355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Константин Андреев » Взрыв и взрывчатые вещества » Текст книги (страница 5)
Взрыв и взрывчатые вещества
  • Текст добавлен: 31 октября 2016, 00:23

Текст книги "Взрыв и взрывчатые вещества"


Автор книги: Константин Андреев



сообщить о нарушении

Текущая страница: 5 (всего у книги 8 страниц)

5. Состав и изготовление взрывчатых веществ

Выше уже указывалось, что кусок обыкновенного угля можно превратить во взрывчатое вещество, если его тщательно измельчить и распылить в воздухе. Сделав то же самое с куском дерева, можно также получить способную ко взрыву пылевоздушную смесь.

Однако разрушительное действие взрыва такой смеси будет относительно слабым, поскольку одна из ее составных частей – воздух – является газом; поэтому смесь еще до взрыва занимает большой объем, и давление взрыва получается небольшим.

Этому нетрудно помочь, применив вместо газообразного воздуха жидкий кислород, плотность которого близка к плотности воды, то есть в тысячу раз больше, чем плотность воздуха. Кроме того, жидкий кислород целиком участвует в горении, в то время как воздух содержит только 1/5 кислорода, а 4/5 его составляет химически инертный азот. Это обстоятельство также уменьшает силу взрыва, происходящего с участием воздуха.

Таким образом, простейшим способом получения взрывчатого вещества является механическое смешение тонко измельченных горючих веществ с кислородом.

Смеси жидкого кислорода с сажей, торфяной мукой, мохом и другими горючими веществами, способными хорошо впитывать жидкий кислород, начали применять в качестве взрывчатых веществ еще в конце прошлого столетия. В ограниченной степени они используются для взрывных работ и сейчас.

Положительной стороной этих взрывчатых веществ – они называются оксиликвитами – является обилие и доступность сырья: залежи торфа и моха широко распространены, а жидкий кислород получают из воздуха.

Изготовление оксиликвитов очень простое и производится на месте выполнения взрывных работ. Бумажная гильза, наполненная горючим порошком, погружается на некоторое время для пропитки в жидкий кислород. Поэтому в районах, отдаленных от заводов взрывчатых веществ, применение оксиликвитов экономически выгодно: отпадают расходы на перевозку и хранение взрывчатых веществ.

Однако оксиликвиты имеют существенный недостаток. Жидкий кислород очень летуч, он кипит, быстро превращаясь в газ уже при температуре 183 градуса ниже нуля. Поэтому срок «жизни» оксиликвитных патронов малого диаметра измеряется минутами. Если производство взрыва почему-либо задержалось, то кислород может настолько улетучиться, что патроны потеряют способность к взрыву. Это препятствует широкому применению оксиликвитов, а для некоторых целей, например для снаряжения большинства видов боеприпасов, делает их применение просто невозможным. Этот недостаток устранен в тех взрывчатых веществах, в которых горючие вещества смешиваются не с самим кислородом, а со специальными нелетучими «поставщиками» кислорода. Известен целый ряд химических соединений, которые в своем составе содержат много непрочно связанного кислорода. В смеси с горючими веществами такие богатые кислородом вещества при разогреве от поджигания или от удара вступают в реакцию, окисляя своим кислородом горючие вещества. Это свойство дает возможность использовать их в качестве «поставщиков» кислорода. Здесь уже нет опасности улетучивания кислорода.

В качестве примера таких взрывчатых веществ может служить старейшее из них – дымный порох. Он состоит, как мы видели, из горючего (уголь + сера) и окислителя – калиевой селитры. Формула калиевой селитры – KNO3 – показывает, что в ней на три атома кислорода приходится один атом азота и один атом калия. При взрыве селитра разлагается, азот выделяется в виде газа, калий дает окись калия К2O (образующую затем углекислую и сернокислую соли калия), а остальной кислород окисляет уголь и серу, образуя углекислоту и другие газы.

Однако применение в качестве окислителя калиевой селитры невыгодно; непрочно связанного кислорода в ней содержится только 40 процентов, и, кроме того, на разложение калиевой селитры требуется значительное количество энергии – 324 большие калории на килограмм. По этой причине теплота взрыва дымного пороха сравнительно небольшая – около 700 больших калорий на килограмм, в то время как при взрыве смеси угля с жидким кислородом выделяется 2200 больших калорий.

