь нужно сказать, что каждому спектру соответствует свой цвет. Но мы не можем этого утверждать.

Один и тот же цвет иногда даёт свет различного спектрального состава. Наш глаз и мозг могут так реагировать на излучение, ведь цвет – это всё-таки субъективная, а не объективная характеристика предметов, которые нас окружают.

Цвета излучений, которые имеют разный состав, но при этом визуально воспринимаются одинаково, называются метамерными.

Трёхгранная призма обладает свойством отклонять лучи с различной длиной волны на разный угол. Излучение одной длины волны проходит через неё по собственному маршруту. В результате смешанный свет делится на составляющие. Поток света несёт в себе информацию о цвете. Излучение с длиной волны 700 нм даёт нам ощущение красного цвета, а с длиной волны 550 нм – зелёного. Таким образом, именно длина волны определяет цвет.


2.11 Метамерия

Мы часто встречаемся с метамерными цветами в обычной жизни. Например, цвета на картине, написанной маслом, и на её хорошей репродукции похожи, хотя они получены разными способами. Когда художник писал картину, он использовал смешанные краски, а репродукция была напечатана с помощью всего четырёх цветов, которые применяются в полиграфии.

Правда, стоит уточнить, что метамерные цвета кажутся одинаковыми только при определённом освещении. Бывает, в магазине мы видим две ткани одного цвета, но на улице разница между ними сразу станет заметной.

Наибольшее количество метамеров у сложных малонасыщенных цветов, особенно у коричневых, чёрных, зелёных и красных.

А вот спектральные цвета не имеют метамеров, каждый из них создаётся одним единственным монохроматическим излучением.

2.12 Применение метамерии

Явление метамерии лежит в основе воспроизведения цвета в полиграфии, фотографии и кинематографе. Благодаря ему мы воспринимаем картинку на экране монитора и печатное изображение. В первом случае даже самые сложные цвета воспроизводятся путём смешения всего трёх цветных лучей, а во втором – комбинацией четырёх печатных красок. И наш глаз считает такой способ представления цвета вполне убедительным.

2.13 Цвета предметов

Любая поверхность поглощает часть падающего на неё света, а часть отражает. Именно поэтому мы можем видеть различные предметы, которые нас окружают. А поскольку поверхности ведут себя по отношению к световым лучам различным образом, мы воспринимаем их цветными.

Каждый материал поглощает, отражает и пропускает излучения волн определённой длины в некоторой пропорции. Именно это и определяет его цвет.

Если мы посмотрим на мир через очки с жёлтыми стёклами, то увидим его в жёлтом свете. Объясняется это тем, что жёлтое стекло поглощает все излучения, кроме жёлтых. Точно так же лимон поглощает весь падающий на него свет, исключая его жёлтую часть. Жёлтые лучи отражаются от его корки и, попадая в наш глаз, сообщают нам о его цвете.

Если следовать той же логике – от огурца отражается зелёная часть спектра, а от помидора – красная. То есть из всего потока света, падающего на поверхность предмета, вычищаются все цвета, кроме того, который мы видим.

2.14 В красном свете

Когда лимон, огурец и помидор освещает поток белого света, они имеют привычный для нас цвет. Но предположим, что плоды освещены красной лампой. В белом свете были излучения всех длин волн, а в красном у них только одна длина волны.

При таком освещении огурец станет чёрным. Его поверхность обладает свойством поглощать красные лучи и отражать зелёные. Но зелёных лучей в красном свете нет. И от нашего овоща никакого света не отразится, что и создаст ощущение чёрного.

Помидор, освещённый подобной лампой, останется таким же красным, а вот лимон будет похожим на апельсин.

Таким образом, цвет объекта в цветном свете в некоторых случаях остаётся таким же, как и в белом, в других он меняется, а иногда полностью теряет цвет.

2.15 Цветовой круг

Как же определить цвет предмета в цветном свете? Для этого нужно знать, какие лучи отражает, а какие поглощает его поверхность, то есть располагать спектром отражения и спектром поглощения для данной поверхности.

Данным вопросом занимаются учёные, однако художникам, фотографам и декораторам в своей работе приходится сталкиваться с необходимостью решить эту проблему на практике. Им важно понимать, как изменится цвет поверхности, если осветить её тем или иным светом. Для этого необходим цветовой круг.

