Текст книги "Загадки звездных островов. Книга 3"
Автор книги: Леонид Мартынов
Соавторы: Светлана Савицкая,Валерий Родиков,Валерий Рюмин,Георгий Береговой,Иван Слепнев,Алексей Леонов,Константин Феоктистов,Герман Титов,Виктор Савиных
Жанры:
Публицистика
,сообщить о нарушении
Текущая страница: 18 (всего у книги 20 страниц)
– Но почему Марс окрашен в такой мрачный багровый цвет? Было предположение, что его поверхность покрывают красные мхи, которые встречаются и на Земле в высокогорных областях.
– Увы, и эта гипотеза развеялась, как и все остальные, предполагающие жизнь на этой планете. А красный цвет – это результат окисления марсианской почвы. Дело в том, что Марс не имеет озонового экрана, как Земля, защищающего планету от ультрафиолетового излучения Солнца. И жесткая солнечная радиация разлагает углекислоту и водяные пары. При этом выделяется атомарный кислород – он интенсивно окисляет породы, среди которых много железа и других элементов, имеющих окислы характерного красного цвета. Так что, глядя на Марс, мы можем представить, какой, возможно, стала бы Земля, не окажись она надежно укутанной озоновым «одеялом».
– И все же на главный вопрос: как зародилась жизнь на Земле и как она влияла на формирование планеты, ответа вы не получили?
– Пока нет. Но уже знаем, как его можно получить. И в этом нам тоже поможет Марс.
ПЕРВАЯ СТАНЦИЯ НА ДОЛГОМ ПУТИ
Почему органические вещества, появившиеся на Земле чуть ли не одновременно с возникновением планеты, ждали миллиарды лет, чтобы воплотиться в живые организмы? Какие «контакты» происходили все это время между живой и неживой природой? Как, по каким законам развивалась биосфера Земли?
Все эти вопросы чрезвычайно важны для нас. Особенно последний. До сих пор мы еще не научились мирно сосуществовать со средой обитания. И вся наша цивилизация – это насилие над природой. В природе ничто не пропадает даром, человечество не проходит через свою историю, волоча за собой шлейф производственных отходов, многие из которых чужды нашей среде обитания, и она не выработала средств для их нейтрализации. В результате мы загрязняем почву, загрязняем воду, загрязняем атмосферу. В некоторых районах эти процессы стали уже необратимыми – достаточно вспомнить сделавшиеся мертвыми Великие озера в США или Рейн, настолько насыщенный отходами производства, что в ряде мест в его воде можно проявлять фотоснимки.
Конечно, мы знаем пути защиты окружающей среды. Это безотходные производства, нейтрализация вредных промышленных и транспортных выбросов, уменьшение количества выделяемого в атмосферу тепла. Но все это – пассивные «меры. И еще неизвестно, насколько они окажутся эффективными там, где гибельные для природы процессы зашли слишком далеко. А человечество на современном этапе научно-технического прогресса уже сталкивается с проблемой не только защиты биосферы, но и управления ею – «подталкивания» ее развития в нужном нам направлении. Для этого и необходимо знать те законы, по которым она развивалась миллиарды лет назад. В те эпохи, которые давно минули на нашей планете, но которые проходит сейчас Марс. Правда, на нем не удалось пока обнаружить никаких форм жизни. Но так ли уж трудно перенести с Земли на Марс, скажем, бактерии или другие одноклеточные организмы?
– В этом и заключается идея покойного Кирилла Павловича Флоренского, основателя нашей лаборатории: создать на Марсе искусственную биосферу, чтобы выявить взаимоотношения живой и неживой природы, – говорил Руслан Олегович. – При всей кажущейся фантастичности этой идеи она глубоко продумана, подкреплена точными вычислениями и осуществима с помощью имеющихся в нашем распоряжении технических средств.
– Но примет ли Марс чужую жизнь? Не отторгнет ли он ее, как организм в результате белковой несовместимости отторгает чужеродную ткань?
– Думаю, этого не случится. Тем более что на Марсе есть все условия для существования.
