355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Лев Мухин » В нашей галактике » Текст книги (страница 3)
В нашей галактике
  • Текст добавлен: 10 октября 2016, 05:12

Текст книги "В нашей галактике"


Автор книги: Лев Мухин



сообщить о нарушении

Текущая страница: 3 (всего у книги 13 страниц)

Но гипотезы гипотезами, а Солнце упрямо светит каждый день в течение многих миллиардов лет, светит, давая жизнь Земле, светит, определяя климат планет и само их существование. И в общем-то у нас нет сейчас никаких сомнений в том, что желтый карлик питается энергией термоядерного синтеза. Его вкусы постоянны, и он не балует себя разнообразием в пище. Вопрос в том, на какое время хватит ему этой пищи. Ведь в мире нет ничего вечного, и когда-нибудь он начнет испытывать водородный голод, ведь водород-то все время превращается в гелий. Что же тогда случится с нашей звездой?

Эта тема ничуть не менее интересна, чем таинство рождения нашего светила. Но сначала о его внешнем облике.


Облик Солнца

До настоящего момента мы говорили главным образом о том, что происходит в недрах Солнца. Но с Земли-то можно наблюдать и наружные слои звезды, а эти наблюдения также принесли немало загадок и сюрпризов.

Итак, наружная часть Солнца, которая видна с Земли, называется фотосферой. Когда мы наблюдаем Солнце, то видим, что в центре оно ярче, а по краям заметно темнее. Это и понятно. Мы ведь наблюдаем диск Солнца. В центре лучи света идут с больших глубин, а по краям с меньших, температура которых пониже.

Фотосфера – чрезвычайно разреженный газ с плотностью, в сотни тысяч раз меньшей, чем плотность земной атмосферы у ее поверхности. Температура фотосферы порядка 6 тысяч градусов, и, конечно, это в тысячи раз меньше, чем в центре Солнца.

Под фотосферой расположена мощная зона конвекции глубиной во многие тысячи километров. Процессы, происходящие в этой зоне, вызывают ряд удивительных явлений на «поверхности» Солнца, хотя точности ради мы должны отметить, что, конечно же, никакой выраженной поверхности Солнце не имеет.

Так вот, видимая поверхность Солнца напоминает кипящую рисовую кашу. Иными словами, она имеет ячеистую или гранулированную структуру. Астрономы много раз фотографировали эти структуры, следствие кипения наружных слоев, и назвали их гранулами.

Что такое гранула? Это ячейка размером около тысячи километров и температурой градусов на 300 выше, чем средняя температура фотосферы, и поэтому на фотографии она видна как светлое пятно. Гранула – попросту облако газа, поднимающееся из-за конвекции из более горячих, нижних слоев наверх. Вся фотосфера покрыта светлыми гранулами, а между ними – темные участки: там более холодный газ опускается вниз. «Живут» гранулы недолго – около пяти минут. Почему именно пять минут? Этот вопрос долго не давал покоя теоретикам.

Оказалось, что наша звезда, а вернее, ее подфотосферная конвективная зона выносит наверх, кроме всего прочего, значительное количество энергии в виде акустических – звуковых – волн. Солнце непрерывно работает еще как огромный оргáн. Сложное взаимодействие звуковых волн и обеспечивает пятиминутную грануляцию фотосферы. Их роль на этом не ограничивается. Вдобавок ко всему они еще греют и хромосферу, которая расположена над фотосферой, и корону нашего светила.


О короне позже. Сначала о знаменитых пятнах на Солнце. Особенно крупные пятна людям удавалось заметить на поверхности Солнца еще до изобретения телескопа. Но, поскольку у Аристотеля о пятнах на Солнце ничего не говорилось, церковь относилась к этим сообщениям как к опасной крамоле. С появлением телескопа в начале XVII века церкви стало трудно спорить с очевидными фактами.

Первое публичное сообщение о пятнах было сделано в 1611 году И. Фабрициусом. Пятна наблюдал и Г. Галилей.

Интересно, что одна из первых публикаций о пятнах была сделана иезуитом А. Шейнером из Ингольштадта. Но чтобы сохранить догмы Аристотеля в неприкосновенности, он заявил, что пятна – маленькие, темные спутники Солнца.

Еще в XVIII веке считалось, что пятна – вершины гор, возвышающиеся над морем огня. Великий астроном В. Гершель полагал, что Солнце имеет темную твердую поверхность с умеренной температурой. Более того, он считал, что на этой поверхности обитают живые существа. Уровень развития физики настолько отставал тогда от достижений астрономии, что идея о темном теле, ядре Солнца, была жива почти в течение всего XIX века.