Мы получим цветовой круг, если соединим концы спектра белого света. Этот инструмент хорошо знаком каждому художнику, фотографу и вообще любому специалисту, который работает с цветом. С его помощью можно решить многие задачи и сделать наглядными закономерности восприятия цвета.

В цветовом круге группа красных цветов находится напротив зелёных, а группа синих – напротив жёлтых.

Помните, огурец стал чёрным, когда был освещён красным светом? Делаем вывод, что цвет исчезает, когда цвета объекта и света находятся в круге напротив друг друга. При этом чем ближе цвет света к цвету поверхности, тем менее выражены изменения.


Мы получим цветовой круг, если соединим концы спектра белого света. Этот инструмент хорошо знаком каждому художнику, фотографу и вообще любому специалисту, который работает с цветом. С его помощью можно решить многие задачи и сделать наглядными закономерности восприятия цвета.

2.16 Как это работает

Цветной свет может использоваться в реальной практике, например, в театре или цирке. Встречается он и в интерьере. И всё-таки основную часть времени мы видим окружающий мир в белом свете. Белым является и свет Солнца, и свет большинства электрических ламп.

Однако белый всё же имеет свои оттенки. Например, свет свечи и лампы накаливания – желтоватый. Взглянув на цветовой круг, нам будет нетрудно предсказать, что произойдёт с синими поверхностями при таком освещении. Они станут немного более приглушёнными, серыми по сравнению с жёлтыми, бежевыми, оранжевыми и красными.

Таким образом, цвет предмета определяется как свойствами поверхности, так и оттенком освещения.

Практика декоратора

Метамерия и лампы

Архитекторы, дизайнеры интерьера и декораторы постоянно работают с цветом и светом, а потому часто сталкиваются с явлениями, описанными в этой главе. Это касается и метамерии.

Мы можем видеть метамерию тогда, когда используем в интерьере разные лампы, дающие свет одинакового цвета. Парадоксально, но в свете этих ламп одни и те же предметы немного меняют свой цвет. Это происходит из-за того, что цвета излучений данных ламп метамерны. Их свет кажется одинаковым, но на самом деле он очень отличается по спектральному составу, что обнаруживается при взаимодействии с поверхностями предметов. Особенно сильно эта разница видна в случае со сложными оттенками, например, серыми или коричневыми.

Такое различие существует между люминесцентными лампами и лампами накаливания. В свете люминесцентной лампы люди нередко ощущают себя неуютно, восприятие цвета искажается. Если декоратор знает физику, ему легко понять, почему это происходит. Дело в том, что в спектре излучения люминесцентной лампы вообще отсутствуют некоторые длины волн, поэтому их свет просто не может быть одинаковым.

Декоратор и цвет

Открывая для себя законы физики, мы понимаем, как велика роль света в нашей жизни. Именно благодаря ему всё что нас окружает, приобретает свой цвет.

Выбор освещения и подбор сочетаний цветов – важнейшие задачи, которые декораторы и интерьер-дизайнеры решают при создании интерьера. Часто они полагаются на свой опыт и интуицию, но знание законов физики может помочь найти эффективное решение быстрее и проще. К сожалению, эти законы не всегда известны и понятны тем, кому они нужны для практического применения.

Мы понимаем, что многие физические явления и процессы описаны в данной книге достаточно поверхностно. На самом деле они сложны и, возможно, не изучены до конца.


Основное из Главы 2

Цвет определяется длиной волны.

Белый цвет – это смесь всех цветов.

Метамерные цвета выглядят одинаково, но имеют разный спектр.

Цвет предмета зависит от свойств поверхности и от освещения.


Глава 3. Измерение света

Сложная задача – объяснить

физику без формул,

а измерения – без чисел.

3.1 Свет в цифрах

Очевидно, что днём светлее, чем ночью, а прожектор даёт больше света, чем фонарик. Однако как узнать, во сколько раз Солнце ярче лампы, можно ли вычислить количество света, которое они дают?

На сегодняшний день измерение света не является невыполнимой задачей. Этим вопросом занимается спектрофотометрия.

Архитекторы и декораторы, подбирая освещение, нередко сталкиваются с необходимостью измерить свет, описать его в точных величинах. Это умение помогает им взаимодействовать с инженерами и разбираться в их расчётах.

3.2 Свет свечи

На столе стоит горящая свеча. Её пламя слегка дрожит. Мягкий свет освещает пространство вокруг неё, а углы комнаты тонут во мраке.

