355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Константин Крамаренко » Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА » Текст книги (страница 6)
Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА
  • Текст добавлен: 4 июня 2022, 03:09

Текст книги "Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА"


Автор книги: Константин Крамаренко



сообщить о нарушении

Текущая страница: 6 (всего у книги 6 страниц)

Эволюция звёзд типа Солнца

Ночное небо сияет огромным количеством звёзд. Только в звёздном острове нашей Галактики Млечный Путь их насчитывается не менее 100 млрд [46]. А во Вселенной около 100 млрд Галактик. Так что звёзды – один из самых распространённых космических объектов. Звёздообразование продолжается и поныне, спустя 13,7 млрд лет после Большого взрыва. Как же рождаются звёзды, каковы источники их энергии, и чем заканчивается эволюция таких звёзд, как Солнце?

Звёзды образуются под действием гравитации из газопылевых облаков, расположенных в дисках спиральных галактик. Они представляют собой гигантские газовые молекулярные комплексы. Эти структуры, преимущественно состоящие из молекулярного водорода, достигают впечатляющих масштабов, простираясь на расстояния порядка 300 световых лет. В них находятся компактные зоны, имеющие размер в несколько световых месяцев, плотность 30 000 атомов водорода на 1 кубический сантиметр и температуру 10 градусов Кельвина. Процесс гравитационного сжатия таких зон, приводящих к звёздообразованию, до сих пор изучен недостаточно. В настоящее время для этого используется компьютерное моделирование. Одна из неординарных гипотез заключается в том, что процессы фрагментации и аккреции (приращение массы под действием сил тяготения) запускаются гигантскими чёрными дырами, находящимися в центрах галактик.

С точки зрения физики, звезда – это плазменный шар, в котором протекают термоядерные процессы. По сути это термоядерный реактор, представляющий собой постоянно взрывающуюся водородную бомбу, где сила взрыва уравновешивается силами тяготения [47]. В результате возникает устойчивое состояние, в ходе которого выделяется энергия. На Солнце каждую секунду 564 млн тонн водорода превращаются в 560 млн тонн гелия, а дефект массы в виде 4 млн тонн выделяется в виде излучения в окружающее пространство. Механизм выработки энергии у звезды зависит от температуры. Именно температура позволяет преодолевать кулоновские силы отталкивания между атомами водорода, чтобы началась термоядерная реакция синтеза. Генерация энергии в звёздах происходит за счёт так называемого протон-протонного цикла, как только в ядре звезды температура достигнет 10 млн градусов Кельвина. На первом этапе два атома водорода соединяются и образуют дейтерий. Дейтерий, присоединяя третий протон, порождает тритий, или как его ещё называют – гелий-3, лёгкий изотоп гелия. При взаимодействии двух атомов трития образуется атом обычного гелия, а два протона возвращаются в реакцию. В результате разности масс взаимодействующих частиц выделяется энергия.

