Текст книги "Кости, скалы и звезды. Наука о том, когда что произошло"
Автор книги: Крис Терни
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 3 (всего у книги 12 страниц) [доступный отрывок для чтения: 5 страниц]
Приведенная у Беды и подразумевающаяся у Тильды дата Бадонской битвы намного опережает дату того же события в «Камбрийских анналах». Если предположить, что относящиеся к Артуру даты в этой части «Анналов» воспроизведены неверно и исчисляются от смерти Христовой, то от годов 72 и 93 нужно отнять еще 28 лет. В таком случае Бадонская битва будет датироваться 490 г. н.э., а смерть Артура при Камланне – 511 г. н.э. Этот Бадон уже гораздо ближе к 493 г. н.э. у Беды, и это, пожалуй, самое большое приближение, которого можно ожидать для данного периода британской истории (таблица 2.2).
Хотя мы не можем достоверно выяснить, кем же все-таки был Артур, какой-то предводитель бриттов в конце V – начале VI в. определенно существовал. И этот «Артур» помог объединенным римско-кельтским силам одержать ряд побед над захватчиками-саксами. Если так, то роль Артура как личности, принесшей победу, должна была отпечататься в сознании бриттов. Со временем предания обрастали подробностями, превращаясь в легенды, особенно учитывая что оборона бриттов недолго продержалась после смерти Артура. После того как к 580 г. н.э. пали Дарем, Бат, Сайренсестер и Глостер, большая часть Британии оказалась под властью саксов. Самих же бриттов вытеснили на территорию, носящую у саксов название «земля чужаков», Weala, сегодня известную нам как Уэльс. Ненадолго хватило бриттам победы, одержанной в Бадонской битве.
До конца VI в. н.э. в источниках не содержится упоминаний о ком-либо в Британии по имени Артур, однако непродолжительное время спустя появляются сразу шесть бриттов, носящих это имя. Становится модным называть детей в честь знаменитого полководца, как сейчас детей часто называют в честь кино– и поп-звезд. В поэме «Гододин» бард VII в. Анейрин воспевает британского героя, который сражался в битве при Катрайте (ныне Каттерике) около 600 г. н.э. «Он кормил черных воронов на крепостном валу, хоть с Артуром ему не сравниться». Так закладывалась почва для последующих легенд о короле Артуре.
Глава 3
Поддельная туринская плащаница
Древности – это искаженная история или обломки истории, случайно уцелевшие после кораблекрушения во времени.
Френсис Бэкон (1561–1626)
Туринская плащаница – один из самых узнаваемых религиозных артефактов, имеющихся в мире на сегодняшний день. Льняное полотно размером 4,4×1,1 м, с отпечатком лица и спины бородатого мужчины, очевидно, распятого и завернутого в этот саван перед погребением. Учитывая, что эта ткань прочно ассоциируется с гибелью Иисуса Христа, точная датировка плащаницы могла бы подтвердить или опровергнуть ее подлинность. Однако, прежде чем результаты научного анализа оказались в 1989 г. на первых страницах газет, на долю плащаницы выпало немало перипетий.
Впервые плащаница фигурирует в исторических документах в районе 1350 г., хотя даты варьируют в зависимости от исторического источника. Предположительно первым ее хозяином значится рыцарь по имени Жоффре де Шарни из городка Лире на востоке Франции. Как к нему попала плащаница – неизвестно. О нем вообще, за исключением того, что он написал единственную в те времена книгу о рыцарстве, известно мало. Де Шарни погиб в Столетнюю войну, в битве при Пуатье 1356 г., оставив жену и малолетнего сына. Перебирая вещи покойного, вдова обнаружила плащаницу и отнесла ее в местную церковь. В 1357 году лицезреть материю, выставленную на обозрение как «саван Христа», потянулись первые паломники, что позволило поправить финансовое положение и семьи де Шарни, и всей округи.
