355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Константин Рыжов » 100 великих изобретений » Текст книги (страница 18)
100 великих изобретений
  • Текст добавлен: 10 сентября 2016, 15:44

Текст книги "100 великих изобретений"


Автор книги: Константин Рыжов


Жанр:

   

История


сообщить о нарушении

Текущая страница: 18 (всего у книги 50 страниц) [доступный отрывок для чтения: 18 страниц]

47. ПРОКАТНЫЙ СТАН

Прокатка – одно из важнейших изобретений, сделанных человеком за время его многовекового знакомства с металлами. Уже давно было замечено, что изделия, имеющие одинаковое сечение по всей своей длине (например, рельсы, уголки, балки, листы, пруты) гораздо проще получать пропуская их между двумя валками, чем путем традиционной ковки. Можно даже сказать, что такой способ не только самый удобный, но и вообще наилучший. Без него не могло быть и речи о строительстве дешевых железных дорог, железных мостов, железных судов и еще многого и многого другого. Ведь именно благодаря прокатке появилась возможность придавать железным и стальным заготовкам полное единообразие. Нетрудно представить, скольких усилий потребовала бы от кузнеца, например, отковка каждого рельса или колеса железнодорожного вагона. Между тем, с помощью проката получить такие изделия несложно, притом в большом количестве и высокого качества. Поэтому уже в конце XVIII века прокатка стала одним из основных звеньев производственного цикла металлургических заводов, постепенно вытесняя ковку. А зародилась она еще в средние века при изготовлении тонких листов мягкого металла (например, свинца), которые можно было прокатывать вручную без предварительного нагрева. Древнейшее изображение такого простого прокатного станка можно видеть на гравюре 1615 года.

Прокатка в горячем состоянии стала известна лишь в начале XVIII века, причем сначала этим способом готовились более или менее тонкие железные листы, но уже с 1769 года начали подобным образом прокатывать проволоку. Первый прокатный стан для железных болванок был предложен английским изобретателем Кортом, когда он работал над своим методом пудлингования. Корт первый сообразил, что при изготовлении некоторых изделий рациональнее поручить молоту только отжимку шлаков, а окончательную форму придавать путем прокатки. В 1783 году он получил патент на изобретенный им способ проката фасонного железа с помощью особых вальцов. Из пудлинговой печи крица поступала под молот, здесь она проковывалась и получала первоначальную форму, а затем пропускалась через вальцы. Этот способ получил потом большое распространение. Но только в XIX веке техника проката была поставлена на должную высоту, что во многом было связано с интенсивным строительством железных дорог. Тогда были изобретены прокатные станы для производства рельсов и вагонных колес, а потом и для многих других операций.

Прокатный стан – это машина для обработки металлов давлением между вращающимися валками. Устройство прокатного стана в XIX веке было несложным. Вращающиеся в противоположные стороны валки захватывали добела раскаленную металлическую полосу и, сжимаясь большей или меньшей силой, проводили ее между своими поверхностями. Во время прохода заготовки происходили два тесно связанных между собой процесса. Во-первых, металл изделия подвергался сильному обжатию при высокой температуре, и, во-вторых, заготовка приобретала необходимую форму. При этом, например, железо получало свойства, которые не имело от природы. Отдельные зерна металла, которые до прокатки располагались в его массе в беспорядке, в процессе сильного обжатия вытягивались и образовывали длинные волокна. Мягкое и ломкое железо становилось после этого упругим и прочным.

Валки помещались между мощными станинами. Цапфы валков помещались в подшипники. Обычно нижний подшипник m был неподвижным. Верхний подшипник мог передвигаться вверх и вниз с помощью болтов h. Винт e, с помощью которого устанавливался вкладыш, брал на себя все давление, оказываемое на него. Между ним и вкладышем обыкновенно вставлялся предохранительный колпачок i, лопавшийся как только давление на вал достигало опасного предела. Этот дешевый колпачок, который легко заменить, действовал как предохранитель от поломки других, более важных частей механизма (поломка могла легко произойти в том случае, если валки захватывали слишком толстую заготовку и не выдерживали давления). При прокатке верхний валок лежал цапфами на хомуте d, снабженном вкладышем e и подвешенном на двух болтах. Для связи двух таких станин между собой служили четыре толстых болта, проходившие через отверстия n поперечины и закладываемые за выемку b. Для сцепления валков с двигателем служила муфта. Нижний валок приводился в движение непосредственно от паровой машины, и ось ее совпадала с главной осью ее вала. К верхнему валку движение передавалось с помощью зубчатой передачи.