– Ничего себе условия: минус шестьдесят на поверхности. Такая температура, прямо скажем, не воодушевляет…
– И тем не менее на Земле в таких условиях живут бактерии. Пример тому – Антарктида. Так что и на Марсе они вполне могли бы прижиться и начать развиваться по законам эволюции – приспосабливаясь к местной среде обитания и одновременно изменяя эту среду в нужном им направлении. Тем более что воды там достаточно – немного в атмосфере, побольше на поверхности и очень много в почве. Правда, воды на Марсе в десять раз меньше, нем на Земле, но ведь и масса его в десять раз меньше земной…
– Конечно, идея Флоренского заманчива. Но есть в ней моральный аспект, через который трудно перешагнуть. Имеем ли мы право вмешиваться в развитие Мapca, населять его земными формами жизни, если вдруг где-то на этой планете есть хвои живые организмы?
– Разумеется, нет. И поэтому поиск жизни на Марсе необходимо организовать в широких масштабах, разработав для этого серию экспериментов, которые дали бы однозначные ответы на поставленные вопросы. И только если окажется, что Марс полностью мертв, можно посылать туда земную жизнь – скажем, бактерий, специально «натренированных» на сходные условия обитания. А может быть, и более сложные организмы… И нам не понадобятся миллиарды лет, чтобы познать законы развития биосферы. Современный уровень наших знаний, возможности вычислительной техники позволят экстраполировать на будущее подточенные закономерности, увязывая в единый комплекс все многочисленные аспекты развития планеты и делая безошибочные выводы…
Но Марс послужит человечеству не только как исследо-вательская лаборатория, где будут проводиться эксперименты, жизненно важные для Земли. Открытые на нем законы развития позволят направить и эволюцию марсианской биосферы в нужном нам направлении. «Земля – колыбель человечества, – говорил К. Э. Циолковский. – Но нельзя же вечно жить в колыбели». И Марс – первая станция на пути человечества в дальний космос.
Альберт Валентинов, журналист
Протон: шансы на бессмертие?
На школьной скамье мы узнаем о протоках и электронах – электрически заряженных частицах атома. Протон – как бы его сердцевина, простейшее атомное ядро. Природа наделила протон устойчивостью, и благодаря этому счастливому обстоятельству существуем мы с вами и окружающий мир. Протоны – своего рода кирпичи материального мира, из которых построена вся природа, как живая, так и неживая. Только в человеческом теле их 10г9. Журналисты любят записывать числа во всем их великолепии, так для этого числа не хватило бы и строчки в газетном столбце, ибо пришлось напечатать подряд 29 нулей. Число это огромное, даже название для него. не. придумано. Представление о нем дает такое сравнение: размер нашей Вселенной больше толщины однокопеечной монеты в 1029 раз.
«А вечна ли эта частица?» Этот вопрос интересует ученых, особенно в последнее, время. И вовсе не из-за боязни «конца света». Наоборот, они даже, заинтересованы найти следы ее распада. И вот почему.
Еще сравнительно недавно, в 60-х годах, в. физике элементарных частиц царило нечто вроде хаоса и беспорядка. Частиц, которых продолжали называть элементарными стало много – около 200, а вот общих принципов, которые легли бы в основу их классификации не было. И это обстоятельство лишало физиков душевного равновесия. Примерно так же чувствовали себя химики в прошлом веке, пока великий Менделеев не открыл периодический закон, указавший место, отведенное природой каждому химическому элементу. Известно, какое глобальное значение имел этот закон для дальнейшего развития химии и других, сопредельных наук.
Такой же порядок мечтали и мечтают навести у себя физики – выявить единство сил природы, описать иx едиными уравнениями. Это стремление имеет давнюю историю. Еще Ньютон показал, что силы, земного тяготения и управляющие движением планет описываются одними уравнениями. Максвелл воедино связал своими замечательными уравнениями электрические и магнитные силы. Затем многие выдающиеся исследователи, хотели объединить гравитацию, я электромагнитные силы. Полагали, что какая-нибудь гениальная до безумности идея станет ключом к единой теории поля. На увы!.. А тут еще физикам стали известны, два новых вида сил. – слабое и сильное взаимодействия. Если гравитация и электромагнитные силы дальнодействующие, то сильное и слабое взаимодействия проявляются на микроскопических расстояниях, го-раз до меньших, чем размеры атомного ядра. Казалось, задача еще более усложнилась.