Уже тогда с плащаницей не все было чисто. Несколько раз ее объявляли подделкой, в том числе и два местных епископа. Один даже указал в письме, что знает мошенника, но имени не назвал. Его преемник написал Папе в Авиньон, требуя прекратить демонстрацию плащаницы после высказанных предшественником подозрений. Однако несмотря на всю шумиху, плащаницу, остававшуюся собственностью семейства де Шарни, продолжали показывать паломникам, пока в 1453 г. не продали герцогу Савойскому Людовику I. Людовик перевез ее на юго-восток Франции, в свои владения в Шамбери.
В 1532 г. пожар сжег часовню, где в серебряном ларце лежала плащаница. К счастью, ткань сохранилась, однако на изображении остались следы от расплавленного серебра, капавшего с крышки ларца. По сей день на ткани видны обгоревшие места. Ларец погрузили в воду, чтобы предохранить ткань от дальнейших повреждений.
В 1578 г. столица савойских владений была перенесена из Шамбери в итальянский Турин, и с тех пор плащаницу держали там. О ней почти не вспоминали до 1898 г., пока фотограф-итальянец по имени Секондо Пиа не решил ее запечатлеть. К своему изумлению, фотограф обнаружил, что изображение на ткани представляет собой «негатив» распятого мужчины и на нем можно разглядеть куда больше подробностей, чем казалось прежде. Интерес к реликвии тут же обрел новую почву: как мог появиться «негатив»? Интерес этот не ослабевает по сей день.
В 1983 г. плащаница последний раз сменила владельцев: король Умберто II, представитель Савойской династии, завещал реликвию Ватикану, назначив хранителем архиепископа Туринского. Сейчас местом ее постоянного хранения является капелла за главным алтарем в туринском соборе Иоанна Крестителя. Это по крайней мере известно доподлинно.
Существует несколько древних преданий о тряпицах, несущих на себе образ Христа. По одной легенде погребальный саван Иисуса попал после воскресения к королю Абгару V в город Эдессу на юго-востоке Турции. Судьба этого куска полотна не известна, однако в первой половине VI в., где-то между 525 и 544 г., был обнаружен схожий артефакт – предположительно в крепостных стенах Эдессы. Как и следовало ожидать, находку тут же объявили святыней и специально для ее хранения построили церковь. Там она пролежала несколько веков, до прихода в 944 г. войск византийского императора Романа I, который увез ткань к себе в Константинополь. Затем она просто исчезла со страниц истории. Разумеется, возникли предположения, что эдесский убрус и Туринская плащаница суть одно и то же и что де Шарни вполне мог заполучить плащаницу во время похода на Константинополь, но это лишь досужие домыслы.
На протяжении веков люди благоговели перед древностью и легендарным происхождением плащаницы. Некоторые исследователи отмечают сходство отпечатавшегося на ней образа с образом на разукрашенном погребальном саване Христа, созданным между 1282 и 1321 гг. и хранящимся в Музее церковного искусства в Белграде. Остальные погребальные покровы с похожими изображениями тоже уходят корнями в XI в. Возможно ли, что Туринскую плащаницу изготовили искусственно, сняв копию с какого-то из них? Наилучшей проверкой было бы установить возраст самой ткани. Если окажется, что ей действительно 2000 лет, подлинность плащаницы будет подтверждена. Идеальным способом проверки представлялся радиоуглеродный анализ.
* * *
Радиоуглеродный анализ позволяет определить возраст любого углеродосодержащего материала, сформировавшегося не более 60 000 лет тому назад. Это, пожалуй, один из самых известных методов определения возраста, перевернувший наши представления о прошлом.
Прежде чем выяснять, как применялся радиоуглеродный анализ в расследовании тайны Туринской плащаницы, вспомним, как происходит радиоуглеродный распад. Атом, почти как Солнечная система, состоит из ядра, содержащего протоны и нейтроны, и электронов, вращающихся вокруг него. Химические элементы различаются по количеству протонов. У самого простого и самого легкого из них, водорода, протон всего один. Для краткости химические элементы обозначаются одной или двумя латинскими буквами, например водород – H. Суммарное количество протонов и нейтронов, называемое «массовым числом», приписывается верхним левым индексом к буквенному обозначению элемента. В самой простой своей форме водород выбивается из ряда остальных элементов в периодической таблице: у него нет ни одного нейтрона и всего один протон, поэтому он записывается как 1H.
