Текст книги "Когнификация безопасности техногенной деятельности"
Автор книги: Константин Чернов
сообщить о нарушении
Текущая страница: 2 (всего у книги 3 страниц)
2.3. Вещественно-энергетические знаки биотранскодинга
Сциенция как совокупность биотических транскодируемых вещественно-энергетических знаков, знаков биотранскодинга, способствует организованности биотических компонентов и систем на всех уровнях сопринадлежности от протоорганоидов до макроорганизмов.
Абиотические компоненты с вещественно-энергетическим содержанием описываются свойствами вещества и энергии. Эволюция косной субстанции отображается осознаваемой при кодофлексии эволюцией вещественно-энергетических свойств. Вещественные свойства эволюционируют от свойств амеров до свойств макромолекулярных частиц. Энергетические свойства эволюционируют вместе с эволюцией вещественных свойств. При образовании макромолекулярных частиц возникают дополнительные свойства, называемые сциентными.
Биотические компоненты со сциентным содержанием описываются свойствами сциенции. Эволюция живой субстанции отображается осознаваемой при кодофлексии эволюцией сциентных свойств. Сциентные свойства – это свойства организмов, начиная с протоорганоидов, продолжая внутриклеточными органоидами, клетками, органами многоклеточных организмов, многоклеточными и социальными организмами.
Свойства сциенции обеспечиваются теми веществом и энергией, посредством которых она создаётся. Вещественные свойства сциенции определяются типом вещественных знаков, а энергетические – видами энергетических знаков. Доминирование в сциенции вещественных или энергетических свойств обусловливает её вещественно-энергетическую или энерго-вещественную разновидность.
Знаком, определяющим энергетические свойства сциенции, служит нескомпенсированный, частично или временно скомпенсированный электрический заряд. Электрический заряд определяет способность частиц быть источниками электромагнитных полей и принимать участие в электромагнитном взаимодействии.
К знакам, определяющим вещественные свойства сциенции и, как следствие, её аутоактантность, относятся биотические частицы – носители нескомпенсированных, частично или временно скомпенсированных электрических зарядов.
Первичным носителем заряда является электрон6262
др.-греч. – янтарь
[Закрыть] с определёнными массой и спином. Электрон – стабильная отрицательно заряженная частица, которая не разделяется на компоненты и служит одним из основных структурных компонентов вещества.
К носителям зарядов относятся также ионы6363
др.-греч. – идущее
[Закрыть]. Ион образуется из атома или молекулы при потере или присоединении одного или нескольких электронов. Ион, имеющий положительный заряд, называется катионом, отрицательный – анионом.
Отрицательно заряженные ионы образуются в результате присоединения к атому или молекуле электронов. Присоединение электрона сопровождается выделением энергии.
Атомные и молекулярные частицы превращаются в положительно заряженные ионы при потере одного или нескольких электронов. Отрыв электрона от атома или молекулы требует затрат энергии. При низких значениях энергии ионизации частицы легко теряют свои внешние электроны под действием электромагнитной энергии. Отрыв электрона происходит вследствие поглощения частицей фотонов электромагнитной энергии.
Фотон электромагнитной энергии – электрически нейтральный квант электромагнитного поля, движущийся со скоростью света и электромагнитно взаимодействующий с частицами вещества.
Поглощение фотонов частицами вещества сопровождается переходом электрона с менее высокого энергетического уровня на более высокий и его освобождением, которое именуется фотоэффектом. Фотоэлектрический эффект представляет собой освобождение из частиц электронов вследствие поглощения фотонов, создающих нескомпенсированные электрические заряды.
Возврат электрона с более высокого энергетического уровня на менее высокий сопровождается излучением фотонов или безизлучательным переносом энергии с её поглощением и переходом частицы в более активное кинетическое состояние.
К биотическим носителям нескомпенсированных, частично или временно скомпенсированных электрических зарядов, определяющим вещественные свойства сциенции, относятся макромолекулярные частицы.
Макромолекулярная частица становится носителем нескомпенсированных электрических зарядов после разрыва её водородного, ван-дер-ваальсового, электростатического или иного слабого взаимодействия с другими частицами, например с частицами ассоциированной воды. Разрыв коннексии6464
лат. connexio – связь, соединение
[Закрыть] взаимодействия сопровождается поглощением электромагнитной или кинетической энергии.
Сциенция предстаёт совокупностью энергетических и вещественных знаков, участвующих в биотранскодинге.
2.4. Сциентность протоорганоидов
Сопринадлежность протоорганоида6565
др.-греч. – первый
[Закрыть] заключается в том, что в его состав входят квазиорганоиды, которые состоят из антеорганоидов6666
лат. анте – до
[Закрыть]. Протоорганоиды в отличие от квазиорганоидов обладают аутоактантностью.
Квазиорганоиды представляют собой супрамолекулярные соединения антеорганоидов. Антеорганоиды являются органическими полимерами, содержащими кроме углерода, водород, азот, кислород, серу, фосфор и другие химические элементы.
Органические полимеры состоят из повторяющихся звеньев, т.е. органических мономеров, в которых реализуются катенационная и асимметрическая специфичности углерода.