Смотреть, как горит свеча, можно бесконечно. Но декоратор, который хочет использовать такое освещение в интерьере, должен суметь ответить для себя на три вопроса:

1 – сколько света даёт свеча;

2 – насколько хорошо она способна освещать ближайшие к ней предметы;

3 – насколько ярким является её пламя.

Мы сможем найти ответы на эти вопросы с помощью таких величин как световой поток, сила света, освещённость и яркость.

3.3 Световой поток

Свет – это излучение, и его мощность можно измерить. Казалось бы, этого достаточно, чтобы оценить, сколько света даёт свеча. Но всё не так просто.

Если вы попробуете приблизить свои ладони к пламени свечи, они станут тёплыми, ведь свеча не только светит, но и греет. Кроме видимого света, в её спектре есть множество других видов излучений – рентгеновских, ультрафиолетовых, инфракрасных. Поэтому мы не сможем оценить количество света, даже узнав всю мощность её излучения.

Для измерения количества света, которое способен дать тот или иной источник, используется такая величина как световой поток. Единицей измерения светового потока является люмен (лм).


3.4 Сила света

Свеча светит одинаково во всех направлениях. Вдоль каждого направления излучается определённая часть светового потока – это и есть сила света.

Сила света показывает, какую долю светового потока свеча отдаёт в одном направлении. Эта величина описывает свет самосветящихся источников. Единицей её измерения является кандела (кд).

Сила света обыкновенной свечи примерно равна одной канделе, отсюда и название. В переводе с латыни «кандела» и есть свеча, поэтому раньше эта единица измерения называлась «свечой».

3.5 Освещённость

Положите книгу на стол рядом со свечой. Вы сможете без труда прочесть написанный в ней текст. Но вряд ли у вас получится разглядеть хоть слово, если сесть в кресло в глубине комнаты. В этом случае книга будет слишком плохо освещена.

Освещённость – это ещё одна физическая величина, которая важна для архитекторов и декораторов. Она показывает, сколько света падает на единицу площади поверхности. Измеряется в люксах (лк).

При удалении от источника света освещённость убывает крайне быстро – пропорционально квадрату расстояния от него. Вот некоторые примеры показателей освещённости: солнечный день – 60 000 – 10 0000 лк; пасмурный летний день – 20 000 лк; пасмурный зимний день – 3 000 лк; ночь в полнолуние – 0,25 лк; ночь в новолуние – 0,01 лк; операционная – 20 000 –120 000 лк; рабочее место – 500 – 750 лк.

3.6 Яркость

Пламя свечи кажется желтовато-белым в середине и краснеет по краям. В тёмной комнате оно будет выделяться на фоне неосвещённой стены.

Внешний вид источника света мы можем оценить с помощью такой величины, как яркость.

Знать эту величину важно, если мы хотим, например, смонтировать подсветку из лампочек по контуру здания.

Допустим, нам не важно, сколько света дают эти лампочки и насколько хорошо они освещают фасад. Но принципиально, чтобы все лампочки выглядели одинаковыми, иначе линия подсветки будет иметь «провалы».

Яркость показывает, как велик световой поток, исходящий от единицы поверхности источника света. Причём свою яркость имеют как сами источники света, так и отражающие его поверхности. Поэтому мы можем сказать, что белая столешница ярче, чем поверхность деревянного комода. Соответственно, для его освещения необходимо больше света. Единица измерения яркости – кандела на квадратный метр (кд/м2).

Эта информация приводится больше для вашего ознакомления. Далее в книге вы встретите не столько точные измерения, сколько сравнительные суждения о яркости предметов.

3.7 Количественные и качественные показатели

Световой поток, сила света, освещённость и яркость характеризуют количество света, которое испускают источники. Но у света есть и качественное измерение – его цвет. Для этого используется такая величина, как цветовая температура.

Казалось бы, логично подойти к классификации цветного света так же, как к классификации цветных поверхностей, то есть внести цвет в каталог под соответствующим номером. Однако на практике так не делают. Цвет света оценивается по его цветовой температуре. Почему удобно поступать именно так?

Цветной свет используется достаточно ограниченно: в наружной рекламе, на театральной сцене, на арене цирка, для подсветки зданий. В интерьере же в большинстве случаев нужен белый свет.