Солнечные пятна дали очень много астрономам. Они, например, помогли выяснить тот факт, что Солнце вращается. Правда, вращается оно довольно медленно. Скорость на экваторе всего 2 километра в секунду. Интенсивное изучение пятен началось в первой половине XIX века усилиями отнюдь не профессионального астронома, а любителя, аптекаря из Дессау И. Швабе. И если сегодня никто не знает о качестве лекарств, которые он приготовлял по ночам (днем у него не было времени на занятия фармакологией), то Швабе обессмертил свое имя тем, что открыл одиннадцатилетний цикл появлений пятен на Солнце, и почти сразу же шотландец Д. Ламонт, К. Себайн из Англии и Р. Вольф в Берне установили, что магнитные явления на Земле, в частности магнитные бури, следуют довольно точно за изменением пятен на Солнце. Более того, появление отдельных больших пятен может вызывать магнитные бури и полярные сияния.

Пятна на Солнце огромны. Размеры некоторых из них превышают размеры земного шара. Они теснятся к экватору, избегая высоких широт Солнца. Замечательно то, что пятна нередко располагаются симметрично относительно солнечного экватора. Кроме того, их положение зависит от солнечной активности. Если построить диаграмму зависимости широты пятен от времени, то получаются фигуры, напоминающие бабочек. По имени астронома, изучавшего солнечные пятна, эти фигуры получили название бабочек Д. Маундера.

И все-таки, хотя пятна на Солнце наблюдать легче всего, даже сегодня трудно понять, что это такое. Ясно, что они темные, и значит, их температура ниже, чем температура окружающего газа. Ниже почти на две тысячи градусов. Сейчас стало понятным, что пятна связаны со сложными магнитными явлениями на Солнце. Но законченной теории пятен нет.

Внутри Солнца движется и вещество, и магнитные поля. Эти движения очень сложны, и одна из основных задач физики Солнца состоит в том, чтобы разобраться, каким же образом движущееся вещество во внутренних слоях, взаимодействуя с магнитными полями с периодом в 22 года, меняет полярность магнитного поля Солнца (северный полюс становится южным). Есть и более непонятные вещи. Анализируя исторические хроники, ученые установили, что с 1645 по 1715 год циклов солнечной активности вообще не было. А с 1672 по 1704 год на северном полушарии Солнца и вовсе не было пятен. Солнце было чистым, таким, как и положено быть царственному светилу. Этот факт не имеет объяснения и по сегодняшний день.

Очень интересно, что как раз тогда в Европе, да и не только в Европе, а во всем северном полушарии Земли стояла очень холодная погода, и этот период времени получил название «малого ледникового периода». Связаны ли были явления на Солнце с изменением (хоть и кратковременным) климата Земли, тоже неясно.

Советский ученый А. Чижевский провел огромную работу, пытаясь установить зависимость между солнечной активностью и частотой различных эпидемий на Земле. Он обнаружил удивительные закономерности. Вспышки различных болезней очень точно «отслеживают» изменения в активности Солнца. Труды Чижевского не сразу получили признание, хотя и до него ученые замечали, что активность Солнца связана с различными явлениями на Земле. Свою замечательную книгу «Земное эхо солнечных бурь» он написал на французском языке и впервые издал в Париже. Интересно, что одним из первых смелые идеи Чижевского оценил К. Циолковский. Следует сказать о том, что Чижевский не считал солнечную активность прямой причиной вспышек эпидемий и заболеваний. Он полагал, что деятельность Солнца «лишь способствует» развитию болезней на Земле.

Одна из глав его книги называется очень образно: «Спазмы Земли в объятиях Солнца». В этой главе он приводит перечень явлений в органическом мире Земли, связанных с изменениями в солнечной активности. Интересно, что еще В. Гершель отметил в 1801 году зависимость урожая зерновых от числа солнечных пятен. Поскольку хлеб все-таки вещь более нужная, чем вино, то лишь в 1878 году удалось выяснить, что количество и качество производимого в Германии вина тоже таинственным образом связано с пятнами на Солнце. Да что там вино! Чижевскому удалось установить, что от активности Солнца зависит частота несчастных случаев, преступлений, внезапных смертей, эпизоотии и падеж скота и целый ряд других явлений.

Чижевского можно с полным правом считать первым человеком, который перекинул мост между Солнцем и Землей. Его идеи оказались настолько плодотворными, что сейчас возникает новая отрасль науки – гелиобиология. У нас в Советском Союзе различными вопросами гелиобиологии занимаются в Крымской астрофизической обсерватории.