Но вот в последнее десятилетие незаметно для нас – нефизиков – в этой науке происходит бесшумная революция. Если сравнить дорогу исканий с длинным темным туннелем, то теперь в его конце забрезжил свет. Появилась надежда создать единую теорию всех четырех сил природы: гравитационных, электромагнитных, сильного и слабого взаимодействий. Ключом к решению проблемы стала квантовая теория поля, в которой в последнее десятилетие произошел большой прогресс.
Уже теоретически и экспериментально подтверждено единство электромагнитного и слабого взаимодействий, которое назвали электрослабым. Создана модель, как называют физики, большого объединения, воедино связывающего сильное, слабое и электромагнитное взаимодействия. Есть наметки, как распространить объединение на гравитационные силы.
Но в рамках теории большого объединения основной строительный материал нашего мира – протон – нестабилен. Вот почему физики так настойчиво ищут следы его распада. Это, пожалуй, единственная пока возможность экспериментально подтвердить теорию большого объединения. «Экспериментом века» назвали ученые начавшийся в 80-е годы поиск распада протона.
Что можно было предварительно сказать о времени жизни протона? Вся наша предыстория говорит о том, что протон – стабильная частица. Во всяком случае, ее жизнь на много порядков превышает 1015. или иначе миллион миллиардов лет. А это громадный возраст, временной интервал даже по сравнению с возрастом Вселенной, которая, по современным воззрениям, существует около десяти миллиардов лет. Если бы время жизни протона было бы меньше 1015 лет, то из 1029 протонов нашего тела за один год их распалось бы более ста тысяч миллиардов, или иначе 1014. Никакой потери веса мы бы не ощутили, но вот доза радиации от такого распада была бы для человека, да и для любых сколь-нибудь крупных животных смертельна.
По теории же большого объединения время распада протона должно быть где-то в области 1030—1033 лет. Срок это огромный, практически бесконечный по сравнению с тем, сколько уже прожила наша Вселенная с момента своего рождения – Большого взрыва. Именно тогда, как считают ученые, и родились протоны. Но протон не обязательно живет столь долго. Это среднее время его существования. А вот сколько проживет каждый конкретный протон, сказать нельзя. Если он все-таки распадется, как полагают ученые, то время его жизни случайно. Таковы законы микромира. Протон может погибнуть гораздо раньше своих компаньонов, а может и пережить их всех.
Идея «эксперимента века» проста. Надо взять огромную массу, в принципе, любого вещества и наблюдать длительное время, появятся ли в ней частицы, рожденные при распаде протона. Чем больше масса вещества, тем больше в ней протонов, тем больше вероятность того, что хотя бы несколько из них погибнут. Протонов должно быть очень много – в сотни раз больше ожидаемого времени распада. Нужное количество протонов выражается числом более чем с 34–35 нулями, а для этого масса вещества, называемая детектором, должна быть более десяти тысяч тонн. (Современные детекторы имеют пока меньшую массу.) И из этого бесконечного числа «целых» протонов за год непрерывного наблюдения могут распасться несколько частиц, продукты распада которых надо уловить специальными счетчиками. Задача потруднее, чем найти без применения технических средств иголку в сене.
Поиск погибнувших протонов осложняется еще и тем, что в этой огромной массе вещества из-за радиоактивных примесей и космического фона будут распадаться и другие частицы, и эти события могут быть приняты за распад протонов. Чтобы преградить путь космическому фону, огромные детекторы прячут под большой толщей грунта или воды.
Но даже большая глубина не задержит нейтрино, рожденных космическими лучами в земной атмосфере. А они могут имитировать распад протона и практически не поглощаются всей толщей земного шара. Представляют опасность и мюоны – проникая глубоко под землю, они могут рождать в детекторе частицы с теми же энергиями, что и распавшиеся протоны. Чтобы отличить ложный след от истинного распада, нужны тонкие ухищрения. В поиски распавшихся протонов включились крупные научные коллективы. Одно из первых приближений для времени распада было получено на Баксанском нейтринном сцинцилляционном телескопе. Следов распада обнаружено не было, поэтому, исходя из характеристик прибора, был сделан вывод, что время распада должно быть более 1,5х Х1030 лет. Первая установка, специализированная для изучения проблемы, была создана индийскими и японскими специалистами в Индии в золотоносной шахте на трехкилометровой глубине. Замеренное здесь время распада составило около 1031 лет. Впрочем, этому результату полностью доверять нельзя – в последнее время был найден еще один источник фона, связанный с мюонами, который мог бы дать такой же результат. Получены результаты и на установках в США, Японии, однако пока нельзя достоверно сказать, что распад протона обнаружен.