3.8 Цвет белого света

Белым принято считать и солнечный свет, и свет ламп. Однако даже невооружённым взглядом видно, что эти излучения имеют множество оттенков. Так, у огня свет желтоватый, а у люминесцентной лампы – голубоватый.

Эти источники света называют белыми потому, что наше зрение способно адаптироваться к ним. Когда оно привыкает к освещению, то «вычитает» из него цветную составляющую.

Понимать разницу между источниками, которые дают белый свет различных оттенков, очень важно и для декоратора, и для фотографа. Для оценки цветности белых излучений используется цветовая температура. Её измеряют в градусах Кельвина (К).

3.9 Цветовая температура с точки зрения физики

Цвет источника света сравнивается с цветом так называемого чёрного тела – идеального физического объекта, меняющего свой цвет при нагревании.

При невысоких температурах излучение чёрного тела лежит в инфракрасной области. Когда же оно нагревается, то приобретает красный цвет. Затем красный дополняется другими диапазонами и, начиная примерно с цветовой температуры 2 000 К, становится белым. При температурах свыше 10 000 К в излучении чёрного тела преобладают сине-фиолетовые составляющие.


Чем выше цветовая температура, тем голубее оттенок излучаемого света. Хотя психологически синий воспринимается как более холодный, а красный – как более тёплый, в данном случае всё наоборот.


Поскольку в диапазоне от 2 000 до 10 000 К (чаще от 2 700 до 6 500 К) излучение имеет белый цвет, именно эти температуры используются на практике для обозначения цвета излучения реальных источников, например, электрических ламп.

Обратите внимание, чем выше цветовая температура, тем голубее оттенок излучаемого света. Хотя психологически синий воспринимается как более холодный, а красный – как более тёплый, в данном случае всё наоборот. Подумайте, как меняет свой цвет гвоздь, нагреваемый на газовой горелке. При усилении нагрева он сначала становится красным, затем желтеет и, наконец, раскаляется добела.

Свет свечи, о которой мы говорили ранее – самый тёплый из белых. Его цветовая температура составляет около 2 000 К. Видимая разница в цветности составляет 400 – 600 К, поэтому использовать более точные значения не имеет смысла.


3.10 Просто о сложном

В данной главе мы рассмотрели всего несколько световых величин. На самом деле их гораздо больше, но мы постарались сделать рассказ об измерении света простым и ясным. Этой информации вам будет достаточно для того, чтобы понимать дальнейшее изложение.

Практика декоратора

Заблуждение или удобство?

На сегодняшний день для обозначения того, сколько света даёт, например, лампа, рекомендуется использовать величину светового потока. Раньше пользовались силой света. Так и говорили: лампа в 60 свечей, лампа в 100 свечей. А теперь часто говорят: 100 ватт.

Ватт (Вт) – это единица измерения потребляемой мощности. То есть количество света лампы оценивается в соответствии с тем, сколько этой лампе нужно электроэнергии.

Для этого есть некоторые основания. Каждый человек на глаз способен отличить свет лампочки в 40 Вт от лампочки в 100 Вт. Но это справедливо только для источников одинакового типа. Раньше практически повсеместно были распространены лампы накаливания. Но сейчас в интерьере используются лампы других типов, которым нужно гораздо меньше электричества.

Об этих лампах и их энергопотреблении мы поговорим в одной из следующих глав. Пока нам важно только то, что с помощью показателя мощности на квадратный метр вычисляют количество света, необходимое для помещения.

Выбираем люстру и лампы

Давайте попробуем применить эти знания об измерении света для решения практической задачи – подберём люстру и лампы для освещения комнаты. Проектированию освещения архитектурных пространств также будет посвящён отдельный раздел, а сейчас мы попытаемся сделать простой расчёт, дающий хотя бы приблизительные результаты.

Итак, нам нужно осветить комнату площадью 18 м2. Обычно архитекторы и декораторы исходят из того, что на каждый м2 помещения требуется 20 Вт мощности ламп. То есть для нашей комнаты нам нужны источники света общей мощностью 360 Вт. Таким образом, нам понадобится люстра с пятью лампами по 75 Вт каждая.

Правильная последовательность действий

Освещённость помещения зависит от его собственных особенностей, поэтому даже для приблизительного расчёта света нужно иметь информацию не только о его размере, форме и высоте, но и о цвете стен, их тональности и фактуре.