Форма изделия зависела от формы валков. Валки с гладкой поверхностью применялись для изготовления плоского железа, например листов. Для прокатки фигурных сортов их снабжали соответствующими цели выемками – калибровали. Проходя между ними, заготовка получала нужную форму, то есть превращалась в полосу округлого, квадратного, продолговатого, четырехугольного или другого сечения. Нужный профиль придавался изделию не сразу, а постепенно. Болванка последовательно проходила через целый ряд валков, из которых лишь последний имел форму готового сортового железа. Черным цветом показан профиль, который приобретал постепенно сырой металл по мере прокатки в разных валках.

К концу столетия техника проката настолько усовершенствовалась, что этим путем стали получать не только сплошные, но и пустотелые изделия. В 1885 году братья Меннесманы изобрели способ прокатки бесшовных железных труб. До этого трубы приходилось изготовлять из железного листа, – их сгибали и сваривали. Это было и долго, и дорого. На стане Меннесманов круглую болванку пропускали между двумя косо друг к другу поставленными валками, действовавшими на нее двояким образом. Во-первых, вследствие сил трения между валками и заготовкой последняя начинала вращаться. Во-вторых, вследствие формы валков точки средней их поверхности вращались быстрее крайних. Поэтому, из-за косого расположения валков заготовка как бы ввинчивалась в пространство между ними. Если бы болванка была твердой, она бы не смогла пройти. Но так как ее предварительно сильно разогревали до белого каления, металл заготовки начинал скручиваться и вытягиваться, а в осевой зоне проходило его разрыхление – возникала полость, которая постепенно распространялась по всей длине заготовки. Пройдя через валки, заготовка насаживалась на специальный стержень (оправку), благодаря чему внутренней полости предавалось правильное круглое сечение. В результате выходила толстостенная труба.

Чтобы уменьшить толщину стенок, трубу пропускали через второй так называемый пилигримный прокатный стан. Он имел два валка переменного профиля. При прокатки трубы расстояние между валками сначала постепенно уменьшалось а затем делалось больше диаметра трубы. Цикл прокатки состоял из двух периодов – рабочего и холостого. Во время рабочего периода труба, в которую была введена спиральная оправка, захватывалась валками и обжималась до диаметра готовой трубы. При этом стенки ее делались тоньше, а сама она вытягивалась (валки как бы снимали слой кольцевого металла и раскатывали его до заданной толщины). Затем начинался холостой период, когда диаметр калибра превышал диаметр трубы. В это время заготовка выходила из контакта с валками и обработка данного участка заканчивалась. Заготовка продвигалась вперед и поворачивалась вокруг оси на 90 градусов (для более равномерной отделки). Цикл таким образом повторялся на последующих участках трубы.

48. НЕФТЕПРОВОД

Во второй половине XIX века получил новое развитие древний трубопроводный транспорт. Замечательной была сама идея использовать трубопровод для транспортировки нефти и газа. Таким образом была разрешена проблема доставки нефти с далеких месторождений на нефтеперерабатывающие предприятия, чрезвычайно остро стоявшая в свое время. Впервые с ней столкнулись в США. Из-за невероятно быстрого развития нефтедобычи в Калифорнии, здесь возникли затруднения с транспортировкой нефти. Мелководные реки, содержащие нефть, могли обслуживаться только плотами. Одно время пытались повысить их уровень с помощью горных источников. Воды их собирались в специальном водохранилище и раз-два в неделю направлялись в мелководную речку, содержащую нефть. Тогда вниз по течению пускались целые караваны барж, число которых доходило до 500. Они доставляли вместе 20-25, даже 40 тысяч бочек нефти. Но такой способ был неудобен и требовал больших затрат. Более экономично было бы перевозить нефть по железной дороге. Однако в течение многих лет полагали, что нефтяные источники могут иссякнуть в любой момент, и поэтому не прокладывали к ним железных дорог. Это было сделано лишь много позднее. Вначале нефть отправляли в бочках, впоследствии стали употреблять для этой цели специальные вагоны-цистерны (поначалу деревянные, а потом – железные).