Взаимодействие в органических мономерах представляет собой перманентное взаимодействие, определяемое коннексией частиц, состоящих из атомов, и частиц, входящих в состав атомов. Основной разновидностью внутримолекулярной коннексии мономеров служит перманентное ковалентное6767
лат. со– – приставка, означающая совместность; valens – имеющий силу
[Закрыть] взаимодействие.
Органические мономеры предстают субмолекулярными частицами, образованными атомами, в том числе асимметрическим атомом углерода. Асимметрический атом углерода ковалентно коннексирован с четырьмя разными радикалами, обусловливая хиральность6868
др.-греч. – рука
[Закрыть] частицы.
Органические мономеры с одним асимметрическим атомом углерода существуют в виде двух изомеров6969
др.-греч. – равный; – доля, часть
[Закрыть], соотносящихся между собой как предмет и его зеркальное отражение. Изомеры по-разному отклоняют фотоны поляризованной электромагнитной энергии, проходящие через их растворы, и в соответствии с направлением этого отклонения называются правовращающимися D7070
лат. dextro – правый
[Закрыть] и левовращающимися L7171
лат. laevo – левый
[Закрыть]. Изомеры, называемые энантиомерами, похожи, но не тождественны друг другу. Энантиомеры имеют одинаковый состав, но разное относительное расположение субчастиц в пространстве, то есть разную хиральность.
Другая особенность мономеров заключается в том, что электроны межсубчастичных молекулярных орбиталей способны поглощать кванты электромагнитной энергии и переходить на более высокие энергетические уровни и затем высвобождаться. Возврат электронов в прежние состояния сопровождается излучением квантов электромагнитной энергии или переносом поглощённой энергии по мономеру и переходом мономера в активное кинетическое состояние.
Органические мономеры, состоящие из субмолекулярных частиц, имеют в своём составе ковалентно взаимодействующие атомы водорода, кислорода и азота. Ковалентно коннексирующий в субмолекулярной частице атом водорода с частичным или частично некомпенсированным положительным зарядом одного мономера способен вступать во взаимодействие с ковалентно коннексирующим в субмолекулярной частице атомом кислорода или азота с частичным или частично некомпенсированным отрицательным зарядом другой молекулы с образованием перманентного водородного взаимодействия. В свою очередь, ковалентно коннексирующий в субмолекулярной частице атом кислорода или атом азота с частичным отрицательным зарядом одного мономера способен взаимодействовать с ковалентно коннексирующим в субмолекулярной частице атомом водорода с частичным положительным зарядом другой молекулы также с образованием перманентного водородного взаимодействия. Энергия водородной коннексии имеет малые значения, но при большом количестве взаимодействий она становится определяющей. Нескомпенсированные и частично некомпенсированные заряды мономера могут компенсироваться коннексией с молекулами воды при малых затратах энергии.
Межмолекулярные взаимодействия с участием мономеров представляют собой энергетические взаимодействия. Они разделяются на универсальные и специфические. Универсальные межмолекулярные взаимодействия, называемые также ван-дер-ваальсовыми, совершаются между любыми молекулами. Они подразделяются на ориентационные, т.е. диполь-дипольные, индукционные, дисперсионные и отталкивательные коннексии взаимодействия. Специфические межмолекулярные взаимодействия относятся к индивидуальным, присущим данной паре коннексирующих частиц. Специфические коннексии предстают прерывными взаимодействиями в виде упругих и неупругих столкновений, перманентными и лабильными водородными связями взаимодействия, а также ионными коннексиями, обусловленными переносом валентных электронов с одного атома на другой с образованием электростатически взаимодействующих положительных и отрицательных ионов.
Полимеры в отличие от мономеров характеризуются не только количеством атомов, хиральностью и конфигурацией, но конформационной7272
лат. conformatio – форма, построение, расположение
[Закрыть] и структурной многовариантностью.
Конформация полимера представляет собой пространственную форму, которая возникает при повороте её отдельных частей относительно друг друга вокруг устойчивых коннексий между ними. При переходе от одной конформации к другой расходуется энергия, конфигурация полимера при этом не меняется. Полимер может иметь много конформаций, но устойчивыми из них являются те, которые обеспечиваются минимальными количествами энергии.
Полимеры состоят из мономеров, имеющих в своём составе ковалентно коннексированные атомы водорода, кислорода, азота с частично некомпенсированным зарядом, которые способны взаимодействовать с ковалентно коннексированными в другом мономере атомами с образованием перманентного водородного взаимодействия.
Частичные заряды вне полимерных коннексий компенсируются при малых значениях энергии связями перманентного взаимодействия с молекулами воды.
Многоатомный состав, хиральность, конфигурация и конформация приводят к образованию перманентных, в основном водородных связей взаимодействия между повторяющимися и разными мономерами полимера, придавая его структуре пекулиарность7373
лат. peculiaris – особенный, своеобразный, собственный
[Закрыть].