Сегодня, по-видимому, ясно, что люди с больным сердцем сильнее чувствуют изменения, происходящие на Солнце. Число сердечно-сосудистых заболеваний увеличивается с увеличением числа пятен на Солнце. Все это очень и очень интересно, но причин этой зависимости мы пока до конца не знаем. И тем не менее существование солнечно-земных связей можно считать очевидным.


Не только пятна появляются на видимой поверхности нашего светила. Над фотосферой располагается еще более разреженная и еще более горячая область, называемая хромосферой. Если толщина фотосферы составляет всего около 500 километров, то хромосфера простирается на расстояние около 2500 километров. И опять с участием магнитных полей Солнца в хромосфере происходят чудовищные взрывные процессы – вспышки. Они продолжаются так долго, что по земным меркам их даже трудно назвать взрывами. И тем не менее это настоящие взрывы: температура газа в верхней части хромосферы повышается до десяти миллионов градусов.

Взрыв длится от нескольких минут до нескольких часов. Огромные массы вещества выбрасываются из хромосферы Солнца – это изверженные протуберанцы. Трудно представить себе масштаб такого явления. В 1928 году наблюдался протуберанец высотой в 900 тысяч километров.

Взрывные протуберанцы зарождаются вблизи солнечных пятен. Но есть еще и спокойные протуберанцы – огромные «облака», плавающие над хромосферой и соединенные с нею как бы отдельными щупальцами. Эти протуберанцы имеют также немалые размеры – до 600 тысяч километров в длину. О протуберанцах человечеству известно очень давно. В одной из древнерусских летописей, где было описано солнечное затмение 1 мая 1185 года, мы читаем: «…и в солнци учинися яко месяц, из рог его уголь жаров искажаше: страшно бе видети человеком знамение божие».

И снова, зная уже наверняка более тысячи лет явление вспышек на Солнце, сегодняшняя физика не в состоянии до конца объяснить все детали этого процесса. А ведь вспышки представляют интерес не только с точки зрения физики Солнца. Возмущения в ионосфере Земли: полярные сияния, перерывы в коротковолновой связи на Земле – связаны со вспышками. Сейчас многие ученые склоняются к тому, что хромосферные вспышки – сложное взаимодействие магнитных полей.

Много удивительного мы узнали о Солнце даже за такой короткий промежуток времени, как сотня лет. Ведь еще в 1835 году французский философ-позитивист О. Конт писал о небесных телах, что возможно определение их формы, расстояний до них, размеров, но невозможно определить температуру звезды, ее химический состав.

Минуло немногим более ста лет, мы знаем и температуру Солнца, и его химический состав. Более того, знаем температуру его недр, представляем достаточно хорошо происходящие внутри нашей звезды процессы. С каждым годом Солнце все больше приоткрывает завесу своих тайн. И все-таки, мне кажется, я сумел убедить читателя в том, что еще не одно поколение физиков будет испытывать чувство неудовлетворенности из-за невозможности ответить на целый ряд вопросов о свойствах самой близкой к человеку звезды.

Но вернемся к «портрету» нашего желтого карлика. Как всякий истинный властелин (а Солнце – центральная фигура среди всех небесных тел, окружающих его), карлик имеет корону.

Корона хорошо видна невооруженным глазом во время солнечных затмений, и надо сказать, что даже простые фотографии короны производят сильное впечатление. Корона, самая внешняя часть «атмосферы» Солнца, состоит из чрезвычайно разреженного газа, нагретого до двух миллионов градусов.

Сразу же может возникнуть вполне естественный вопрос: почему температура фотосферы ниже температуры хромосферы и короны? Ответ состоит в том, что звуковые волны, голос Солнца, служат источником энергии, который нагревает корону. Именно поэтому во время затмения можно видеть яркий нимб, окружающий нашу звезду. Размеры короны солидны – несколько радиусов Солнца. Физику короны во многом определяют магнитные поля Солнца. Они образуют в короне «дыры» – области с пониженной температурой. Из дыр в короне с огромной скоростью истекает солнечный ветер – потоки заряженных частиц.

Когда-то, на заре своего рождения, Солнце было гораздо более неспокойным, чем сейчас, и существует точка зрения, согласно которой солнечный ветер был очень и очень интенсивным. Сейчас, в период своей зрелости, наше светило успокоилось, но все равно солнечный ветер и сегодня приносит нам уникальные научные данные, например о химическом составе Солнца. Ведь солнечный ветер облучает, скажем, поверхность Луны в течение миллиардов лет. Атомы самых различных элементов, из которых состоит солнечный ветер, а значит, и само Солнце, «вколачиваются» при столкновении в лунный грунт. Поэтому частички лунного грунта «помнят» химическую историю Солнца.

