355 500 произведений, 25 200 авторов.

Электронная библиотека книг » М. Субботин » Происхождение и возраст Земли » Текст книги (страница 3)
Происхождение и возраст Земли
  • Текст добавлен: 20 сентября 2016, 18:55

Текст книги "Происхождение и возраст Земли"


Автор книги: М. Субботин



сообщить о нарушении

Текущая страница: 3 (всего у книги 3 страниц)

7. Возраст Земли

Говоря о происхождении Земли, мы должны, конечно, остановиться и на вопросе о её возрасте. Определение возраста Земли является одной из сложнейших задач, стоящих перед наукой. Только в последние годы открылась возможность сколько-нибудь точно оценить те огромные промежутки времени, с которыми приходится иметь дело при решении этой задачи. Это стало возможным лишь после того, как физики, изучая явления радиоактивности, проникли в тайны строения атомов тех химических элементов, которые образуют нашу Землю. Оказалось, что атомы некоторых элементов являются своего рода часами, очень медленно, но равномерно идущими. Вот эти-то часы и позволили нам впервые составить себе представление о возрасте, по крайней мере, верхних слоёв земной поверхности.

Нашему непосредственному изучению доступна лишь незначительная часть Земли. При помощи шахт и буровых скважин человек проник в глубь Земли не больше, чем на два-три километра, что составляет всего три-пять сотых процента земного радиуса. Геология позволяет судить о более глубоких слоях Земли благодаря тому, что горообразовательные процессы, сминая, разрывая и надвигая друг на друга мощные толщи горных пород, выводят их на поверхность Земли, а размывание дождями и реками глубоко вскрывает строение этих пластов. Это делает для нас доступным изучение пород на глубине до 20 километров, что составляет около 0,3 % земного радиуса. О том, каково строение Земли на протяжении остальных 99,7 % её радиуса, мы можем судить лишь на основании косвенных данных, доставляемых нам изучением силы тяжести в различных точках земной поверхности, изучением землетрясений и исследованием некоторых других явлений. Все эти данные привели к заключению, что внутренность Земли состоит из трёх главных частей.

1)  внешней оболочки, толщиной примерно в 1 200 км, состоящей из каменных пород;

2)  промежуточной оболочки толщиной около 1 700 км;

3)  очень плотного ядра, с радиусом около 3 400 км, состоящего, по-видимому, из железа и никеля.

Внешняя оболочка состоит прежде всего из осадочных пород (песок, глина, песчаники, сланцы, известняки и т. п.), покрывающих большую часть земной поверхности слоем, толщина которого доходит местами до 100 км. Этот слой называется земной корой. Под слоем осадочных пород находится слой из гранитов и базальтов, образовавшихся путём остывания некогда расплавленного вещества.

Под внешней каменной оболочкой находится промежуточная оболочка. Её называют ещё рудной, так как имеются основания предполагать, что она очень богата железом, хромом, никелем и магнием.

Ещё очень недавно считали, что внутренность Земли имеет такую высокую температуру, что вещество может там находиться только в газообразном состоянии. Такое мнение основывалось на том, что температура в доступных для нашего изучения слоях Земли повышается с глубиной (примерно на 3° на каждые 100 метров). Допуская, что это повышение температуры продолжается почти до самого центра Земли, находили в центре температуру около 200 000°. Однако, изучение землетрясений показало, что внутренние части Земли реагируют на сотрясения, как твёрдое тело, упругость которого превосходит упругость стали в 2½ раза. В настоящее время считают, что наблюдаемое нами повышение температуры с глубиной ограничивается лишь тонким поверхностным слоем и объясняется не тем, что внутренность Земли очень горяча, а тем, что в поверхностном слое находятся радиоактивные элементы (радий, уран, торий и др.), непрерывно выделяющие тепло. Что же касается температуры центрального ядра, то её оценивают теперь всего в 2 000—4 000°. Несмотря на высокую температуру, вещество ядра может обладать свойствами твёрдого тела, так как оно находится под очень большим давлением, доходящим до трёх миллионов атмосфер.

Непосредственное определение возраста, не связанное с той или иной космогонической гипотезой, мы можем производить лишь в отношении самых поверхностных слоёв Земли, так как только эти слои доступны для лабораторного исследования.