Помимо этого, дымный порох при взрыве только наполовину превращается в газы, остальные продукты взрыва являются твердыми веществами.

По этим причинам действие взрыва дымного пороха мало, и в настоящее время он почти полностью вытеснен во взрывных работах взрывчатыми смесями, главной составной частью которых является аммиачная селитра (NH4NO3). Такие смеси имеют большую теплоту взрыва и при взрыве полностью превращаются в газы.

Если механическая смесь состоит из твердых окислителя и горючего, то их необходимо сильно измельчать и тщательно смешивать. Химическая реакция вначале протекает только на поверхности частиц, и чем больше эта поверхность, тем быстрее идет реакция, а только при большой скорости реакция, как мы видели, имеет характер взрыва.

Однако как бы сильно мы ни измельчали твердые составные части смеси, все же нельзя добиться такой равномерности состава, чтобы рядом с каждой молекулой горючего находилась молекула окислителя. Поэтому скорость реакции в механических смесях при взрыве не достигает своего возможного наибольшего значения.

Широко применяется при получении взрывчатых веществ другой способ сочетания горючих элементов и кислорода, обеспечивающий идеальную равномерность состава. Этот способ заключается в получении таких химических соединений, в молекулу которых входят и горючие элементы (углерод и водород) и кислород. Сгорание таких взрывчатых веществ происходит за счет собственных внутренних запасов кислорода, входящего в молекулы соединения.

Например, клетчатка (С6Н10О5), являющаяся главной составной частью древесины, содержит много углерода и водорода, а азотная кислота (HNO3) – много кислорода. При химическом взаимодействии клетчатки и азотной кислоты в определенных условиях и образуется нитроклетчатка, о которой говорилось выше. Это химическое соединение содержит в своей молекуле как углерод и водород, так и кислород. При этом кислород в большей своей части связан с углеродом не непосредственно, а через атом азота. Такое соединение относительно непрочно, и при сильном воздействии, например, при ударе, слабая связь между кислородом и азотом разрывается. Это приводит к вступлению кислорода взрывчатого вещества в реакцию с образованием более прочных соединений – углекислоты и воды – и с большим выделением тепла. Происходит взрыв.

Зависимость способности к взрыву от строения химического соединения хорошо видна на следующем примере. Известны два соединения одинакового состава: изоциановая кислота и гремучая кислота. Молекулы каждой из этих кислот содержат по одному атому водорода, углерода, кислорода и азота. Соли этих кислот также одинаковы по составу; например, в соли серебра атом водорода заменен на атом серебра. В то же время свойства этих солей существенно различны. Соль гремучей кислоты – сильно взрывчатое вещество, а соль изоциановой кислоты не взрывается. Объясняется это тем, что в молекуле изоциановой кислоты атом углерода соединен с атомом кислорода, то есть он частично уже «сгорел» при образовании кислоты. В гремучей же кислоте углерод соединен с азотом; при перегруппировке атомов под соответствующим воздействием он может соединяться с кислородом, что сопровождается выделением значительного количества тепла и дает поэтому взрыв.

Химические соединения, содержащие в своих молекулах атомы горючих элементов и кислорода, разъединенные азотом, или другие атомы, способные перегруппировываться с выделением тепла и образованием газов, могут быть получены не только из клетчатки.

Исследованиями химиков открыто много сотен различных химических соединений, которые являются взрывчатыми веществами. Еще больше взрывчатых веществ было получено путем смешения различных горючих веществ с кислородом или с веществами, богатыми кислородом.

Однако только очень немногие те известных взрывчатых веществ применяются на практике – в военном деле или для взрывных работ в промышленности. Дело в том, что для каждого назначения взрывчатое вещество должно удовлетворять ряду требований и не всякое взрывчатое вещество отвечает этому условию.

Мы уже видели, что у многих взрывчатых веществ повышенная чувствительность к толчкам и ударам исключает или ограничивает возможность их применения в боеприпасах и в горных взрывных работах.