Большей частью число протонов, нейтронов и электронов находится в равновесии, обеспечивая стабильность атома. Несмотря на то что определяющим для элемента является число протонов, у одного и того же элемента может существовать несколько разновидностей, различающихся количеством нейтронов, – такие разновидности называются изотопами. В этом случае буквенное обозначение остается неизменным, а вот массовое число меняется. Так, у водорода имеется стабильный изотоп под названием «дейтерий» с одним протоном и одним нейтроном, который записывается как 2H. Однако с увеличением числа нейтронов стабильность элемента снижается. Достигнув критической точки, атом распадется, испуская определенный вид частиц или форм энергии, в стремлении к стабильности. Еще один изотоп водорода, тритий, ядро которого состоит из одного протона и двух нейтронов, обозначается как 3H – он крайне нестабилен и не может не распадаться.
Наши представления о радиоактивности сложились относительно недавно. Лишь в 1895 г. немецкий ученый Вильгельм Рентген открыл новый тип лучей, впоследствии получивших название рентгеновских, вызывающих свечение бумаги, обработанной специальным покрытием. В 1896 г. французский физик Анри Беккерель обнаружил, что такие же лучи испускаются солями урана. В 1898 г. Пьер и Мари Кюри, польско-французская чета ученых, отметив подобное явление у тория, ввели термин «радиоактивность». Исследуя радиоактивность другого минерала – уранита, урановой руды, Кюри обнаружили, что он выделяет больше энергии, чем чистый уран, и сделали вывод, что в руде должны присутствовать и другие радиоактивные элементы. Супруги переработали тонны урановой руды, которая даже после добычи из нее урана по-прежнему оставалась радиоактивной. К 1902 г. Кюри сумели выделить два неизвестных ранее радиоактивных элемента – полоний и радий. Внезапно оказалось, что радиоактивность повсюду.
В 1903 г. Мари и Пьер Кюри поделили Нобелевскую премию по физике с Беккерелем. Вскоре после этого, в 1906 г., Пьер Кюри скончался, попав из-за сильного головокружения под конный экипаж, что, скорее всего, было следствием многолетней подверженности облучению. В 1911-м Мари Кюри получила свою вторую Нобелевскую премию, по химии, за исследования радия и дожила до 1934., скончавшись в возрасте 67 лет. Умерла она от лейкемии, спровоцированной лучевой болезнью. Ее лабораторные записи по-прежнему так радиоактивны, что их приходится хранить в свинцовом сейфе. Открытия, сделанные супругами Кюри, заложили фундамент для теории относительности, атомной и квантовой физики, а также, несомненно, революционизировали наши методы уточнения дат прошлого.
На их открытии строится также радиоуглеродное датирование, в основу которого положено измерение содержания в веществе радиоактивного изотопа углерода, меняющееся со временем. Современный углерод представлен в основном двумя самыми распространенными своими разновидностями – 12C и 13C. Это стабильные формы: 12C – самая простая, состоит из шести протонов и шести нейтронов, а 13C чуть тяжелее, поскольку в нем на один нейтрон больше. Однако нас интересуют не они, а радиоактивная форма, 14C, известная под названием «радиоуглерод». Это нестабильная комбинация из шести протонов (которые и обеспечивают ей свойства углерода) и 8 нейтронов. Радиоуглерод крайне редок, он составляет всего одну триллионную от всего современного углерода на планете. Представьте себе каплю воды, растворенную в олимпийском плавательном бассейне, – соотношение примерно таково.
К великим, которые поставили радиоактивность на службу датирования прошлого, мы обратимся чуть позже (в главе 11), а сейчас перенесемся в середину 1940-х. Именно тогда американский химик Уиллард Либби выдвинул предположение, что незначительные количества радиоуглерода поступают из верхних слоев атмосферы. Согласно гипотезе Либби, высокоэнергетичные частицы, формирующиеся в дальнем космосе, – так называемые космические лучи – достигая нашей планеты, вступают во взаимодействие с газообразным азотом, содержащимся в атмосфере, и в результате образуется радиоуглерод. Этот радиоуглерод моментально превращается в углекислый газ CO2, который затем поглощают растения в процессе фотосинтеза. Растения впоследствии становятся кормом для травоядных, которые в свою очередь поедаются хищниками, и происходит передача атомов радиоуглерода по пищевой цепи. Таким образом, наличие радиоуглерода в живых организмах на Земле должно соответствовать его концентрации в атмосфере. Однако когда организм умирает, некоторые атомы 14C начинают распадаться, отдавая электроны и образуя азот (см. рис. 3.1). Либби считал, что, зная изначальное содержание радиоуглерода, можно измерить остаточное содержание 14C в образце и высчитать его возраст. Примерно то же самое, что определить, сколько прошло времени по оставшемуся в верхней колбе песочных часов количеству песка.