Первая попытка такого рода была сделана в 1715 году английским астрономом Галлеем, современником Ньютона. Подземные источники, питающие реки, растворяют находящуюся в земле соль. Эта соль, унесённая реками в океан, там и остаётся, после того как унёсшая её вода испарится и в виде дождя вернётся в источники и реки. Благодаря такому круговороту воды содержание соли в океане с течением времени должно увеличиться.

Галлей предложил определить возраст океана по количеству содержащейся в нём соли. Такие подсчёты, повторявшиеся потом многими учёными при помощи более точных данных, дают возраст океана от 90 до 350 миллионов лет. Однако, этот способ, основывающийся на весьма шатких подсчётах того количества соли, которое ежегодно уносится реками в океан, не может дать сколько-нибудь точных результатов.

Более надёжные результаты дал геологический метод, основанный на определении толщины осадков. Дожди непрерывно смывают почву в реки, а реки уносят её в море и там отлагают. Такая небольшая река, как Темза, ежегодно выносит в море более двух миллионов тонн песка и глины. Общую толщину осадочных пород, образовавшихся на поверхности Земли за время её существования, оценивают в 100 км. Очень трудно найти среднюю скорость образования отложений. По одним подсчётам получается, что для образования слоя отложений, толщиной в один метр, требуется около 3 000  лет, по другим – около 10 000 лет. Исходя из этих данных, возраст Земли, считая со времени начала образования осадочных пород, получается между 300 и 1000 миллионов лет. Но главный недостаток этого метода, не позволяющий надеяться на точные результаты, заключается в том, что у нас нет никаких оснований считать скорость образования отложений неизменной. В давно прошедшие времена, когда только ещё начиналось образование осадочных пород, условия на Земле были совсем иные, а потому и скорость этого процесса могла быть совсем другой.

Лишь после открытия явлений радиоактивности стали возможны действительно надёжные определения возраста Земли. Сущность этих явлений заключается в том, что атомы некоторых химических элементов (получивших название радиоактивных) находятся в неустойчивом состоянии и распадаются, переходя в атомы других элементов. Этот процесс продолжается до тех пор, пока не получатся устойчивые атомы, образующие элементы, уже не обладающие свойством радиоактивности. Так, например, уран, для которого впервые было открыто (в 1896 г.) это явление распада атомов, переходит сначала в радий (открыт супругами Кюри в 1898 г.) и в гелий – очень лёгкий газ, впервые открытый на Солнце, а затем и найденный на Земле. Гелий дальнейшим изменениям не подвергается. Радий же, в свою очередь, является радиоактивным элементом, и его атомы продолжают распадаться, пока, наконец, не получатся атомы свинца. Распад атомов радия происходит значительно быстрее, нежели атомов урана. Через 1 500 лет грамм радия превращается в полграмма радия и почти полграмма свинца. Таким образом, конечными продуктами превращения урана являются свинец и гелий. Свинец, образовавшийся из урана, обладает теми же химическими свойствами, что и обычный свинец, но имеет слегка другой атомный вес (206,0 вместо 207,1). Это и даёт возможность отличить его от свинца иного происхождения.

Процесс превращения урана в свинец и гелий происходит крайне медленно. Если мы возьмём килограмм урана, то через 66 миллионов лет один процент, т. е. всего 10 граммов, урана превратится в 8,65 грамма свинца и 1,35 грамма гелия. В течение следующих 66 миллионов лет один процент оставшегося урана, т. е. 9,9 грамма, превратится в 8,564 грамма свинца и 1,336 грамма гелия. В следующие 66 миллионов лет один процент оставшегося урана, т. е. 9,801 грамма, в свою очередь, превратится в 8,478 грамма свинца и 1,323 грамма гелия, и т. д.

Самым замечательным является то, что скорость этого процесса, т. е. скорость распада атомов радиоактивных веществ, не зависит от тех условий, в которых вещество находится. Соответствующие опыты показали, что как при температурах, близких к абсолютному нулю (-273° по Цельсию), так и при температурах в несколько тысяч градусов распад атомов происходит одинаково быстро. Точно так же на быстроту распада атомов не влияет и повышение давления до десятков тысяч атмосфер.