Большое значение имеет также химическая стойкость взрывчатых веществ. Дело в том, что все взрывчатые вещества способны не только к взрыву, но и разлагаются – медленно даже при обычных температурах хранения. Некоторые взрывчатые вещества в чистом виде разлагаются однако крайне медленно. Говорят, что они обладают большой химической стойкостью. Это означает, что такие взрывчатые вещества и снаряженные ими боеприпасы могут храниться десятилетиями, практически не изменяясь. Примером таких взрывчатых веществ может служить тротил – нитросоединение одного из углеводородов – толуола.

Напротив, такие взрывчатые вещества, как нитроглицерин или пироксилин, в отличие от тротила разлагаются сравнительно быстро, особенно, если они недостаточно тщательно приготовлены и содержат примеси кислот, которые ускоряют их разложение. Такое разложение нежелательно не только потому, что оно ведет к ухудшению взрывчатых свойств, но и потому, что, медленное вначале, оно идет со временем все быстрее и быстрее и может привести даже ко взрыву.

В начале текущего столетия в военную технику вводились современные бездымные пороха на основе нитроклетчатки. В то время еще не знали об опасности самопроизвольного разложения их при обычных температурах и не умели его предупреждать. Из-за этого не раз на военных кораблях происходили большие взрывы пороховых запасов, хранившихся при повышенных температурах. Так погибли французские броненосцы «Иена» в 1907 г. и «Либерте» в 1911 г. На «Иене» пороховые заряды хранились над машинным отделением, где температура была очень высокой; кроме того, на корабле находился также долго хранившийся порох сомнительной стойкости. При сходных обстоятельствах произошел взрыв на «Либерте», при котором было убито более двухсот матросов и офицеров. Подобные взрывы имели место во флотах и других стран.

После этих случаев в состав порохов стали вводить специальные добавки, замедляющие их разложение, а также не допускать хранения порохов при повышенных температурах.

Для снаряжения некоторых боеприпасов имеет значение соотношение между температурой плавления взрывчатого вещества и температурой, при нагреве до которой оно самопроизвольно вспыхивает.

Если температура плавления низка, а температура вспышки высока, то взрывчатое вещество можно расплавить и заливать в жидком виде в корпус снаряда, где оно при охлаждении затвердевает. Так можно снаряжать снаряды тротилом, который плавится при 80°, а вспыхивает при гораздо более высокой температуре – 300°.

Снаряжать таким способом взрывчатыми веществами, плавящимися при значительно более высоких температурах, неудобно и даже опасно. Так ксилил имеет температуру плавления около 180°, а температура вспышки его та же, что и у тротила. Поэтому для снаряжения заливкой ксилил не применяют. Еще ближе температуры плавления и вспышки у гексогена (200 и 230°). Снаряжать гексогеном способом заливки поэтому практически невозможно, и приходится применять другие способы снаряжения, например прессование.

Благоприятное сочетание взрывчатых и физических свойств само по себе не всегда еще является достаточным для того, чтобы взрывчатое вещество получило широкое практическое применение.

Необходимо, чтобы был найден и разработан пригодный для производства способ изготовления взрывчатого вещества. Это иногда является нелегкой задачей.

Многие взрывчатые вещества получают обработкой соответствующих органических материалов азотной кислотой. При этом наряду со взрывчатым веществом образуется вода, которая замедляет реакцию и может привести к другим нарушениям процесса. Поэтому обычно азотную кислоту применяют в смеси с крепкой серной кислотой, которая связывает воду. Кроме того, серная кислота взаимодействует с азотной кислотой, переводя ее в такое состояние, при котором скорость образования взрывчатого вещества больше.

Скорость реакции между исходным органическим продуктом и азотной кислотой, как и скорость любой реакции, увеличивается с повышением температуры. Однако этот путь интенсификации производства при изготовлении взрывчатых веществ следует применять с большой осторожностью. При повышении температуры увеличивается не только скорость нужной реакции, ведущей к образованию взрывчатого вещества, но также и реакций окисления органического продукта азотной кислотой, которая является сильным окислителем. Эти реакции очень нежелательны не только потому, что приводят к снижению выхода взрывчатого вещества, но и потому, что они идут с выделением тепла и могут привести к такому быстрому и сильному разогреву, что процесс закончится взрывом. Такие взрывы не раз бывали на заводах взрывчатых веществ; нередко они приводили к полному разрушению мастерской, а иногда и всего завода. Чтобы предотвратить возможность взрыва, получение взрывчатого вещества обычно проводят при относительно низких температурах, хотя это и снижает производительность аппаратуры.