К концу 1940-х Либби и его коллегам удалось показать, что содержание радиоуглерода в атмосфере одинаково во всем мире и что 14C можно использовать для датирования любых органических веществ.
Рис. 3.1. Образование радиоуглерода и его распределение в окружающей среде
Вскоре они уже проводили первые независимые эксперименты по определению возраста, измеряя остаточное содержание радиоуглерода в образцах. Наука обрела метод радиоуглеродного анализа.
Ключевым для него является скорость, с которой распадается нестабильный атом, – от чего зависит период полураспада. В отличие от живых организмов, которым все чаще удается доживать до старости, радиоактивный изотоп может погибнуть в любой момент. Это всего лишь вопрос вероятности. Период полураспада – время, за которое изначальное количество изотопа уменьшится наполовину. У каждого конкретного изотопа оно свое: чем менее стабильна комбинация протонов и нейтронов, тем короче период полураспада. Чтобы не рассуждать абстрактно, давайте проиллюстрируем принцип на вымышленном примере. Представьте, что у экспериментатора в лаборатории имеется килограммовый образец радиоактивного изотопа с периодом полураспада пять минут. В первые пять минут образец начнет распадаться буквально на глазах: останется всего 500 граммов. Еще через пять минут от него останется лишь 250 граммов. Еще через пять минут – 125. За период полураспада количество действительно уменьшается ровно наполовину. Так будет продолжаться до тех пор, пока через 10 таких периодов от образца практически ничего не останется и измерять экспериментатору будет нечего.
Из этого следует, что метод радиоуглеродного анализа не позволяет проникнуть назад во времени дальше, чем на десять периодов полураспада. Чем длиннее период полураспада, тем более далекое прошлое подвластно методу датирования. Ценой огромных усилий ученые добиваются в лабораториях идеальной стерильности, сводя к минимуму возможные радиоактивные загрязнения, чтобы можно было подвергнуть анализу даже самые крошечные и древние образцы. Для радиоуглеродного анализа диапазон составляет 40 000-60 000 лет, в зависимости от вида анализируемого материала и предела чувствительности лабораторных приборов.
По результатам первоначальных измерений Либби установил, что период полураспада радиоуглерода составляет чуть больше 5720 лет. Однако вслед за ним радиоуглеродом, который стал популярным предметом исследований в 1950-е, занялись другие ученые. Они определили период полураспада в 5568 лет, что отличалось от результатов, полученных Либби. Эта разница в 3% весьма существенна для конечной датировки. Результаты Либби были признаны ошибочными, и в качестве периода полураспада радиоуглерода приняли цифру 5568 лет.
К сожалению, теперь нам известно, что на самом деле этот период составляет 5730 лет (рис. 3.2) – практически в полном соответствии с результатами расчетов Либби. Однако, когда ошибку поняли, сочли, что исправлять ее уже поздно: слишком много проведено расчетов на основе ошибочной цифры. Поэтому – и по прихоти истории – пользуются по-прежнему периодом полураспада 5568 лет. В довершение путаницы и несправедливости он называется «периодом полураспада по Либби». На практике же, как мы скоро увидим, радиоуглеродный возраст нужно конвертировать в календарную систему измерения и тем самым корректировать разницу. К счастью, все лаборатории пользуются одним и тем же показателем для периода полураспада, поэтому пока нас интересует только радиоуглерод, полученные показатели возраста можно сравнивать между собой напрямую.