Когда американские космонавты высадились впервые на Луну, они оставили там на время кусочки золотой фольги. Солнечный ветер облучал фольгу, частицы Солнца внедрялись в нее, и потом, когда фольга была доставлена на Землю, ученые сравнили химический состав сегодняшнего солнечного ветра и того, который дул миллиарды лет назад…

Итак, мы получили некоторое представление о том что представляет собой наше Солнце сегодня. Картина, согласитесь, совсем не простая. Загадок и нерешенных вопросов немало: пятна, вспышки, одиннадцатилетний цикл, воздействие на наше здоровье магнитных полей Солнца. Все это «горячие точки» в нынешней физике нашей звезды. И конечно, о Солнце известно далеко не все, но не будь Солнца, физики могли бы лишь строить догадки о процессах, протекающих в других звездах, удаленных от него на огромные расстояния. Нужно отдавать себе отчет в том, что именно изучение Солнца помогло науке разобраться в строении миллиардов солнц нашей Галактики и Вселенной.

Наш рассказ о биографии Солнца был бы неполным и незаконченным, если бы мы с вами не попытались заглянуть в будущее и посмотреть, что же произойдет с нашей звездой в дальнейшем. Давайте попытаемся предсказать судьбу нашей звезды. Состояние современной астрофизики вполне позволяет делать столь смелые шаги.


А что в будущем?

Итак, в течение примерно пяти миллиардов лет живет наше Солнце. А сколько же ему еще осталось? Ведь и Солнце начнет когда-нибудь стареть. Как это будет происходить?

Здесь нам с вами придется оперировать уже законами и понятиями посложнее, чем закон Клайперона, описывающий поведение идеального газа.

Для начала вернемся к протон-протонному циклу. Мы уже говорили о том, что водород в центральных частях Солнца потихонечку выгорает. Сегодняшние оценки говорят, что водородной пищи Солнцу хватит еще на несколько миллиардов лет. В течение всего этого огромного промежутка времени в центре Солнца водород постепенно превращается в гелий. Гелий – нечто вроде золы в огромной ядерной топке Солнца. Только если из обычной печки золу можно убрать, то гелий накапливается, и таким образом у Солнца образуется гелиевое ядро. Процессы слияния ядер водорода в гелий приводят в конце концов к тому, что облегчается выход квантов света – фотонов к поверхности звезды, и поэтому светимость Солнца постепенно увеличивается.

Ядерные реакции по протон-протонному механизму уже не смогут идти в ядре, состоящем из гелия, а будут происходить лишь вокруг ядра, как бы в его оболочке. Гелий, образующийся в оболочке, добавляется к ядру, и его масса увеличивается. Ядро, естественно, начинает сжиматься. Но сжимается оно очень медленно, и энергия сжатия поэтому успевает выходить из него наружу. Температура ядра остается практически постоянной.

И раньше во время нормальной своей работы в центре Солнца плотности газа были велики: более 100 граммов в одном кубическом сантиметре. Газ, который потяжелее воды в сотню с лишним раз! А в процессе сжатия гелиевого ядра с этим газом начинают происходить поразительные вещи.

Я хочу только напомнить читателю, что, объясняя сейчас очень сложные процессы, которые будут происходить в центре Солнца с наступлением его старости, мне приходится сильно упрощать картину. И если до этого все можно было понять, пользуясь известными из школьного курса физики закономерностями, то сейчас в недрах Солнца поведение вещества описывается уже законами квантовой механики.

Почему? Ведь, казалось бы, квантовая механика описывает поведение частиц в микромире. Да, это так, но из-за роста плотности ядра (оно все время сжимается) газ начинает менять свой характер. Плотности уже заведомо превышают величину один килограмм в кубическом сантиметре. Состояние вещества при таких плотностях да еще и при температуре выше десяти миллионов градусов называют вырожденным. Но все-таки почему же квантовая механика?

Да потому, что этот вырожденный газ состоит главным образом из электронов. Конечно, в ядре нашего Солнца есть и ядра атомов. Но они «голые». Поведение ядра Солнца в целом определяется свойствами электронного газа чудовищной плотности. Здесь уже неприменима школьная физика. Здесь «работает» квантовая механика, описывающая поведение «коллектива» электронов. Свойства ядра становятся близкими к свойствам металлов. Ну а это означает, что ядро очень хорошо проводит тепло, имеет высокую теплопроводность. Именно поэтому, хоть ядро и сжимается, температура его практически не изменяется, за счет высокой теплопроводности оно успевает отдать «излишки» тепла наружу.