Планируется строительство детекторов большой массы. Веществом обычно служит очищенная вода, а подсчет числа должны вести счетчики, регистрирующие излучение Черенкова – Вавилова.
Американские физики обсуждают проект детектора с массой 40–60 тысяч тонн. Напомню, что масса столичной гостиницы «Москва» (кстати, определенная с помощью мюонов) равна примерно 45 тысячам тонн.
Новое поколение детекторов, возможно, в конце концов обнаружит распавшийся протон. А если нет, значит, время его жизни превышает 1033 лет. Дальнейшие работы в этом направлении и сложны, и дороги. Может оказаться, что создать установку для измерения времени распада порядка 1034 лет легче на Луне, чем на Земле. Ведь на нашем спутнике нет потока всепроникающих атмосферных нейтрино, мешающих опытам.
Обнаружат ли ученые распад протона, покажет будущее. Если нет, значит, время его жизни превышает наши технические возможности измерения. Тогда физики придумают другие эксперименты, косвенно подтверждающие теорию. На пути к большому объединению ожидаются и большие открытия. Физики настроены оптимистично. Они уверены, что будущие находки лишь подтвердят достигнутое. И кто знает, может, в недалеком будущем удастся проникнуть в святая святых природы – познать первооснову всех ее сил. Создаваемая теория великого, без преувеличения, объединения всех физических взаимодействий, как сказал вице-президент АН СССР академик Анатолий Логунов, «может произвести переворот во всей практической деятельности человека. Ведь с помощью одних сил можно будет управлять другими, превосходящими их во много раз».
«Звездные войны» в планах Пентагона
Как-то первому космонавту планеты попалась книга американского летчика Фрэнка Эвереста «Человек, который летал быстрее всех». Интересны впечатления Гагарина от прочитанного:
«Все шло хорошо до тринадцатой главы, названной «Покорение космоса». Как только я прочел эту главу, меня охватило чувство неприязни. Эверест писал: «Я твердо убежден в том, что тот, кто первым покорит космос, будет господствовать над землей. Не обязательно судьбы людей будет решать сильная и большая страна Даже небольшая и сравнительно слабая страна с помощью космического корабля, вооруженного управляемыми снарядами и атомными зарядами, может добиться мирового господства. Эта страна, имея в своих руках космический корабль и ядерное оружие, может совершить нападение на противника из космоса, не подвергаясь в то же время ответному удару. Победа ей будет обеспечена».
Нет, не для порабощения других стран и народов стремятся советские люди в космос! Титанические усилия нашего правительства, всего советского народа направлены не на подготовку войны, а на сохранение мира».
Эти слова Гагарина звучат чрезвычайно актуально и сегодня, когда в Вашингтоне вынашивают безумные планы «звездных войн».
…В космической выси над Землей парят гигантские станции – летающие командные пункты. К ним то и дело причаливают космические корабли многоразового использования типа «Шаттл», доставляющие с Земли «космических воителей», оружие и продовольствие. Отсюда же на патрулирование стартуют «крейсерские» пилотируемые корабли, оснащенные лазерным оружием. В глубинах космоса затаились автоматические «сторожевые» военные спутники, держащие под прицелом спутники противника, а так же объекты на Земле, вплоть до отдельного военного корабля или танка, и готовые по первому же сигналу испепелить их мощным лазерным лучом.
Что это? Отрывок из фантастического рассказа о «звездных войнах»? Такого рода произведения распространены на Западе. Но в данном случае таким, по свидетельству американского еженедельника «Ю. С. ньюс энд Уорлд рапорт», представляется космос будущего пентагоновской военщине, лихорадочно осуществляющей планы милитаризации космоса. Особые надежды Пентагон связывает с космической системой «Спейс Шаттл».
Работы по созданию системы «Спейс Шаттл» («космический челнок») были начаты в США в 1972 году. В ее основу положена концепция космического летательного аппарата многоразового использования, предназначенного для вывода на околоземные орбиты искусственных спутников и других объектов. Космический летательный аппарат «Шаттл» представляет собой связку из пилотируемой орбитальной ступени, двух твердотопливных ракетных ускорителей и большого топливного бака, расположенного между ними.