В большинстве случаев требования безопасности удается совместить с достаточной экономичностью производства. Но это бывает не всегда. Примером в этом отношении является тринитробензол [С6Н3(NO2)3], который по своим взрывчатым свойствам не уступает тротилу и даже несколько превосходит его. Тем не менее на практике тринитробензол нигде не применяется, так как производство его гораздо менее экономично и более опасно, чем производство тротила.

Большое значение при выборе взрывчатого вещества для производства имеют источники сырья для его изготовления. Самое лучшее, если это сырье готовится промышленностью для мирных целей или же получается в больших количествах попутно при других производствах. Тогда в военное время эта продукция переключается на изготовление взрывчатых веществ для фронта. Именно так обстоит дело с аммиачной селитрой, которая является основным азотистым удобрением, используемым сельским хозяйством, и производится поэтому промышленностью в огромных количествах. В военное время аммиачная селитра в виде смесей с тротилом (так называемые аммотолы) является главным взрывчатым веществом, применяемым для снаряжения различных боеприпасов. Точно так же толуол (С6Н5СН3), из которого готовится тротил, не является в основной своей части продуктом самостоятельного производства; он получается в больших количествах как побочный продукт при переработке каменного угля на кокс для металлургической промышленности и на светильный газ. При этом процессе образуются разнообразные углеводороды – соединения, состоящие из углерода и водорода в различных соотношениях. Из одной тонны угля получается около 5 килограммов бензола, 0,05 килограмма фенола и до 1,5 килограмма толуола. Поскольку для выплавки железа из руды в странах с высоко развитой промышленностью требуются огромные количества кокса, то количество получаемого толуола также велико.

Коксохимическое производство еще во время первой мировой войны было единственным источником толуола. В дальнейшем его стали получать в небольших количествах также разгонкой некоторых сортов нефти, а главное – путем химической переработки нефти действием высоких температур, при которых входящие в ее состав углеводороды перестраиваются, образуя толуол.

Для получения нитросоединений можно использовать не только один толуол, но и другие углеводороды, получающиеся при сухой перегонке угля, – фенол, ксилол, нафталин. Так из фенола (С6Н5ОН) может быть получен тринитрофенол (пикриновая кислота). Он представляет собой, как и тротил, светложелтый порошок, который также плавится при нагревании (хотя и при несколько более высокой температуре, чем тротил). Поэтому им так же, как тротилом, можно снаряжать снаряды путем заливки в них расплавленного вещества. По силе взрыва пикриновая кислота даже несколько превосходит тротил, но у нее есть несколько серьезных недостатков. Один из них заключается в том, что пикриновая кислота более чувствительна к ударам и толчкам, чем тротил. Поэтому снаряды с пикриновой кислотой более склонны к преждевременным разрывам, чем снаряды с зарядом из тротила. Другой недостаток пикриновой кислоты состоит в том, что, будучи по своей природе кислотой, она может образовывать соли, а эти соли – пикраты – очень чувствительны к удару и к трению и при поджигании дают не горение, а взрыв. Это обстоятельство требует принятия специальных мер, чтобы предотвратить образование пикратов как при производстве, так и в снарядах, снаряженных пикриновой кислотой. Наконец, вследствие кислотного ее характера пикриновую кислоту нельзя применять в смеси с аммиачной селитрой. Все эти недостатки привели в свое время к вытеснению пикриновой кислоты тротилом, и во время второй мировой войны она почти не применялась.

Подобно толуолу и фенолу, во взрывчатые вещества могут быть превращены и другие углеводороды так называемого ароматического ряда.