Итак, ядерные реакции в процессе старения Солнца пойдут вокруг ядра. Но из-за вырожденности ядра, из-за его высокой теплопроводности энергия здесь не запасается, она «накачивается» в оболочку, и наступит время, когда оболочка «разбухнет» от избытка энергии. В ней разовьются очень бурные конвективные процессы, гораздо более мощные, чем в сегодняшнем Солнце. Этот процесс займет немного времени, какие-нибудь миллионы лет.

Нет, не беспокойтесь, ведь мы помним, что все эти катаклизмы начнутся скорее всего через несколько миллиардов лет, так что пока развитию нашей цивилизации со стороны термоядерных реакций на Солнце прямой угрозы нет. Ну а загадывать, что будет с человечеством даже через тысячу лет, даже при спокойном Солнце, дело гораздо более сложное, чем прогнозировать поведение светила через пару миллиардов лет. Ведь поведение человечества нельзя описать точными физическими законами.

Итак, Солнце вновь закипит, да так, что здесь уже и от планет земной группы вряд ли останется что-нибудь, кроме оплавленных камней. Светимость Солнца возрастет при этом чудовищном кипении в тысячу с лишним раз, да еще вдобавок к этому оно начнет раздуваться и станет очень большим. Короче говоря, наш желтый карлик станет красным гигантом.

Размеры этого гиганта огромны. Солнце может «раздуться» до орбит Меркурия или даже Земли. А затем красный гигант сбросит с себя все, кроме того, что находится у него в центре. Это очень интересный процесс, до конца не понятый современной астрофизикой. Почему звезда хочет избавиться от лишней массы? Почему она с колоссальной энергией выбрасывает часть своего «тела» в пространство?

Эти процессы опять связаны с нарушением равновесия. Только за один год Солнце может потерять одну миллионную часть своего веса. Гигант начнет катастрофически худеть. И за каких-нибудь десять-сто тысяч лет от него останется лишь центральная часть – ядро, о котором мы уже с вами говорили. Гигант как бы сбросит все, что оказалось ненужным ему на этой стадии эволюции.

Звездная материя образует около оставшегося ядра так называемую планетарную туманность, которая постепенно исчезнет, рассеется в космическое пространство. Этот своеобразный звездный стриптиз приведет к тому, что рано или поздно на месте Солнца останется только его гелиевое ядро – белый карлик.

Мы уже говорили о свойствах ядра, которое представляет собой вырожденный газ. Возможная дальнейшая судьба белого карлика определяется его массой и температурой. В случае нашего Солнца есть вариант, при котором белый карлик будет просто остывать. Запасы энергии в нем велики, и тепла, пожалуй, хватит на многие сотни миллионов лет.

Но жизни к этому времени на Земле уже не будет. Ведь красный гигант мог занять место до орбиты Земли. Трудно предугадать или предсказать, какие шаги предпримет человечество, зная о грядущих изменениях в нашей звезде. Запас времени есть, он велик, а человечество молодо. Конечно, первое, что приходит в голову, – переселение в другие миры, к другим солнцам и планетам.

Мы поговорим об этом позже, а сейчас о том, что случилось бы с Солнцем, будь оно чуть потяжелее. Теория утверждает, что белые карлики с массой чуть меньше полутора масс Солнца неустойчивы. В этом случае давление вырожденного газа не может справиться с силами гравитации и начинается катастрофическое сжатие карлика. Он сжимается в точку, превращаясь в черную дыру – гравитационную могилу.

Нашему же Солнцу уготована иная судьба. Белый карлик будет остывать в течение миллионов лет и превратится в «черный карлик» – холодную маленькую звезду размером с земной шар, которую из какой-нибудь другой планетной системы и наблюдать-то невозможно.

И белый и черный карлик полностью оправдывает свое название: это действительно карликовые звезды. Но пока на нашем небе царствует желтый карлик – король и властелин всех планет – наше Солнце. После бурного детства настали сравнительно спокойные времена, и многим тысячам поколений людей будет дано видеть и наблюдать его ежедневно, а загадки Солнца, о которых мы говорили, будут еще долгое время находиться в числе самых «горячих» точек науки.


    Ваша оценка произведения:

Популярные книги за неделю