В предложенной задаче мы учли не все эти характеристики, чтобы её упростить. Но на практике декоратору перед выбором освещения важно знать, каким будет тон и цвет пола, а также нужно сделать расстановку мебели и подобрать цвет штор. Тёмный интерьер потребует больше света, светлый – меньше.

Поэтому прежде чем начинать делать инженерную документацию, необходимо закончить проект дизайна интерьера и подобрать все отделочные материалы.

К сожалению, многие архитекторы и декораторы сначала проектируют освещение, а затем думают о цвете и тоне интерьера. На деле это может привести к проблемам.

Раньше лампы просто заменяли на более мощные, если света оказывалось недостаточно. Сегодня мы используем самые разные типы ламп.

Нередко лампа является частью светильника, бывает, что заменить её можно только вместе с ним.

Поэтому так важно соблюдать грамотную последовательность проектирования.

Основное из Главы 3

Свет можно описать в точных цифрах с помощью физических величин.

Световой поток показывает, сколько света даёт источник, и измеряется в люменах (лм).

Сила света определяет, сколько света отдаёт источник в одном направлении. Её единица измерения – кандела (кд).

Освещённость является показателем количества света, которое падает на поверхность. Она измеряется в люксах (лк).

Яркость описывает величину светового потока, исходящего от источника или поверхности, и измеряется в канделах на квадратный метр (кд/м2).

Цветовая температура характеризует цветность белых излучений. Она измеряется в градусах Кельвина (К).


Глава 4. Естественный свет

– Почему солнце с утра такое радостное?

– Потому что оно знает, что к вечеру будет на западе.

4.1 Источники естественного света

Под естественным светом мы обычно подразумеваем солнечный свет. Действительно, именно Солнце является основным источником освещения для всего живого на нашей планете. Без Солнца Земля погрузилась бы во тьму.

Но, как мы уже говорили в этой книге, в природе существуют и другие источники света. Испускают свечение жуки-светлячки, а также некоторые рыбы. Светятся гнилушки в лесу. В северных районах наблюдаются полярные сияния. Свет сопровождает извержения вулканов. Однако роль всех этих источников в освещении поверхности нашей планеты по сравнению с солнечным светом очень мала.

А как же Луна? На первый взгляд, Луна освещает Землю ночью так же, как Солнце днем. Но в действительности сама она не испускает света, до Земли доходит отражённый её поверхностью солнечный свет.

4.2 Что мы знаем о Солнце

Солнце – самая близкая к нашей планете звезда. Она представляет собой огромный раскалённый шар, который примерно в 109 раз больше Земли.

Расстояние от Земли до Солнца – примерно 150 миллионов километров. Его свет доходит до нас чуть больше чем за восемь минут.

Мощность излучения Солнца составляет 3,8х1026 Вт. Оно излучает свою энергию на всех длинах волн, но не равномерно. Половина этой энергии приходится на видимую область спектра. В свете Солнца преобладают лучи жёлто-зелёного цвета, поэтому солнечный диск кажется нам золотым.

Около 45 процентов энергии, теряемой Солнцем, уносят инфракрасные лучи. На гамма-лучи, рентгеновское, ультрафиолетовое и радиоизлучение приходится лишь пять процентов излучаемой энергии.

Когда же солнечный свет попадает в атмосферу нашей планеты, это соотношение меняется в пользу видимого излучения. Происходит так потому, что атмосфера Земли препятствует прохождению многих видов электромагнитных волн.

Поток солнечных лучей создаёт на внешней границе атмосферы освещённость равную 135 000 лк, а на поверхности Земли – порядка 100 000 лк (в полдень при ясной погоде).

Яркость солнечного диска составляет 2х109 кд/м2, а температура поверхности Солнца 6 000 К. Его свечение похоже на свечение источника с цветовой температурой 6 000 К. Солнце светит почти белым светом.

4.3 Астрономия для декоратора

В художественной литературе иногда можно прочесть, что Солнце ушло или погасло. На самом деле это только метафора, ведь эта звезда никуда не исчезает, и её свет никак не изменяется.

Как мы помним из школьного курса физики, наша планета движется вокруг Солнца по эллиптической орбите. Она также вращается вокруг своей оси, подставляя Солнцу то одну, то другую сторону. На освещённой Солнцем стороне, наступает день, а на неосвещённой – ночь.

Вместе с тем для наблюдателя на Земле Солнце действительно проходит свой ежедневный путь над неподвижной Землёй. На рассвете мы видим, как из-за горизонта на востоке показывается солнечный диск, к полудню он достигает высшей для этого дня точки и затем, двигаясь к западу, исчезает за горизонтом.