Рис. 3.2. Кривая распада радиоуглерода
Примечание: Форма кривой одинакова для всех радиоактивных изотопов
В радиоуглеродном датировании принято несколько важных допущений: во-первых, приходится исходить из того, что содержание 14C в атмосфере не менялось со временем; во-вторых, что содержание радиоуглерода в организмах живых существ одинаково и совпадает с его концентрацией в атмосфере; в-третьих, что после смерти количество радиоуглерода в образце не увеличивается. В некоторых случаях, однако, эти допущения нарушаются, поэтому надо с осторожностью подходить и к измерениям, и к интерпретации результатов.
Чтобы определить возраст с помощью радиоуглеродного анализа, нужно выбрать какую-то точку отсчета, поскольку простое измерение количества 14C в образце нам ничего не даст. Радиоуглеродное датирование применяется уже более 50 лет. Если сегодня подвергнуть анализу крупное древнее семя, ранее уже датированное Либби, получится разница в 50 лет, с учетом совокупного распада с того времени. Однако растение, породившее это семя, могло существовать в какой-то один момент времени.
Чтобы преодолеть эту проблему, за отправную точку берут 1950 г. н.э., и все полученные результаты анализа выражают в количестве лет «до настоящего времени». Например, датируя кусок коры с дерева, росшего в 950 г. н.э., исследователь запишет возраст как 1000 лет до настоящего времени. В археологических же образцах для удобства часто пользуются общепринятыми «до н.э.» и «н.э.».
Еще больше все запутывает то, что радиоуглеродный анализ дает лишь приблизительную датировку. Из существующих научных методов датирования практически ни один не способен определить возраст объекта с точностью до года – за исключением дендрохронологического, но о нем позже. Определив содержание радиоуглерода, ученые вынуждены при окончательном определении возраста делать поправку на различные факторы. А их немало: вероятность, что образец подвергался радиоуглеродному загрязнению в естественной среде или в лаборатории; различия в радиоактивном распаде на атомном уровне; чувствительность оборудования – все это надо принимать во внимание. Поэтому устанавливается погрешность, дающая временной диапазон, в который уже точно попадает анализируемый образец.
Вернемся к нашему вымышленному ученому и предположим, что он может бесконечное множество раз провести анализ одного и того же образца. На это ему понадобится вагон времени, уйма денег и неисчерпаемый образец, но в воображении возможно все. Тогда наш ученый, если не сойдет с ума, получит множество слегка отличающихся друг от друга радиоуглеродных датировок. Разница между ними будет невелика, и на графике они расположатся по гауссиане – кривой нормального распределения (рис. 3.3). В нормальном распределении большинство значений попадают в середину кривой, где и отражен правильный возраст, и по мере удаления от центра значения становятся все более редкими.
Рис. 3.3. Нормальное распределение
К сожалению, не известно, в какую область кривой попадут результаты конкретной датировки. И узнать мы не сможем, разве что действительно проделаем упражнение нашего воображаемого ученого. К счастью, у нас нет необходимости тратить бесконечное время на датировку одного и того же образца, поскольку погрешность датировки можно получить с помощью статистического моделирования, рассчитав среднее квадратическое отклонение. В радиоуглеродном анализе в качестве нормы принято одно среднее квадратическое отклонение, записывающееся как «1δ», – оно позволяет с уверенностью 68% указать разброс, в который попадает датировка.
У куска коры из приведенного выше примера погрешность для радиоуглеродного возраста 1000 лет до современности составит 100 лет. Записывается это как 1000±100 до современности. Можно утверждать с 68%-ной вероятностью, что эта часть дерева формировалась в промежутке от 900 до 1100 лет до 1950 г., т.е., другими словами, между 850 и 1050 гг. н.э. Если мы хотим еще уточнить результаты, можно увеличить погрешность до 1000±200 до современности. Это даст нам 95%-ную вероятность, или 2δ, что искомый возраст попадает в промежуток от 750 до 1150 гг. н.э.