В те же годы сразу у нескольких инженеров возникла идея использовать для перекачки нефти трубопровод. Однако многим этот способ казался рискованным и трудноосуществимым. В 1860 году инженер Кернс предложил проложить нефтепровод с диаметром трубы в 150 мм вдоль реки Огайо на расстояние около 50 км. Это предложение не было поддержано хозяевами месторождений. Три года спустя был проведен нефтепровод меньшего диаметра, но трубы его были соединены недостаточно прочно, так что его пришлось остановить. Этот первый нефтепровод, функционировавший на практике, имел 6 км длины и пропускал ежедневно 80 бочек нефти. В 1866 г. был построен нефтепровод длиной 16 км. Его конструктор Чарльз Гетч считал, что достаточно одного насоса для нагнетания нефти по всей длине трубы. Многие сомневались, что это возможно. Поначалу даже сама мысль проводить нефть на целые мили через горы и овраги с помощью насоса казалась нелепой и смешной. Однако Гетч, не прислушиваясь к досужим рассуждениям, доверился своим расчетам. Когда сооружение трубы было закончено, он расположился у одного конца нефтепровода и телеграфировал инженеру на другом его конце, чтобы тот включил насос и начал медленно нагнетать нефть. Трубопровод имел 50 мм в диаметре и мог вместить 180 бочек нефти. Гетч ждал, но нефть не появлялась. Так прошло несколько часов. Почти никто уже не верил в успех предприятия. Наконец послышалось легкое громыхание. Шум все усиливался, и вдруг нефть показалась у конца трубы. Ей потребовалось четыре часа на то, чтобы дойти до приемной станции. Это был исторический момент. Таким образом, Гетч доказал, что передача нефти по трубам на далекое расстояние не пустая химера, а вполне посильная для разрешения техническая задача. По нефтепроводу Гетча можно было доставлять до 2000 бочек в сутки. Вскоре были проложены и другие нефтепроводы, причем длина их все увеличивалась. Принцип работы первых нефтепроводов был очень прост. Они состояли из двух главных станций – приемной и сдаточной, между которыми прокладывалась железная труба. На приемной станции устанавливались насосы, назначение которых состояло в том, чтобы брать нефть из отборных резервуаров и нагнетать ее по трубам к резервуарам достаточной станции. Если расстояние было значительным, предусматривались промежуточные станции со своими насосами. В 1874 году был сооружен нефтепровод из Пенсильвании в Питтсбург. Он имел трубу 100 мм в диаметре и 90 км в длину – нечто колоссальное для того времени – и пропускал 7500 бочек в день.

49. ВЕЛОСИПЕД

Прототипом велосипеда был самокат конца XVII века, представлявший собой брус на двух колесах – переднем и заднем. Сидя на таком «селерифере» (то есть быстроходе), ездок отталкивался ногами от земли, а потом поджимал их, некоторое время балансируя, чтобы не упасть, и ехал по инерции. В 1814 году немецкий изобретатель барон Драйс фон Зауербронн усовершенствовал этот самокат, снабдив брус седлом. Он же ввел такое важное усовершенствование, как руль над передним колесом. В 1815 году Драйс приехал на своем детище в Вену, где тогда проходил Венский конгресс. За это легкомысленное изобретение он лишился звания княжеского лесничего в Карлсруэ. Впрочем, впоследствии он получил место профессора механики и десятилетний патент на свое изобретение и успешно занялся изготовлением «беговых машин». Несмотря на то что велосипед Драйса был еще очень далек от совершенства, он демонстрировал неплохую скорость. В 1817 году отставной лесничий на спор за четыре часа покрыл расстояние от Карлсруэ до Келя (около 70 км). Пишут, что почтовый дилижанс тратил на эту поездку в четыре раза больше времени.

Француз Динер взял в 1818 году патент на «дрезину» в своей стране, впервые назвав ее «велосипедом», то есть «быстроногим» (от латинских слов «velox» – быстрый и «pedis» – нога). Не успели велосипеды появиться на свет, как во всех европейских странах началось повальное увлечение этой новинкой. Щеголи и франты из самого высшего общества с увлечением гоняли на них по бульварам или демонстрировали свое мастерство на специальных площадках. В конце 20-х годов этот первый «велосипедный бум» пошел на убыль. Но усовершенствование конструкции велосипеда продолжалось.