Таким образом, определив в какой-либо горной породе количество свинца, образовавшегося из урана, мы можем высчитать возраст этой породы, т. е. число лет, протекших с того момента, когда она застыла. Такой способ годится, конечно, только для определения возраста твёрдого вещества, так как в жидком и газообразном состоянии свинец, получающийся от распада урана, может покидать место своего образования.

Этот способ определения возраста дал для более молодых горных пород, образующих верхние слои Земли, результаты, прекрасно согласующиеся с теми оценками их относительного возраста, которые делали геологи, исходя совсем из других соображений. Применяя этот способ к самым древним породам, получили для их возраста числа от 1 500 до 3 500 миллионов лет. Мы можем, следовательно, утверждать, что твёрдая оболочка Земли образовалась около трёх миллиардов лет тому назад.

Изучение явлений радиоактивности ещё только начинается. Но мы уже знаем, какую важную роль эти явления играют в природе. Превращение одних химических элементов в другие, сопровождаемое огромным выделением энергии, является одним из основных мировых процессов. Этот процесс даёт то огромное количество света и тепла, которое испускается Солнцем и звёздами на протяжении многих миллиардов лет. Роль радиоактивных веществ в жизни нашей Земли только ещё начинает выясняться, но не подлежит сомнению, что она очень велика.

Во всяком случае, в явлениях радиоактивности, так широко распространённых в природе, что нет уголка Земли, где бы мы не могли открыть следов распадающихся атомов, уже найдены превосходные часы для измерения прошлого.

Заключение

На предыдущих страницах было рассказано, как в различные эпохи люди подходили к решению вопроса о происхождении Земли. Теперь нам остаётся ещё сделать несколько заключительных замечаний, необходимых для того, чтобы правильно оценить достигнутые результаты и вполне уяснить себе, чего мы можем ожидать от науки в будущем.

Прежде всего, надо отдать себе отчёт в том, какую небольшую часть своей жизни прожило человечество и как молода ещё наука. Это можно сделать при помощи следующего расчёта.

Примем возраст Земли, считая его от образования твёрдой коры, равным трём миллиардам, т. е. 3 000 миллионов лет. Геологические изыскания самыми разнообразными путями убеждают нас в том, что жизнь на Земле зародилась около 300 миллионов лет тому назад. Переходя от самых древних пластов земной коры, где впервые встречаются остатки простейших животных и растений, к более новым, мы видим, как развивалась жизнь, как появились сначала ракушки, потом исполинские раки, рыбы, пресмыкающиеся, птицы, млекопитающие. Наконец, в слоях Земли, возраст которых оценивается примерно в 300 000 лет, впервые встречаются следы существования человека. Понадобилось таким образом всего 300 000 лет, или, иначе говоря – смена примерно 10 000 поколений для того, чтобы первобытный обезьяноподобный человек превратился в современного.

С точки зрения нашей привычной мерки такой промежуток времени представляется очень большим – ведь вся историческая жизнь человечества охватывает лишь несколько тысяч лет. Но в жизни Земли, как прошедшей, так и будущей, время существования людей, время, в течение которого люди занимались наукой, представляет лишь короткое мгновение. Чтобы лучше представить себе положение дела, прибегнем к следующему приёму.

Три миллиарда лет, принятые нами за возраст Земли, назовём «большим годом». Разделим этот «большой год» подобно обычному году на дни, часы, минуты и секунды. В таком случае продолжительность существования жизни составит, как легко рассчитать, 36½ «дней», а время существования человека – всего 52 «минуты» 36 «секунд».

Первые начатки науки мы находим примерно три тысячи лет тому назад. Это значит, что наука существует всего только 31 «секунду»!

Телескоп был впервые направлен на небо 7 января 1610 года и только с этого дня могло начаться действительно успешное изучение окружающего нас мира. Но с тех пор прошло… всего только три «секунды»!

Вот как молода наша наука, если её сравнивать с жизнью Земли!

Посмотрим теперь в другую сторону, в сторону будущего.

Мы имеем все основания думать, что те условия, в которых находится сейчас земной шар и которые делают возможным существование на нём жизни, не изменятся сколько-нибудь значительно в течение нескольких миллиардов лет. За это время не изменится заметно ни количество света и тепла, излучаемого Солнцем, ни расстояние от Земли до Солнца.