Все эти взрывчатые вещества – тринитротолуол, тринитрофенол и другие – имеют тот недостаток, что число атомов кислорода в их молекулах гораздо меньше того, которое нужно, чтобы окислить горючие элементы – углерод и водород. Такая нехватка имеется даже в молекуле тринитробензола. На каждый атом углерода для образования углекислоты (СО2) нужно два атома кислорода, на каждый атом водорода для образования воды (Н2О) нужно пол-атома кислорода. На молекулу тринитробензола нужно, таким образом, всего 131/2 атомов кислорода, а содержится в ней всего 6. Казалось бы, что этому легко помочь, вводя в молекулу углеводорода не три, а более нитрогрупп. Однако в действительности ввести четвертую нитрогруппу в молекулы бензола или толуола очень трудно. Действием смеси азотной и серной кислот это не удается сделать и приходится использовать иные, обходные пути. Кроме того, оказалось, что четвертая нитрогруппа очень непрочно держится в молекуле и легко, особенно в присутствии влаги, отщепляется. Поэтому такие взрывчатые вещества не получили практического применения.

Правда, был найден обходный путь к увеличению содержания кислорода в нитросоединениях. Оказалось, что четвертая нитрогруппа может быть введена и достаточно прочно держится в молекуле, если она не прямо соединена с углеродным атомом тринитробензола, а через промежуточный атом, например, через атом азота. Так было получено соединение с длинным химическим названием тринитрофенилметилнитрамин, в технике кратко именуемое тетрилом.

По числу атомов тетрил отличается от тротила лишней группой NO2 и атомом азота. Нехватка кислорода в нем меньше, чем в тротиле, и сила взрыва соответственно больше. При испытании в свинцовом цилиндре, например, он дает эффект на 20 проц. больше, чем тротил.

Однако повышенная сила взрыва получается в данном случае ценой значительно меньшей химической стойкости: при нагревании тетрил вспыхивает при 200°, в то время как тротил только при 300°. Кроме того, тетрил много чувствительнее к удару, чем тротил. Наконец, получение тетрила и сложнее, и опаснее, чем тротила. По всем этим причинам он применяется в сравнительно небольших количествах для специальных целей, где нужно повышенное бризантное действие, – для изготовления промежуточных детонаторов к различным боеприпасам и для снаряжения капсюлей-детонаторов, заменяя в них часть инициирующего взрывчатого вещества.

Однако давно уже были известны соединения, содержащие кислорода гораздо больше, чем содержат его тротил или даже тетрил. Одно из них, открытое известным русским химиком Л. Н. Шишковым в 1861 г., – тетранитрометан [С(NO2)4], содержит даже слишком много кислорода – четыре атома на один единственный атом углерода и поэтому взрывается с трудом. Долгое время тетранитрометан не считали взрывчатым. Лишь недавно было установлено, что он способен к взрыву даже сам по себе. Если же в тетранитрометане растворить горючие вещества, вроде бензола, толуола и т. п., то получаются очень сильные взрывчатые вещества. Однако такие растворы одновременно очень чувствительны к удару и к трению; поэтому они так опасны в обращении, что не получили практического применения.

Их опасность усугубляется тем, что горение таких взрывчатых веществ легко переходит во взрыв, что может привести к тяжелым несчастным случаям.

В Мюнстерском университете в Германии при чтении лекций по химии в течение ряда лет показывался опыт по пережиганию железной проволоки пламенем, имеющим высокую температуру и богатым кислородом.

Для получения такого пламени в качестве горючего применялся тетранитрометан с небольшой добавкой толуола. Этой смесью пропитывалась вата, набитая в железную трубку, закрытую с нижнего конца; поджигание производилось с открытого верхнего конца трубки. Обычно горение протекало спокойно, но на одной из лекций под конец опыта оно привело к сильнейшему взрыву. Железная трубка была разорвана, и осколки ее разбросаны во все стороны с огромной силой. Аудитория была переполнена студентами, и тридцать из них были поражены осколками, в том числе десять смертельно.

Известны соединения, подобные тетранитрометану, но с меньшим избытком кислорода, например, тринитрометан [СН(NO2)3], гексанитроэтан [С2(NO2)6], но они отличаются малой химической стойкостью и большой чувствительностью к удару и также не получили поэтому практического применения.

В 1847 году итальянский ученый Асканио Собреро, вводя глицерин в смесь азотной и серной кислот, получил тяжелую маслообразную жидкость, которая от нагрева или слабого удара взрывалась с большой силой. Это был нитроглицерин [С3Н5(ONO2)3]. Вскоре после открытия его стали применять в горном деле для взрывных работ. Однако жидкое взрывчатое вещество неудобно в обращении. Если шпур идет горизонтально или с уклоном вверх, то залить в него жидкость практически невозможно.