Как только запускается термоядерная реакция, гравитационное сжатие, с которого начинался процесс формирования звезды, прекращается, и возникает устойчивое состояние, связанное с самоподдерживающейся реакцией расходования водорода, где длительность существования звезды зависит от её массы. Для звёзд типа нашего Солнца этот период составляет до 10 млрд лет. Как бы не были велики запасы водорода в звезде, рано или поздно он закончится. Когда генерация энергии падает, тонкий механизм, уравновешивающий силы гравитации и давления излучения, нарушается, тяготение начинает сжимать звезду. При сжатии выделяется огромное количество энергии, которая в свою очередь раздувает звезду. Её оболочка расширяется, и звезда вступает в новую фазу, называемую красным гигантом. При этом размеры звезды, на примере Солнца, могут достигнуть орбиты Меркурия и даже Земли. Температура в ядре растёт, и как только она превысит 200 млн градусов Кельвина, в термоядерную реакцию вступают атомы гелия. Два атома гелия образуют бериллий, к нему по мере роста температуры присоединяется третий атом гелия, в результате появляется углерод. Звезда входит в углеродный цикл, и время её жизни становится сочтено. Далее атомы гелия, вступая в связь с атомами углерода, образуют кислород, взаимодействие с кислородом порождает неон, затем возникает магний. При достижении температуры в миллиард градусов начинается синтез более тяжелых элементов. Рост температуры приводит к образованию железа. На этом процесс нуклеосинтеза прекращается, поскольку для того, чтобы бросить железо в топку ядерных превращений, требуется температура в несколько миллиардов градусов. Такой энергии у звезды типа Солнца нет, так как для этого необходима масса в несколько раз превышающая исходную. На этой стадии ядро звезды состоит из железа, которое окружено слоями из более лёгких элементов. Энерговыделение прекращается и силам гравитации уже ничего не противостоит, они сжимают звезду до состояния белого карлика, сверхплотного образования с температурой поверхности 30 000 градусов Кельвина. Белый карлик имеет небольшие размеры. К примеру, если Солнце, составляя в диаметре 1,4 млн км, перейдёт в это состояние, оно будет иметь размер всего 40 000 км. Это значит, что плотность вещества такого образования должна быть весьма и весьма значительной. Так, 1 кубический сантиметр подобной материи на Земле весил бы 100 кг, а 0,5 л весили бы 50 тонн. В этом состоянии белый карлик будет остывать, пока не превратится в тёмный маленький объект, называемый чёрным карликом. В нашей Вселенной, скорее всего, таковых пока не имеется, поскольку ещё не прошло достаточного времени для их возникновения [48].

Солнце – типичная, рядовая звезда не только в нашей Галактике, но и во всей Вселенной, таких звёзд в ней до 70 %. В астрономической классификации она имеет название жёлтый карлик с температурой на поверхности 5,6 тыс. градусов Кельвина. Есть звёзды и меньше Солнца, так называемые красные карлики, и они могут «жить» до 50 млрд лет. Особый интерес представляют коричневые карлики, не так давно открытые астрономами благодаря инфракрасным телескопам. Эти звёзды в несколько десятков раз больше Юпитера, они есть нечто среднее между газовыми планетными гигантами и собственно звёздами. Время их активного энерговыделения невелико, поэтому они обнаруживают себя только в виде инфракрасного излучения. Тем не менее вокруг них могут существовать планетные системы. Согласно одной из гипотез, наше Солнце имеет такого «компаньона», который находится между Солнечной системой и ближайшей к нам звезде Альфа Центавра, до которой 4,2 световых года.

Существуют звёзды гораздо больше Солнца, и даже сверхгиганты, превосходящие его в сотни и тысячи раз. Самая большая из обнаруженных на сегодняшний день звёзд имеет размер величиной с Солнечную систему. Чем массивнее звезда, тем быстрее она расходует водород. Поэтому время жизни гигантских звёзд в среднем составляет 1 млн лет. Финал их эволюции носит совсем другой характер и сопровождается взрывными процессами, приводящими к образованию таких экзотических объектов, как нейтронные звёзды и чёрные дыры.

Сверхновые – закономерный итог жизненного цикла массивных звёзд

Предположим, мы находимся в комнате, слушаем музыку, смотрим телевизор, читаем газету. Внезапно материя вспыхивает, всё вокруг превращается в облако плазмы, включая и всю нашу Землю, температура которой мгновенно достигает десятков тысяч градусов. Со стороны можно бы было увидеть, как часть пространства внезапно засияла ярче всех светил и даже Солнца. Возможно ли такое? Современная астрофизика однозначно утвердительно отвечает на этот вопрос.

Массивные звёзды заканчивают свой жизненный цикл взрывными процессами, получившие название вспышки сверхновой. В результате выделяется чудовищная энергия, запасённая звездой в ходе нуклеосинтеза. Взрыв приводит к выбросу звёздной материи и расширению облака плазмы с огромными скоростями на значительные расстояния. Если бы Солнце перешло в состояние сверхновой, то Земля, да и вся Солнечная система, были бы уничтожены и превратились в плазменные образования.