Стартует «Шаттл» вертикально с помощью двух твердотопливных ускорителей (диаметр каждого 3,7 метра), а также жидкостных ракетных двигателей орбитальной ступени, которые питаются топливом (жидкий водород и жидкий кислород) от большого топливного бака. Твердотопливные ускорители работают только на начальном участке траектории. Время их работы чуть больше двух минут. На высоте 70–90 километров ускорители отделяются, спускаются на парашютах на воду, в океан, и буксируются к берегу, с тем, чтобы после восстановительного ремонта и зарядки топливом использовать их вновь. При выходе на орбиту топливный бак (диаметром 8,5 метра и длиной 47 метров) сбрасывается и сгорает в плотных слоях атмосферы.
Самый сложный элемент комплекса – орбитальная ступень. Она напоминает ракетный самолет с треугольным крылом. Помимо двигателей, в ней размещены кабина экипажа и грузовой отсек. Орбитальная ступень осуществляет сход с орбиты, как обычный космический аппарат, и производит посадку без тяги, только за счет подъемной силы стреловидного крыла малого удлинения. Крыло позволяет орбитальной ступени совершать некоторый маневр как по дальности, так и по курсу и в конечном счете производить посадку на специальную бетонную полосу. Посадочная скорость ступени при этом намного выше, чем у любого истребителя, – около 350 километров в час. Корпус орбитальной ступени должен выдерживать температуру 1600 °C. Теплозащитное покрытие состоит из 30 922 силикатных плиток, приклеенных к фюзеляжу и плотно подогнанных друг к другу.
Пока космические запуски были редкими, вопрос о стоимости ракет-носителей особого внимания не привлекал. Но по мере освоения космоса на него стали обращать все большее внимание. Стоимость ракеты-носителя в общей стоимости запуска космического аппарата бывает разная. Если носитель серийный, а космический аппарат, который он запускает, уникальный – около 10 процентов от общей стоимости запуска. Если космический аппарат серийный, а носитель уникальный – до 40 процентов и более. Высокая стоимость космической транспортировки объясняется тем, что ракета-носитель применяется один-единственный раз. Спутники и космические станции работают на орбите или в межпланетном пространстве, принося определенный научный или хозяйственный результат, а ступени ракеты, имеющие сложную конструкцию и дорогое оборудование, сгорают в плотных слоях атмосферы. Естественно, возник вопрос о снижении стоимости космических запусков за счет повторного запуска ракет-носителей.
Первые ракеты-носители создавались не как принципиально новые машины, а с использованием конструкций боевых баллистических ракет, которые проектировались как невозвращаемые машины. Но уже в 40-е годы делались отдельные попытки спасения отработанных ступеней ракеты с помощью парашютов. Несмотря на отдельные удачные попытки (в случае небольших ракет), эта задача не была решена. Для приземления с малой скоростью (чтобы не повредить хрупкую конструкцию ракеты) потребовался бы огромный парашют, масса которого составляет 6–8 процентов от массы конструкции. А это бы привело к значительному снижению полезного груза или дальности полета ракеты. Предлагалось много других способов возвращения ступеней космических аппаратов для повторного использования, в том числе с помощью крыльев, но они оказались нежизненными в основном по экономическим соображениям. Ракетные ступени для повторного использования должны быть подвергнуты восстановительному ремонту, стоимость которого будет соизмерима со стоимостью новой ракеты, особенно если она серийная. Может оказаться, что после ремонта надежность ступени будет ниже, чем у новой, и следовательно, увеличится риск при запуске дорогостоящего космического аппарата. Экономические оценки показывают, что спасать обычные ракетные ступени пока экономически нецелесообразно. Как считают специалисты, выход из положения состоит в создании космических летательных аппаратов многократного применения. Существует много проектов таких систем. Один из них – космический самолет. Это крылатая машина, которая, подобно воздушному лайнеру, взлетала бы с космодрома и, доставив полезный груз на орбиту (спутник или космический корабль), возвращалась бы на Землю. Но создать такой самолет пока трудно, главным образом из-за необходимого соотношения масс полезного груза и полной массы машины.
Одним из первых был такой вариант: самолет с воздушно-реактивным двигателем поднимает в воздух и разгоняет до большой скорости орбитальную ступень, которая так же, как и самолет-разгонщик, способна возвращаться на Землю и использоваться многократно. Такая схема весьма перспективна, но вопрос упирается в создание воздушно-реактивных двигателей, работающих до скорости два-три километра в секунду. По этой же причине не пошел и компромиссный вариант: самолет-раз-гонщик многократного использования несет на борту несколько ракетных ступеней с полезным грузом.