Чтобы сделать нитроглицерин более удобным в обращении, русский артиллерист В. Ф. Петрушевский в 1868 году предложил применять его в виде динамита, представлявшего собой смесь 75 проц. нитроглицерина и 25 проц. магнезии в качестве поглотителя. Для проведения опытов им было изготовлено в Кронштадте около 300 килограммов этого динамита, давшего при испытаниях хорошие результаты.

За рубежом натолкнулись на свойства некоторых порошкообразных веществ поглощать нитроглицерин с образованием взрывчатых смесей случайно. Нитроглицерин перевозился в жестяных банках, которые для предохранения от ударов ставились в ящики; дно ящиков и пространство между стенками ящика и банкой засыпали инфузорной землей – мягким минеральным порошком, представляющим собою микроскопические трубчатые чешуйки ископаемых инфузорий. Однажды банка дала течь и часть нитроглицерина из нее вытекла. Однако снаружи ящика он не появился. Оказалось, что инфузорная земля очень хорошо поглощает и удерживает нитроглицерин. Это ее свойство было использовано для изготовления динамита, первоначально состоявшего те 3 частей нитроглицерина и 1 части инфузорной земли. Такой динамит по внешнему виду похож на жирную огородную землю; в бумажных гильзах ею удобно вводить в шпур и нитроглицерин из нею не вытекает.

Одним из недостатков этого динамита является то, что нитроглицерин из него может вытесняться водой, это мешает его применению для взрывных работ под водой. Поэтому в дальнейшем были разработаны другие динамиты, в которых нитроглицерин превращен добавлением определенного сорта нитроклетчатки в густую тягучую желатину, на которую вода практически не действует. Наряду с «желатинированным» нитроглицерином динамиты обычно содержат селитру и древесную муку; это удешевляет динамит и уменьшает его дробящее действие, чрезмерно высокое для подрыва большинства горных пород.

Еще шире стали применять нитроглицерин, когда были разработаны пороха на его основе – нитроглицериновые пороха. Дело в том, что бездымный порох первоначально разработанного во Франции типа – пироксилиновый порох – при всех его преимуществах перед дымным порохом имеет серьезный недостаток, состоящий в сложности и длительности его производства.

В принципе сущность производства проста – надо растворить нитроклетчатку в подходящем растворителе (обычно применяют смесь спирта с эфиром, хорошо растворяющую некоторые виды нитроклетчатки), придать полученному густому тесту нужную форму и затем удалить растворитель. Однако последняя стадия производства требует много времени, несмотря на то, что сам растворитель очень летуч (спирт кипит при 78°, эфир при 35°). Если сушку пороха от растворителя проводить быстро, то на поверхности зерен пороха образуется корочка и удаление растворителя из внутренних слоев резко замедляется; кроме того, при быстрой сушке частицы пороха могут сморщиваться, теряя требуемую форму и размеры. Такой порох будет не пригоден для точной стрельбы.

Чтобы избежать этого, удаление растворителя ведут очень медленно, сначала осторожной сушкой (провялкой), потом вымочкой в воде, после чего порох вновь сушат для удаления воды и т. д. Особенно много времени требует удаление растворителя при орудийных порохах с толстыми частицами; длительность их изготовления может достигать 10 суток. Очень же толстые пороха, какие, например, требуются для некоторых реактивных снарядов, этим способом практически нельзя готовить.

Понятно, что при такой длительности изготовления производительность завода оказывается очень небольшой, и на нем скапливается огромное количество пороха, что вообще нежелательно, особенно же в условиях военного времени.

Все эти трудности были разрешены применением для растворения нитроклетчатки иного взрывчатого растворителя.

Удаление обычного растворителя вроде спирта-эфира необходимо в первую очередь потому, что он не взрывчат и, оставаясь в порохе, снижал бы его действие. Если же взять растворитель, который сам способен гореть за счет собственного кислорода с большим выделением энергии, то необходимость в его удалении отпадает. В качестве такого растворителя и был в свое время применен нитроглицерин, почему и пороха на его основе называются нитроглицериновыми бездымными порохами.