* * *
Долгое время Церковь препятствовала проведению радиоуглеродного анализа Туринской плащаницы – прежде всего потому, что для этого требовался достаточно крупный кусок образца. Исследователям пришлось бы уничтожить значительную часть плащаницы. Однако в 1970-х появился новый метод, а с ним новая надежда. Этот метод под названием «ускорительная масс-спектрометрия», основанный на физике ускорителей, дал возможность фиксировать крайне малые различия в массах изотопов, позволяя подсчитать количество отдельных радиоактивных атомов. Это был переворот. Отпала необходимость брать большой кусок материи. УМС сокращала время анализа одного образца с 50 часов до нескольких минут, а органического материала требовалось всего с чайную ложку. Зачастую можно было обойтись одним граммом. Так у ученых появилась новая возможность датировать Туринскую плащаницу.
Долго дискутировали по поводу взятия образцов и предварительной подготовки плащаницы. К 1986 г. семь лабораторий радиоуглеродного анализа подготовили рекомендации по процедуре датировки Плащаницы. В 1987 г. архиепископ Туринский, проконсультировавшись с Ватиканом, отобрал три лаборатории масс-спектрометрического анализа – в Аризоне, Оксфорде и Цюрихе. Им было поручено провести исследование образцов, взятых под наблюдением Британского музея. Взятие образцов состоялось 21 апреля 1988 г. в капелле собора Иоанна Крестителя, практически весь процесс от начала до конца был снят на пленку и происходил на глазах многочисленных наблюдателей. От плащаницы отрезали единственную полоску шириной 1 см и длиной 7 см, которую затем разделили на три образца весом примерно по 50 мг – до появления масс-спектрометрии датировать такие крошечные образцы не представлялось возможным. Вместе с этими образцами в лаборатории были переданы три похожих куска льняной ткани – для определения возраста и последующего сравнения с плащаницей.
Здесь важно отметить следующее: с помощью радиоуглеродного анализа определяется не время использования плащаницы, а время, когда был собран лен, из которого ее соткали. Именно в это время растение успело получить последнюю дозу радиоуглерода перед «гибелью». Для датировки плащаницы это не так уж существенно, поскольку предполагалось, что разрыв между изготовлением ткани и использованием ее в качестве савана вряд ли превысит несколько лет. Эти несколько лет, учитывая приблизительность датировки радиоуглеродным методом, большой роли не сыграют.
Данные эксперимента по датировке плащаницы были опубликованы в журнале Nature в 1989 году и вызвали большой ажиотаж. В Аризонской лаборатории возраст определили как 646±31 лет до современности, в Оксфорде – 750±30 лет до современности, а в Цюрихе – 676±24 лет до современности. При сравнении погрешности были признаны статистически неотличимыми в интервале 95%-ной достоверности, поэтому данные усреднили, получив возраст в 689±16 лет до современности. Плащаница оказалась существенно моложе 2000 лет.
Как уже упоминалось ранее, в радиоуглеродном анализе принят ряд допущений, и одно из них – содержание радиоуглерода в атмосфере не меняется с течением времени. Однако на самом деле это не так. Общее содержание радиоуглерода в атмосфере варьируется, растягивая и сжимая «радиоуглеродное время» в прошлом. В практическом отношении из этого следует, что радиоуглеродный год не равен календарному. К счастью, это поправимо, однако требуется пересчет радиоуглеродных лет в календарные с помощью заведомо точно датируемого дерева.
У многих видов деревьев рост происходит за счет прибавления «годичных колец» – каждый год под корой нарастает новое кольцо. Мы еще рассмотрим этот процесс подробнее, а сейчас достаточно знать, что, подсчитав их количество, можно вычислить календарный возраст дерева. Поскольку деревья участвуют в процессе фотосинтеза, их листья, а в конечном итоге и кольца отражают количественное содержание радиоуглерода в атмосфере. А это непосредственный показатель концентрации 14C в воздухе на момент фотосинтеза. Проведя исследование отдельных древесных образцов, сформировавшихся в прошлом, ученые проследили, как колебалось во времени содержание радиоуглерода в атмосфере. Таким образом удалось нанести радиоуглеродные годы на календарную шкалу и построить «радиоуглеродную калибровочную кривую». Из-за изменений солнечной активности, силы магнитного поля Земли и углеродного цикла планеты содержание радиоуглерода не было постоянным. Картину изменений можно представить в виде плавной кривой, прерываемой крутыми пиками. Радиоуглеродные часы то отстают от действительного времени, то вдруг резко ускоряют ход.