Таким образом, человечество, занимавшееся по-настоящему наукой в течение всего лишь нескольких «секунд», имеет перед собой для дальнейшего развития науки целые «годы». Что такое все наши познания, все достижения современной науки по сравнению с тем, что люди узнают за столь огромный промежуток времени. Ведь один «год» заключает 31½ миллиона «секунд». А таких «годов» человечество имеет перед собой, надо думать, ещё очень много.

Прибавим ещё, что быстрота развития науки, так же как и быстрота развития неотделимой от неё техники, стремительно возрастает. Ведь успехи науки и техники, например, за XIX столетие несравненно превосходят все достижения каждого из предыдущих веков. А по мере того как социальный строй улучшается и всё больше и больше людей получают возможность заниматься наукой, её движение вперёд будет делаться всё более и более быстрым.

Итак, будем помнить, что наука ещё очень молода, что она делает только первые шаги в деле познания природы. Перед ней открывается необозримое, ослепительно блестящее будущее. Поэтому, если наука ещё не разрешила во всех подробностях такую сложную задачу, как вопрос о происхождении Земли, то этому не приходится удивляться. Напротив, мы должны гордиться тем, что уже сейчас наука настолько развилась, что смогла по-настоящему приступить к решению этой большой и сложной задачи.

Словарик упоминаемых в тексте имен

АНАКСИМАНДР (ок. 610–547 до нашего летоисчисления) – один из мыслителей древней Греции, уроженец г. Милета. Считал, что первоосновой всего существующего является так называемый апейрон – некое беспредельное, неопределённое, вечное, нерушимое и неисчерпаемое вещество.

АНАКСИМЕН (ок. 588–524 до нашего летоисчисления) – один из мыслителей древней Греции, уроженец г. Милета. В отличие от своего учителя Анаксимандра, считал, что первоосновой всего существующего является воздух, который путём разрежения превращается в огонь, а путём сгущения – в облака, воду, землю и камень.

АРИСТОТЕЛЬ (384–322 до нашего летоисчисления) – греческий учёный, «величайший мыслитель древности» (К. Маркс). Работал во всех областях современного ему знания, многие из которых он сам разработал и развил, построив из разрозненных, отрывочных сведений стройные научные системы.

АРХИМЕД (287–212 до нашего летоисчисления) – величайший математик и физик древности; родился в г. Сиракузы, при защите которого, во время нападения римлян на город, погиб. Ему принадлежит ряд открытий, в том числе основного закона гидростатики: погружённое в жидкость тело теряет в весе столько, сколько весит вытесненная им жидкость (закон Архимеда).

БЕЛОПОЛЬСКИЙ, Аристарх Аполлонович (1854–1934) – выдающийся русский астроном, член Академии Наук СССР.

БЕРНУЛЛИ, Иоганн (1667–1748) и Яков (1654–1705) – братья, знаменитые математики, жившие и работавшие в Базеле (Швейцария). Много сделали для разработки идей важнейшей отрасли математики – анализа бесконечно-малых и его приложений к изучению явлений природы.

ГАЛЛЕЙ, Эдмунд (1656–1724) – английский астроном. Особенно прославился исследованиями движения комет.

ГИППАРХ – греческий астроном, живший со 2-м веке до нашего летоисчисления. Его работы, развитые и завершённые Птолемеем, оказали большое влияние на развитие астрономии.

ГЮЙГЕНС, Христиан (1629–1695) – голландский математик, физик и астроном. Известен работами по механике и оптике (создал волновую теорию света), а также многочисленными изобретениями (часы с маятником). Значительно усовершенствовал телескоп, что ему дало возможность сделать много открытий в астрономии (кольцо и спутник Сатурна, туманность Ориона и др.).

ДАРВИН, Джордж Гоуард (1845–1912) – английский астроном и геофизик, сын великого естествоиспытателя Чарльза Дарвина. Главнейшие его работы посвящены теории приливов.

ДЕКАРТ, Рене (1596–1650) – французский философ, математик и физик. По-латински назывался Картезием, поэтому его сторонников называют картезианцами. Является одним из создателей аналитической геометрии. Созданной им теорией вихрей пытался объяснить происхождение небесных тел.

ДЖЕФРЕЙС, Гарольд (род. 1881) – английский геофизик, опубликовавший много интересных работ по вопросам космогонии.