4.4 День и ночь

С утра до полудня освещённость Земли увеличивается, с полудня до вечера уменьшается. Увеличение и уменьшение освещённости происходит постепенно. В середине дня Земля получает больше всего солнечных лучей.

Летом в полдень при ясной погоде освещённость земной поверхности достигает 60 000 – 100 000 лк. К моменту захода Солнца она составляет уже около 1 000 лк, а ночью исчисляется сотыми долями люкса. Таким образом, на протяжении суток освещённость поверхности нашей планеты постоянно изменяется.

4.5 Долгота дня

Мы знаем, что зимой световой день, то есть время между восходом и закатом, короче, а летом длиннее. Долгота дня зависит от времени года.

Дело в том, что ось вращения Земли не перпендикулярна плоскости, в которой наша планета вращается вокруг Солнца, а наклонена к ней. Поэтому каждое из двух полушарий в позиции зимы отклонено от Солнца, а в позиции лета наклонено к нему. Вот почему Новый Год в Москве встречают в шубах, а в Австралии в купальниках.

Наклон земной оси влияет и на дневной путь солнца. Зимой оно поднимается над горизонтом не так высоко и светит не так долго. Например, 22 июня в Москве рассвет наступает в 3:45, закат – в 21:18, долгота дня составляет 17 часов 33 минуты. А 21 декабря рассвет наступает в 8:58, закат – в 15:59, долгота дня составляет семь часов одну минуту.

В летний полдень Солнце поднимается над горизонтом на высоту более 57°, а в зимний – всего на 11°.

4.6 Зима и лето

Летом освещённость поверхности нашей планеты примерно в семь раз больше, чем зимой. Например, в пасмурный летний день она составляет 20 000 лк, а в пасмурный зимний день – только 3 000 лк. Из этого мы можем сделать очевидный вывод, что летом света больше, зимой – меньше.


Зимой световой день короче, а летом длиннее. Долгота дня зависит от времени года. Ось вращения Земли не перпендикулярна плоскости, в которой наша планета вращается вокруг Солнца, а наклонена к ней. Поэтому каждое из двух полушарий в позиции зимы отклонено от Солнца, а в позиции лета наклонено к нему.

4.7 Атмосфера

Земля окружена атмосферой – воздушной оболочкой, которая состоит в основном из газов. Также в ней всегда присутствуют разнообразные по происхождению и свойствам частицы.

Такими частицами могут быть капельки воды и кристаллы льда. Из них состоят облака и туманы. Но это могут быть и твёрдые частицы, например, пыль или продукты горения.

Толщина атмосферы составляет примерно 200 – 300 км от поверхности Земли. Дальше начинается космос, безвоздушное пространство.

Атмосфера Земли пропускает видимый свет и защищает нас от вредных излучений. Кроме того, она влияет на то, что мы видим вокруг.

4.8 Прозрачность воздуха и небесный свод

Окружающий нас воздух практически невидим, поскольку образующие его газы бесцветны. Даже не очень чистый воздух в больших городах прозрачнее, чем самая прозрачная жидкость и самое прозрачное стекло. Слой воздуха толщиной в несколько метров мы вообще не видим. На расстоянии нескольких километров воздушная дымка делает очертания удалённых от нас предметов размытыми. Всю же атмосферу в целом мы воспринимаем как небо, купол небосвода. Это впечатление рождается благодаря огромной толще воздуха.

Сделать воздух менее прозрачным может переизбыток твёрдых частиц. Так бывает, например, во время пыльной бури в пустыне. Но чаще всего ухудшают видимость туман и облака. Они состоят из мельчайших капель воды или кристаллов льда. Пока водяной пар сохраняет свойства газа, он такой же прозрачный, как воздух. Поэтому на прозрачность атмосферы он почти не влияет. Но когда начинается превращение пара в воду, в воздухе образуются мельчайшие невидимые глазу водяные капельки. Они как раз уже непрозрачны.

Поэтому в ясную погоду мы видим всё вплоть до горизонта. Для человека среднего роста, стоящего на равнине, горизонт находится на расстоянии около пяти километров. А в густом тумане невозможно что-либо разглядеть уже на расстоянии нескольких метров.


    Ваша оценка произведения:

Популярные книги за неделю