Скорректировав результаты радиоуглеродного анализа по последней версии калибровочной кривой, получаем дату изготовления Туринской плащаницы между 1275 и 1381 гг. Из этого следует, во-первых, что она никак не могла быть погребальным саваном Иисуса Христа, а во-вторых, что ее возраст подозрительно совпадает со временем ее первого появления в исторических источниках – 1350-е гг. Выходит, де Шарни повел себя не слишком-то по-рыцарски. Плащаница – подделка, изготовленная в Средневековье. Однако не успела просохнуть типографская краска на страницах Nature, как ученых принялись обвинять в недобросовестности.
Прежде всего любой радиоуглеродный образец подвержен загрязнению. Были предположения, что плащаницу могли в какой-то момент латать или чинить более новыми льняными нитями. В таком случае, возможно, изображению на ткани действительно 2000 лет, но образцы для анализа брались с подновленного участка плащаницы? Слабость этой версии в том, что ткань плащаницы отличается необычным плетением – «елочкой». Когда еще только прописывали протокол будущего эксперимента по датированию, предполагалось подготовить и параллельно подвергнуть анализу и другие образцы со сходным плетением – чтобы ученые не знали заранее, какой из них взят от плащаницы. Однако международные поиски не выявили тканей с подходящим плетением. Так что исследователю, мало-мальски знакомому с плащаницей, не составит труда идентифицировать ее. К сожалению, это создало почву для обвинения ученых в предвзятости. В то же время это позволяло сразу исключить образцы с иной структурой ткани, снижая тем самым риск загрязнения плащаницы.
Практически сразу после датировки поступили замечания, что в день взятия образцов они на короткий промежуток времени оставались в руках одного человека и этот эпизод не был зафиксирован на пленке. Что если их подменили? Исследование образцов под микроскопом выявило то же плетение «елочкой», что и в остальной ткани плащаницы. Воспроизвести его с такой идеальной точностью было бы крайне трудно, практически невозможно.
Высказывали версию, что повысить содержание углерода в образце могли бактерии, живущие на поверхности ткани. Бактерии усваивают современный углекислый газ и, умирая, оставляют на ткани осадок. Он мог существенно повлиять на содержание радиоуглерода в образце и тем самым искусственно «омолодить» плащаницу. Теоретически такая вероятность существует. Однако, чтобы вместо возраста 2000 лет получить сдвиг в XIV в., современный углерод должен составлять не менее 64% общего содержания. Такое бактериальное загрязнение было бы видно невооруженным глазом. Известны случаи, когда при отсутствии предварительной очистки образца от радиоактивных примесей возникали сдвиги до 400 лет. К неудовольствию фанатиков, лаборатории, где проводился анализ, располагают проверенными методами очистки, опробованными на тысячах более ранних образцов. Почему вдруг плащаница должна стоять особняком?
Наиболее хитрое из выдвинутых объяснений временного разрыва основывалось на уникальности Воскресения как физического феномена. С этим не поспоришь. Однако сторонники подлинности плащаницы предположили, что в процессе Воскресения определенное количество нейтронов могло высвободиться из составлявших тело атомов. Эти нейтроны, подхваченные атомами 13C в плащанице, превратили их в 14C, тем самым повысив содержание радиоуглерода и повлияв на результаты датирования.
Учитывая, что плотность высвободившихся нейтронов менялась бы по мере удаления от тела, образцы ткани вблизи изображения должны были оказаться моложе, чем взятые в 1989 г. Это можно было бы проверить, подвергнув ткань повторному анализу, при условии разрешения отделить еще фрагмент плащаницы. Однако на самом деле в случае притока такой массы свободных нейтронов результат датировки пришелся бы уже на современность. Однако все полученные оценки оказались подозрительно близки к тем временам, когда реликвия впервые «всплыла» в исторических документах. Как сказал руководитель группы радиоуглеродного тестирования Оксфордского университета Роберт Хеджес: «Если мы рассматриваем научный результат, нужно учитывать сопутствующие вероятности. Если же мы требуем абсолютной определенности, придется полагаться на веру».