В 1845 году немецкий изобретатель Милиус построил первый велосипед с педалями на переднем колесе. С этого времени ездоки не должны были больше отталкиваться ногами от земли. Долгое время велосипеды изготавливались из дерева. В 1867 году Каупер придумал очень легкие колеса со ступицей, висящей на проволочных спицах. В 1869 году появились велосипеды с металлической рамой. Тогда же француз Мишо впервые организовал фабричное изготовление велосипедов. Соотечественник Мишо Тевенона придумал велосипедные шины из каучука, а французский фабрикант Сюрирей впервые применил в велосипедах шарикоподшипники. Это было очень важное усовершенствование. Годом позже, в 1870-м, английский изобретатель Лоусон ввел цепную передачу от педалей на заднее колесо. Скорость велосипедиста после этих нововведений настолько возросла, что он мог соревноваться с верховой лошадью.

Свой современный вид велосипед принял в 80-90-е годы XIX века. Дублинский ветеринар Данлоп в 1885 году снабдил колеса велосипеда своего 12-летнего сына пневматическими шинами из гуттаперчевого шланга, крепившимися к ободу с помощью полотняной ленты. Он же придумал клапан, позволявший легко и быстро накачать колесо, но не выпускавший воздух наружу. Мальчик ездил на этом велосипеде, довольно долго не привлекая ничьего внимания, пока один заезжий коммивояжер, пораженный легкостью хода велосипеда, не оценил его по достоинству и не указал изобретателю на ценность его находки. Только тогда, в 1888 году, Данлоп взял патент и вскоре наладил промышленное производство пневматических шин. Они быстро распространились по всему свету.

Сначала, для увеличения скорости велосипеда, переднее колесо у него делали очень большим, однако езда на такой высокой машине была сопряжена с некоторой опасностью. После изобретения цепной передачи необходимость в такой конструкции отпала.

Наибольшее увлечение велосипедом падает на 80-е годы XIX века, когда человечество пережило новый «велосипедный бум». С 1890 года началось бурное развитие велосипедной промышленности. Количество машин, выпускаемых тогда по всему миру, составляло несколько миллионов штук.

50. ЭЛЕКТРОГЕНЕРАТОР

В главе, посвященной изобретению телеграфа, уже рассказывалось о том, что в 1820 году было открыто взаимодействие между электрическим током, протекающим в проводнике, и магнитной стрелкой. Это явление было правильно объяснено и обобщено французским физиком Ампером, который установил, что магнитные свойства любого тела являются следствием того, что внутри него протекают замкнутые электрические токи. (Или, говоря современным языком, любой электрический ток создает вокруг проводника магнитное поле.) Таким образом, любые магнитные взаимодействия можно рассматривать как следствия электрических. Однако, если электрический ток вызывает магнитные явления, естественно было предположить, что и магнитные явления могут вызвать появление электрического тока. Долгое время физики в разных странах пытались обнаружить эту зависимость, но терпели неудачу. В самом деле, если, к примеру, рядом с проводником или катушкой лежит постоянный магнит, никакого тока в проводнике не возникает. Но если мы начнем перемещать этот магнит: приближать или удалять его от катушки, вводить и вынимать магнит из нее, то электрический ток в проводнике появляется, и его можно наблюдать в течение всего того периода, во время которого магнит движется. То есть электрический ток может возникать только в переменном магнитном поле. Впервые эту важную закономерность установил в 1831 году английский физик Майкл Фарадей.

Проведя серию опытов, Фарадей открыл, что электрический ток возникает (индуцируется) во всех тех случаях, когда происходит движение проводников относительно друг друга или относительно магнитов. Если вводить магнит в катушку или, что то же самое, перемешать катушку относительно неподвижного магнита в ней индуцируется ток. Если подвигать одну катушку к другой, через которую проходит электрический ток, в ней также появляется ток. Того же эффекта можно добиться при замыкании и размыкании цепи, поскольку в момент включения и выключения ток нарастает и убывает в катушке постепенно и создает вокруг нее переменное магнитное поле. Поэтому если поблизости от такой катушки находится другая, не включенная в цепь, в ней возникает электрический ток.