ДЖИНС, Джемс Хопвуд (род. 1877) – английский физик и астроном. Известен своими работами по космогонии и теории внутреннего строения звёзд. Предложенная им теория происхождения планет одно время считалась наилучшей.

КАНТ, Иммануил (1724–1804) – немецкий философ-идеалист. В ранний период своей деятельности занимался вопросами естествознания. Выдвинул смелую для того времени мысль о возможности объяснить образование и развитие солнечной системы законами механики.

КЕПЛЕР, Иоганн (1571–1630) – немецкий астроном. Открытые им законы движения планет явились основой современной теоретической астрономии.

КОПЕРНИК, Николай (1473–1543) – польский астроном. Обосновал теорию движения Земли вокруг Солнца и вращения её вокруг своей оси, объяснив, тем самым, смену времён года, видимые движения планет и видимое суточное вращение небесного свода. Эта теория, известная под названием гелиоцентрической системы мира (гелиос – солнце), рассматривающая Солнце, как центр, вокруг которого вращаются планеты, вызвала переворот в науке и мировоззрении людей. Она опровергла учение Птолемея (поддерживавшееся церковью) о том, что центром Вселенной является неподвижная Земля.

КЮРИ (Склодовская), Мария (1867–1934) – выдающийся физик, по происхождению полька жена крупнейшего французского физика Пьера Кюри (1859–1906), совместно с которым открыла радий (1898).

ЛАПЛАС, Пьер Симон (1749–1827) – знаменитый французский математик, астроном и физик, оказавший большое влияние на развитие небесной механики, математической физики и теории вероятностей. Большую роль в развитии взглядов на происхождение и строение солнечной системы сыграла его гипотеза о происхождении последней из первоначальной туманности.

ЛЕЙБНИЦ, Готфрид Вильгельм (1646–1716) – немецкий философ– идеалист и математик. Наряду с Ньютоном и независимо от него открыл дифференциальное и интегральное исчисления, являющиеся важнейшим математическим оружием исследования природы.

ЛЯПУНОВ, Александр Михайлович (1857–1918) – выдающийся русский математик, академик. Его основные работы относятся к важнейшим вопросам естествознания – устойчивости движения и теории фигур равновесия жидкости.

НЬЮТОН, Исаак (1642–1727) – великий английский физик и математик. Основатель механики, основные законы которой названы его именем. Открыл закон всемирного тяготения, т. е. взаимного притяжения всех тел природы, в том числе и небесных. Это открытие дало возможность объяснить движения небесных тел, явления приливов и отливов, на нём основана современная астрономия.

ПИФАГОР (ок. 571–497 до нашего летоисчисления) – древнегреческий философ-идеалист и математик, считавший, что в основе мира лежит число. Его сторонники назывались пифагорейцами.

ПТОЛЕМЕЙ, Клавий (ок. 100–178) – греческий астроном. Автор сочинения «Альмагест» или «Великое построение», в котором содержится сводка астрономических знаний того времени и обоснование геоцентрической системы мира, согласно которой Земля (по– греч. – ге) неподвижна и находится в центре мироздания.

РОШ, Эдуард-Альберт (1820–1883) – французский астроном, давший математическую обработку гипотезы Лапласа.

ФАЛЕС (Милетский) (конец 7 – начало 6 века до нашего летоисчисления) – один из мыслителей древней Греции, уроженец г. Милета. Родоначальник древнегреческой материалистической философии. Считал, что вода есть начало всего. Из неё возникла вся природа и в неё всё, в конце концов, переходит.

ФЕСЕНКОВ, Василий Григорьевич (род. 1889) – известный советский астроном, член Академии Наук СССР.

ЦЕЛЬСИЙ, Андерс (1701–1744) – шведский астроном. Широкую известность приобрело предложенное им деление шкалы термометра на 100 градусов.

ШМИДТ, Отто Юльевич (род. 1891) – советский математик, известный полярный исследователь, член Академии Наук СССР. Герой Советского Союза.

ЭЙНШТЕЙН, Альберт (род. 1879) – выдающийся современный физик. Работал в Германии, которую покинул и вышел из германского подданства в 1933 г. в знак протеста против фашистского террора. Создал теорию относительности, совершенно изменившую представления физики о пространстве, времени и тяготении.


    Ваша оценка произведения:

Популярные книги за неделю