Затем появились множество других схем – двух– и трех-ступенчатые носители с самым различным сочетанием двигателей и принципов возвращения на Землю. Большинство из них оказалось или экономически невыгодными, или трудноосуществимыми в ближайшие годы.
Почему же в США все-таки был взят курс на создание космического корабля многоразового использования? Для этого надо вспомнить ситуацию, сложившуюся там в начале 70-х годов. В то время была завершена дорогостоящая престижная программа «Аполлон», главной целью которой была высадка человека на Луну. Примерно в то же время в СССР была завершена разработка орбитальной пилотируемой станции «Салют» и транспортных космических кораблей «Союз» для осуществления широкой программы исследований в интересах науки и народного хозяйства. Работа многочисленных экипажей космонавтов на станциях «Салют» явилась новым этапом планомерного и целеустремленного освоения космоса для практических нужд человека.
В США перед правительственными кругами встала проблема: «Что делать дальше в космической области?» Возникший было ажиотаж вокруг честолюбивых планов посылки экспедиции на Марс быстро угас. Оказалось, что се организация превышает технические и финансовые возможности страны. Корабль же «Аполлон», разработанный для полета на Луну, был слишком специализированным и дорогостоящим, чтобы его можно было использовать в качестве транспортного корабля для орбитальных станций. Именно поэтому станция «Скайлэб», созданная как «побочный продукт» в рамках программы «Аполлон», работала на орбите недолго. Корабль «Аполлон», который использовался для доставки космонавтов на ее борт, был мало приспособлен для этой цели. В такой обстановке было принято решение о разработке транспортного корабля «Шаттл». Многие специалисты были против столь дорогостоящего проекта. По его поддержал Пентагон.
Космический летательный аппарат «Шаттл» своего рода компромисс и в техническом и экономическом отношениях. Максимальный полезный груз, доставляемый «Шаттлом» на орбиту, – от 14,5 до 29,5 тонны, а его стартовая масса около 2 тысяч тонн, то есть полезная нагрузка составляет всего 0,8–1,5 процента от полной массы заправленного корабля. В то же время этот показатель для обычной ракеты при том же полезном грузе составляет 2–4 процента. Если же взять в качестве показателя отношение полезного груза к весу конструкции без учета топлива, то преимущество в пользу обычной ракеты еще более возрастет. Такова плата за возможность хотя бы частично использовать повторно конструкции космического аппарата.
Один из создателей космических кораблей и станций, летчик-космонавт СССР профессор К. П. Феоктистов, так оценивает экономическую эффективность «Шаттлов»: «Что и говорить, создать экономичную транспортную систему непросто. Некоторых специалистов в идее «Шаттла» смущает еще и следующее. Согласно экономическим расчетам он оправдывает себя примерно при 40 полетах в год на один образец. Получается, что в год только один «самолет», чтобы оправдать свою постройку, должен выводить на орбиту порядка тысячи тонн разных грузов. С другой стороны, имеет место тенденция к снижению веса космических аппаратов, увеличению продолжительности их активной жизни на орбите и вообще к снижению количества запускаемых аппаратов за счет решения каждым из них комплекса задач. Если говорить об орбитальных станциях и пилотируемых кораблях, то их запускается в год считанные единицы. Тут, конечно, можно и возразить: тенденция снижения массы запускаемых спутников может быть временной, появившейся как раз из-за отсутствия экономичных средств выведения. И когда такие средства появятся, в них, очевидно, возникнет необходимость. Задач в космосе и сейчас хоть отбавляй, и космонавтика явно вышла на тот рубеж, когда дальнейшее ее развитие не может успешно идти без принципиального решения экономических проблем. С другой стороны, экономический эффект от средств многократного использования, подсчитанный как чистая экономия по сравнению с применением обычных одноразовых средств, начнет ощущаться по крайней мере через 10 лет, даже при оптимальном количестве запусков.
Так что с точки зрения текущих потребностей народного хозяйства создание транспортного корабля многоразового использования такой большой грузоподъемности дело пока еще преждевременное. На данном этапе для снабжения орбитальных станций (а это одно из применений «Шаттла») гораздо выгоднее автоматические транспортные корабли типа «Прогресс».