Согласно классификации, сверхновые делятся на два типа. Они отличаются по месту положения в Галактике, по светимости, механизмам возникновения и другим показателям. Сверхновые I типа, как правило, встречаются в эллиптических галактиках, что означает их принадлежность к более старому поколению звёзд. Они порождаются звёздами, чей возраст достигает миллиардов лет. Масса таких звёзд не может значительно превосходить массу Солнца. Светимость в момент взрыва быстро нарастает и через три недели достигает максимума. При этом звезда может светить как вся Галактика, т. е. в несколько миллиардов солнц.

Сверхновые II типа встречаются исключительно в спиральных рукавах галактик, которые в основном состоят из молодого поколения звёзд. В этом случае они должны быть более массивными, по крайней мере в шесть раз больше сверхновых I типа, и короткоживущими. Светимость таких звёзд приблизительно в пять раз меньше и убывает быстрее [49].

Согласно современным представлениям, сверхновые I типа возникают в системах двойных звёзд. При этом одна из звёзд должна находиться в состоянии белого карлика, являющегося продуктом эволюции звёзд типа Солнца. Сильное гравитационное поле белого карлика может «забирать» вещество со своей звезды-компаньона. В итоге его масса значительно увеличивается, и, если вначале она могла составлять 1,4 массы Солнца, то за счёт переноса вещества может превысить предел, после чего начинается коллапс. В центре из-за гравитационного сжатия резко возрастает температура и плотность, порождая новые циклы термоядерных превращений. Углерод и другие элементы, синтезировавшиеся в результате жизнедеятельности звезды, вступают в термоядерные реакции с образованием ядер тяжёлых атомов. В результате выделяется огромная энергия. Происходит термоядерный взрыв, полностью разрушающий звезду без какого-либо остатка и выбрасывающий продукты термоядерного горения в окружающий космос с большими скоростями.

Наличие энергии длительного свечения объясняется превращением радиоактивного кобальта в никель и железо. Одинаковая светимость сверхновых I типа вызвана тем, что все они порождены схожими механизмами и происходят из белых карликов, превысивших предел устойчивости.

Сверхновые II типа возникают в конечной стадии эволюции звёзд крупнее нашего Солнца, не менее чем в 8 – 10 раз [50]. В результате последовательных сжатий таких массивных звёзд происходит синтез тяжёлых элементов. Так, неон превращается в магний, что сопровождается появлением свободных нейтронов. Они вступают в реакцию с металлами группы железа и создают атомы тяжёлых элементов вплоть до урана. Когда температура превысит 1,5 млрд градусов Кельвина, более вероятными становятся распады ядер. При распаде и соединении ядер при температурах 2–5 млрд К рождаются титан, ванадий, хром, кобальт и другие элементы, но наиболее широко представлено железо. По мнению Хойла, именно возникновение группы железа приводит звезду к драматическому финалу. Ядерные реакции, происходящие в ядре звезды, сопровождаются превращением протонов в нейтроны, а электромагнитное излучение переключается на нейтринное. Нейтрино слабо взаимодействует с материей, эта частица может пройти Галактику насквозь и не вступить в реакцию с её веществом. В этом случае радиационное давление, осуществляемое электромагнитным излучением, уже не противостоит гравитации, и возникает имплозия или взрыв внутрь. Размеры железного ядра за доли секунды сокращаются до нескольких километров. Плотность сравнивается с плотностью атомного ядра. Как только это происходит, коллапс резко останавливается. Гравитационная энергия, выделенная при сжатии, распространяется наружу нейтрино и ударными волнами, срывающими оболочку звезды и разбрасывая её материал по окружающему пространству. После вспышки сверхновой II типа остаётся компактный объект – нейтронная звезда, в миллиард раз более плотный, чем белый карлик.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.


    Ваша оценка произведения:

Популярные книги за неделю