Изготовление таких порохов состоит в смешении нитроклетчатки с нитроглицерином, которое в целях безопасности и для получения максимальной однородности смеси производится под водой. После отжима воды из полученной смеси ее тщательно перемешивают при повышенной температуре. Эта операция производится путем пропускания массы через гладкие чугунные вальцы, обогреваемые изнутри горячей водой. При этом испаряется оставшаяся после отжима вода и благодаря повышенной температуре происходит растворение нитроклетчатки в нитроглицерине, рыхлая пороховая масса превращается в более или менее прозрачное буроватое «полотно». Обычно это полотно свертывают в рулоны и помещают в пресс, имеющий кольцевые (или иные) отверстия. Прессованием, которое тоже ведется для размягчения пороха при повышенной температуре, через эти отверстия выдавливается пороховая трубка. По охлаждении она становится более твердой и прочной.

Когда нужно получить порох в виде тонких пластинок, например, для минометов, то в прессовании нет необходимости и пороховое полотно прокаткой доводят до нужной толщины, а затем режут на маленькие квадратики.

Никакой дополнительной сушки нитроглицеринового пороха, как правило, не требуется и длительность всего процесса производства оказывается в несколько раз меньше, чем при пироксилиновом порохе; особенно велика разница во времени изготовления при зернах большой толщины.

У нитроглицеринового пороха есть серьезный недостаток, относящийся, правда, не к свойствам пороха, а к сырью, из которого он готовится. Дело в том, что нитроглицерин готовится из глицерина, а глицерин получается из жиров, обычно при действии на них щелочей – тогда образуются мыло и глицерин. Понятно, что во время войны, когда положение с продовольствием обостряется, использование пищевого сырья для производства порохов крайне нежелательно.

Выход из этого положения практически был найден во время второй мировой войны в виде замены нитроглицерина на сходное с ним взрывчатое вещество – диэтиленгликольдинитрат. Главным его преимуществом является то, что он готовится не из жиров, а из газа этилена, получающегося в больших количествах при переработке каменного угля и нефти. При этом порох на основе диэтиленгликольдинитрата не уступает по качеству нитроглицериновому, а в некоторых отношениях даже его превосходит.

Серьезные трудности в обеспечении порохового производства сырьем встречались также в отношении нитроклетчатки. Долгое время она готовилась только из хлопка, который представляет собой почти чистую клетчатку. Во время первой мировой войны в связи с ростом потребности в порохах и нехваткой хлопка, особенно в Германии, были разработаны способы получения достаточно чистой клетчатки из древесины. Из нее с тех пор и делают нитроклетчатку для бездымных порохов.

Важнейшую роль в изучении нитроклетчатки и ее использовании для порохов сыграли исследования гениального русского химика, творца периодической системы элементов Д. И. Менделеева. Эти исследования привели к созданию нового, более совершенного вида бездымного пороха, так называемого пироколлодийного пороха.

В царской России открытие Менделеева ее получило признания и применения; оно было использовано на пороховых заводах США, производивших в значительных количествах пироколлодийный порох и даже поставлявших его России в годы первой мировой войны. Вклад Д. И. Менделеева в пороходелие этим не ограничился. Он предложил и ввел в производство новый способ обезвоживания нитроклетчатки, упростивший и обезопасивший этот процесс. Работы З. В. Калачева, Г. Г. Сухачева, А. В. Сухинского, А. В. Сапожникова и др. еще более способствовали дальнейшему усовершенствованию производства пороха в нашей стране.

Нитроглицерин как взрывчатое вещество отличается от тротила и других ароматических нитросоединений тем, что в нем кислорода ее только достаточно для полного сгорания углерода и водорода, но даже несколько больше. В связи с этим по количеству энергии, выделяющейся при взрыве, и, следовательно, по силе взрыва нитроглицерин значительно превосходит тротил (приблизительно в полтора раза).

Нитроглицерин и динамиты по сравнению с тротилом очень чувствительны и применять их для снаряжения боеприпасов, особенно же артиллерийских снарядов, нельзя. То же относится и к большинству других взрывчатых веществ, близких нитроглицерину по строению.


    Ваша оценка произведения:

Популярные книги за неделю