Оптимальное, экономически выгодное годовое число стартов «Шаттлов» труднодостижимо еще и по экологическим причинам. По подсчетам специалистов США, при частоте полетов транспортных космических кораблей свыше 85 в год, разрушение озонового слоя Земли будет носить катастрофический и необратимый характер.
Без прямой поддержки Пентагона проект вряд ли удалось бы довести до стадии полетных экспериментов. В самом начале проекта при штабе ВВС США был учрежден комитет по использованию корабля «Шаттл». Военный заказчик планирует использовать корабли «шаттл» для выполнения широкой программы размещения в космосе разведывательных спутников, систем радиолокационного обнаружения и наведения на цель боевых ракет, для пилотируемых разведывательных полетов, создания космических командных постов, орбитальных платформ с лазерным оружием, для «инспекции» на орбите чужих космических объектов и доставки их на Землю для демонтажа и уничтожения… Рассматриваются также возможности использования кораблей серии «Шаттл» в качестве носителей оружия для уничтожения космических объектов, размещения на орбитах так называемых космических мин, нанесения ударов «по особо важным целям на Земле». (Космические мины – это спутники, расположенные на орбите, вблизи своих потенциальных «жертв» и взрывающиеся по команде с Земли или при столкновении с ними.)
Первоначально стоимость проекта планировалась в размере 5,1 миллиарда долларов. Фактические расходы к настоящему времени превышены более чем в два раза. Многочисленные неучитываемые смежные расходы составляют еще несколько миллиардов долларов. Никто пока не может сказать, во что обойдется эксплуатация всей системы после того, как останется позади стадия научно-исследовательских и опытно-конструкторских работ, хотя, по оценкам, потребуется дополнительно 15 миллиардов долларов и больше. По свидетельству американских специалистов, «если бы не интерес Пентагона к «Шаттлу», от этого проекта, возможно, отказались бы еще несколько лет тому назад». По словам журнала «Авиэйшн уик энд спейс текнолоджи», корабль «Шаттл» рассматривается как одно из ключевых звеньев общей программы создания космического лазерного оружия. «Из доклада министерства, – пишет журнал, – следует, что разме-щение лазеров на космических станциях создает потенциальную возможность изменения соотношения сил в мире». А системы лазеров мощностью 5 мегаватт с 4-метровой оптикой, которые, по словам журнала, предполагается принять на вооружение, в первую очередь могут быть доставлены на орбиту космическим кораблем «Шаттл». Даже в первом полете экипаж корабля «Колумбия» (так назывался первый из кораблей типа «Шаттл») выполнял задание военного характера, связанное с проверкой надежности прицельного устройства для лазерного оружия. Размещенный на орбите лазер должен точно наводиться на ракеты, удаленные от него на сотни и тысячи километров. К 1990 году Пентагон планирует иметь в космосе лазерные станции. По оценке бывшего шефа американского военного ведомства Г. Брауна, для этого потребуется 100 миллиардов долларов (заметим, что американская лунная программа «Аполлон» обошлась в 25 миллиардов).
Ведутся разработки и другого варианта противоракетной системы для уничтожения ракет на взлете – на активном участке траектории полета. В основе проекта – гигантский наземный лазер в комплексе с размещенными в космосе зеркалами. Принцип действия системы напоминает многократное отражение солнечного «зайчика». Расположенное на Земле зеркало направляет лазерный луч на пятиметровое зеркало, находящееся на геостационарной орбите (на высоте примерно 36 тысяч километров), которое, в свою очередь, отражает луч на аналогичное «боевое зеркало» на околоземной орбите. «Боевое зеркало» и направляет луч иа поднимающуюся ввысь ракету. Наведение смертоносного «зайчика» на цель и его удержание на ракете осуществляется с помощью инфракрасной системы поиска и сопровождения, которая обнаруживает тепловое излучение факела и удерживает его в перекрестии «прицела». Земная атмосфера частично искажает лазерный луч, уменьшает его «убойную силу», а в случае мощных облаков может и разрушить его. Чтобы компенсировать искажения лазерного луча земной атмосферой, предполагается на 900-метровом кронштейне, прикрепленном к геостационарному спутнику, несущему пятиметровое зеркало, разместить подстроечный лазер.