Открытие Фарадея имело огромные последствия для техники и всей человеческой истории, так как теперь стало ясно, каким образом механическую энергию превращать в электрическую, а электрическую – обратно в механическую. Первое из этих преобразований легло в основу работы электрогенератора, а второе – электродвигателя. Впрочем, сам факт открытия еще не означал, что все технические задачи на этом пути разрешены: около сорока лет ушло на создание работоспособного генератора и еще двадцать лет на изобретение удовлетворительной модели промышленного электродвигателя. Но главное: принцип действия двух этих важнейших элементов современной цивилизации сделался очевиден именно благодаря открытию явления электромагнитной индукции.

Первый примитивный электрогенератор создал сам Фарадей. Для этого он поместил медный диск между полюсами N и S постоянного магнита. При вращении диска в магнитном поле в нем наводились электрические токи. Если на периферии диска и в его центральной части помещали токоприемники в виде скользящих контактов, то между ними появлялась разность потенциалов, как на гальванической батарее. Замыкая цепь, можно было наблюдать на гальванометре непрерывное прохождение тока.

Установка Фарадея годилась только для демонстраций, но вслед за ней появились первые магнитоэлектрические машины (так стали называть электрогенераторы, в которых использовались постоянные магниты), рассчитанные на создание работающих токов. Самой ранней из них была магнитоэлектрическая машина Пиксии, сконструированная в 1832 году.

Принцип ее действия был очень прост: мимо неподвижных, снабженных сердечниками катушек E и E' двигались посредством кривошипа и зубчатой передачи лежащие против них полюсы подковообразного магнита AB, вследствие чего в катушках индуцировались токи. Недостатком машины Пиксии было то, что в ней приходилось вращать тяжелые постоянные магниты. В последующем изобретатели обычно заставляли вращаться катушки, оставляя магниты неподвижными. Правда, при этом приходилось решать другую задачу: каким образом отвести во внешнюю цепь ток с вращающихся катушек? Это затруднение, однако, было легко преодолимо. Прежде всего, катушки соединяли между собой последовательно одними концами их проводки. Тогда другие концы могли служить полюсами генератора. Их соединяли с внешней цепью при помощи скользящих контактов.

Скользящий контакт устроен следующим образом: на оси машины крепились два изолированных металлических кольца b и d, каждое из которых было соединено с одним из полюсов генератора. По окружности этих колец вращались две плоские металлические пружины B и B', на которые была заключена внешняя цепь. При таком приспособлении уже не было никаких затруднений от вращения оси машины – ток переходил из оси в пружину в месте их соприкосновения.

Еще одно неудобство заключалось в самом характере тока электрогенератора. Направление тока в катушках зависит от того, приближаются они к полюсу магнита или удаляются от него. Из этого следует, что ток, возникающий во вращающемся проводнике, будет не постоянным, а переменным. По мере приближения катушки к одному из полюсов магнита сила тока будет нарастать от нуля до какого-то максимального значения, а затем – по мере удаления вновь уменьшаться до нуля. При дальнейшем движении ток изменит свое направление на противоположное и опять будет нарастать до какого-то максимального значения, а потом убывать до нуля. Во время следующих оборотов этот процесс будет повторяться. Итак, в отличие от электрической батареи, электрогенератор создает переменный ток, и с этим приходится считаться.

Как известно, большинство современных электрических приборов созданы таким образом, чтобы питаться от сети переменного тока. Но в XIX веке переменный ток был неудобен по многим причинам, прежде всего психологическим, поскольку в прежние годы привыкли иметь дело с постоянным током. Впрочем, переменный ток можно было легко преобразовать в прерывистый, имеющий одно направление. Для этого достаточно было с помощью специального устройства – коммутатора – изменить контакты таким образом, чтобы скользящая пружина переходила с одного кольца на другой в тот момент, когда ток меняет свое направление. В этом случае один контакт постоянно получал ток одного направления, а другой – противоположного.

Подобное устройство пружины и контакта кажется, на первый взгляд, очень сложным, на деле же оно очень просто. Каждое кольцо коммутатора делали из двух полуколец, концы которых отчасти заходят друг за друга, а пружины были настолько широкими, что могли скользить по двум рядом помещенным полукольцам. Половины одного и того же кольца помещались на некотором расстоянии друг от друга, но были соединены между собой. Так, полукольцо a, прикасающееся к пружине c, было соединено с полукольцом a', по которому скользила c'; точно так же соединялись между собой b и b', так что при одном полуобороте пружина c, касающаяся a, переходила на b, а пружина c' переходила с b' на a'. Нетрудно было установить пружину таким образом, чтобы она переходила с одного кольца на другое в тот момент, когда в обмотке катушки менялось направление тока, и тогда каждая пружина все время давала ток одного и того же направления. Другими словами, они представляли из себя постоянные полюса; одна – положительный, другая – отрицательный, в то время как полюса катушек давали переменный ток.

Электрогенератор прерывистого постоянного тока вполне мог заменить неудобную во многих отношениях гальваническую батарею, и потому вызвал большой интерес у тогдашних физиков и предпринимателей. В 1856 году французская фирма «Альянс» даже наладила серийный выпуск больших динамо-машин, приводившихся в действие от парового двигателя. В этих генераторах чугунная станина несла на себе неподвижно укрепленные в несколько рядов подковообразные постоянные магниты, расположенные равномерно по окружности и радиально по отношению к валу. В промежутках между рядами магнитов на валу были установлены несущие колеса с большим числом катушек. Также на валу был укреплен коллектор с 16-ю металлическими пластинами, изолированными друг от друга и от вала машины. Ток, наводимый в катушках при вращении вала, снимался с коллектора при помощи роликов. Одна такая машина требовала для своего привода паровой двигатель мощностью 6-10 л.с. Большим недостатком генераторов «Альянс» было то, что в них использовались постоянные магниты. Так как магнитное действие стальных магнитов сравнительно невелико, то для получения сильных токов нужно было брать большие магниты и в большом числе. Под действием вибрации сила этих магнитов быстро ослабевала. Вследствие всех этих причин КПД машины всегда оставался очень низким. Но даже с такими недостатками генераторы «Альянса» получили значительное распространение и господствовали на рынке в течение десяти лет, пока их не вытеснили более совершенные машины.

Прежде всего немецкий изобретатель Сименс усовершенствовал движущиеся катушки и их железные сердечники. (Эти катушки с железом внутри получили название «якоря» или «арматуры».) Якорь Сименса в форме «двойного Т» состоял из железного цилиндра, в котором были прорезаны с противоположных сторон два продольных желоба. В желобах помещалась изолированная проволока, которая накладывалась по направлению оси цилиндра. Такой якорь вращался между полюсами магнита, которые тесно его обхватывали.

По сравнению с прежними новый якорь представлял большие удобства. Прежде всего, очевидно, что катушка в виде цилиндра, вращающегося вокруг своей оси, в механическом отношении выгоднее катушки, насаженной на вал и вращавшейся вместе с ним. По отношению к магнитным действиям якорь Сименса имел ту выгоду, что давал возможность очень просто увеличить число действующих магнитов (для этого достаточно было удлинить якорь и прибавить несколько новых магнитов). Машина с таким якорем давала гораздо более равномерный ток, так как цилиндр был плотно окружен полюсами магнитов.

Но эти достоинства не компенсировали главного недостатка всех магнитоэлектрических машин – магнитное поле по-прежнему создавалось в генераторе с помощью постоянных магнитов. Перед многими изобретателями в середине XIX века вставал вопрос: нельзя ли заменить неудобные металлические магниты электрическими? Проблема заключалась в том, что электромагниты сами потребляли электрическую энергию и для их возбуждения требовалась отдельная батарея или, по крайней мере, отдельная магнитоэлектрическая машина. Первое время казалось, что без них невозможно обойтись. В 1866 году Вильде создал удачную модель генератора, в котором металлические магниты были заменены электромагнитами, а их возбуждение вызывала магнитоэлектрическая машина с постоянными магнитами, соединенная с тем же паровым двигателем, который приводил в движение большую машину. Отсюда оставался только один шаг к собственно динамо-машине, которая возбуждает электромагниты своим собственным током.

В том же 1866 году Вернер Сименс открыл принцип самовозбуждения. (Одновременно с ним то же открытие сделали некоторые другие изобретатели.) В январе 1867 году он выступил в Берлинской академии с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов». В общих чертах его открытие заключалось в следующем. Сименс установил, что в каждом электромагните, после того как намагничивающий ток переставал действовать, всегда оставались небольшие следы магнетизма, которые были способны вызвать слабые индукционные токи в катушке, снабженной сердечником из мягкого магнитного железа и вращавшейся между полюсами магнита. Используя эти слабые токи, можно было привести генератор в действие без помощи извне.

Первая динамо-машина, работавшая по принципу самовозбуждения, была создана в 1867 году англичанином Леддом, но в ней еще предусматривалась отдельная катушка для возбуждения электромагнитов. Машина Ледда состояла из двух плоских электромагнитов, между концами которых вращались два якоря Сименса. Один из якорей давал ток для питания электромагнитов, а другой – для внешней цепи. Слабый остаточный магнетизм сердечников электромагнитов сначала возбуждал очень слабый ток в арматуре первого якоря; этот ток обегал электромагниты и усиливал уже имеющееся в них магнитное состояние. Вследствие этого усиливался в свою очередь ток в арматуре, а последний еще более увеличивал силу электромагнитов. Мало помалу такое взаимное усиление шло до тех пор, пока электромагниты не приобретали полной своей силы. Тогда можно было привести в движение вторую арматуру и получить от нее ток для внешней цепи.

Следующий шаг в совершенствовании динамо-машины был сделан в том направлении, что совершенно устранили одну из арматур и воспользовались другой не только для возбуждения электромагнитов, но и для получения тока во внешней цепи. Для этого нужно было только провести ток из арматуры в обмотку электромагнита, рассчитав все так, чтобы последний мог достичь полной своей силы и направить тот же ток во внешнюю цепь. Но при таком упрощении конструкции якорь Сименса оказывался непригодным, так как при быстрой перемене полярностей, в якоре возбуждались сильные паразитические токи, железо сердечников быстро разогревалось, и это могло при больших токах привести к порче всей машины. Необходима была другая форма якоря, более соответствовавшая новому режиму работы.

Удачное решение проблемы было вскоре найдено бельгийским изобретателем Зиновием Теофилем Граммом. Он жил во Франции и служил в кампании «Альянс» столярным мастером. Здесь он познакомился с электричеством. Размышляя над усовершенствованием электрогенератора, Грамм в конце концов пришел к мысли заменить якорь Сименса другим, имеющим кольцевую форму. Важное отличие кольцевого якоря (как будет показано ниже) состоит в том, что он не перемагничивается и имеет постоянные полюса (Грамм пришел к своему открытию самостоятельно, но надо сказать, что еще в 1860 г. итальянский изобретатель Пачинотти во Флоренции построил электрический двигатель с кольцеобразным якорем; впрочем, это открытие вскоре было забыто.)

Итак, исходная точка поисков Грамма заключалась в том, чтобы заставить вращаться внутри проволочной катушки железное кольцо, на котором наведены магнитные полюсы и таким образом получить равномерный ток постоянного направления.

Чтобы представить устройство генератора Грамма, рассмотрим сначала следующее приспособление. В магнитном поле, образуемом полюсами N и S, вращаются восемь замкнутых металлических колец, которые прикреплены на равном расстоянии друг от друга к оси при помощи спиц. Обозначим самое верхнее кольцо № 1 и будем считать по направлению хода часовой стрелки. Рассмотрим сперва кольца 1-5. Мы видим, что кольцо 1 охватывает наибольшее число силовых линий магнитного поля, так как его плоскость перпендикулярна им. Кольцо 2 охватывает уже меньшее их число, так как оно наклонено к направлению линий, а сквозь кольцо 3 линии вовсе не проходят, так как его плоскость совпадает с их направлением. В кольце 4 число пересекаемых линий увеличивается, но, как легко заметить, они вступают в него уже с противоположной стороны, так как кольцо 4 обращено к полюсу магнита другой своей стороной по сравнению с кольцом 2. Пятое кольцо охватывает столько же линий, сколько первое, но входят они с противоположной стороны. Если мы будем вращать ось, к которой прикреплены кольца, то каждое кольцо будет последовательно проходить через положения 1-5. При этом, при переходе из 1-го положения в 3-е в кольце возникает ток. На пути из положения 3 к 5, если бы силовые линии пересекали кольцо с той же самой стороны, в нем появлялся бы ток противоположный тому, что в положении 1-3, но так как при этом кольцо изменяет свое положение относительно полюса, то есть поворачивается к нему другой стороной, ток в кольце сохраняет то же направление. Зато когда кольцо проходит из положения 5 через 6 и 7 опять к 1, в нем индуцируется ток, противоположный первому.


    Ваша оценка произведения:

Популярные книги за неделю