Полимер имеет конституцию7474
лат. constituere – ставить, устанавливать
[Закрыть] и конфигурацию, находится в определённом конформационном состоянии и предстаёт пекулиарной структурой, обусловленной конституцией, конфигурацией, конформацией и взаимодействием с компонентами внешнего окружения, в частности взаимодействием с молекулами воды.
Конституция полимера представляет собой тип, количество, хиральность и связность атомов в нём. Связность предстаёт длинами связи и углами между смежными коннексиями.
Конфигурация есть расположение в пространстве атомов полимера заданной конституции без учёта всех иных расположений, получаемых из данного только вращением вокруг одной или нескольких простых связей.
Данная конституция полимера и его конкретная конфигурация не позволяют чётко зафиксировать положение атомов в пространстве, поскольку оно обусловливается также их вращением вокруг одной или нескольких простых связей взаимодействия. Под конформацией полимера данной конституции и конкретной конфигурации понимают расположение атомов вокруг всех коннексий, которое задаётся указанием величин и знаков всех торсионных7575
лат. torsio – кручение
[Закрыть] углов. Торсионный угол есть угол между двумя коннексиями, расположенными в разных плоскостях.
Полимер предстаёт последовательностью соединённых ковалентными коннексиями мономеров-звеньев. Энергетическая особенность полимера заключается в том, что электроны межсубчастичных молекулярных орбиталей мономеров и электроны межзвенных молекулярных орбиталей способны поглощать кванты электромагнитной энергии и переходить на более высокие орбиты и затем высвобождаться. Возврат электронов в прежние состояния сопровождается излучением и/или переносом энергии по макромолекуле с поглощением и переходом полимера в активное кинетическое состояние.
Излучаемая электромагнитная энергия воспринимается электронами межсубчастичных молекулярных орбиталей мономеров и электронами межзвенных молекулярных орбиталей. Поглощённая энергия распространяется по макромолекуле и способствует образованию дополнительных, в основном водородных связей взаимодействия между мономерами одного полимера.
Антеорганоиды как органические полимеры предстают, прежде всего, пептидными7676
греч. – питательный
[Закрыть] и нуклеиновыми7777
лат. nucleus – ядро
[Закрыть] полимерами, которые являются носителями антесциенции.
Антесциенция полимеров представляет собой совокупности вещественно-энергетических знаков, которые при вхождении антеорганоидов в состав органоидов, способны участвовать в биотранскодинге.
В состав антесциенции входят следующие вещественно-энергетические знаки:
– нескомпенсированные, частично нескомпенсированные и временно скомпенсированные электрические заряды, их потенциальные, потоковые и полевые характеристики;
– конституция, в том числе хиральная, конфигурация, конформация носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их потенциальными, потоковыми и полевыми характеристикам;
– пекулиарная структура, обусловленная конституцией, в том числе хиральной, конфигурацией, конформацией носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их потенциальными, потоковыми и полевыми характеристикам и пространственным распределением.
Квазиорганоиды предстают супрамолекулярными7878
лат. super – поверх
[Закрыть] соединениями антеорганоидов и других органических молекул, прежде всего, белков, нуклеиновых кислот, углеводов, липидов. В частности, к белковым супрамолекулярным соединениям относятся нуклеопротеины, липид-белковые комплексы и липопротеины, углевод-белковые комплексы, хромопротеины, фосфопротеины и др.
Супрамолекулярные соединения предстают системами, в которых её компоненты взаимодействуют друг с другом, при этом процесс взаимодействия допускает их относительное перемещение в пространстве.
Внешняя среда супрамолекулярной системы может находиться в следующих фазовых7979
др.-греч. – выявление; появление
[Закрыть] состояниях, или фазах: в газовой, жидкой, газовой и жидкой, газовой и твёрдой, жидкой и твёрдой.
Энергия межкомпонентного взаимодействия в супрамолекулярной системе коннексирует молекулы в целое, связанное с внешней средой и имеющее какую-либо стереоформацию8080
греч. – пространственный; лат. formatio – образование
[Закрыть].
Межкомпонентное взаимодействие в супрамолекулярной системе является перманентным нековалентным межмолекулярным взаимодействием, которое имеет следующие разновидности: ван-дер-ваальсовое, водородное, электростатическое, ароматическое (стэкинг-взаимодействие), лиофильное8181
др.-греч. – растворяю, – люблю
[Закрыть], лиофобное8282
– страх
[Закрыть].
Во всех супрамолекулярных системах коннексирующий компонент содержит места, или локусы8383
лат. locus – место
[Закрыть], коннексии, посредством которых происходит селективное8484
лат. selectio – выбор, отбор
[Закрыть] связывание коннексируемого компонента, в том числе по образу «замочная скважина – ключ от замка».
Супрамолекулярные системы имеют несколько стереоформационных состояний с переходами между ними, имеющими низкие энергетические барьеры. Изменение стереосостояния супрамолекулярной системы вследствие изменений во внешней среде сопровождается изменением её вещественно-энергетических свойств.
Квазисциенция супрамолекулярных соединений представляет собой совокупности вещественно-энергетических знаков, которые при вхождении квазиорганоидов в состав органоидов, способны участвовать в биотранскодинге.
В состав квазисциенции входят следующие вещественно-энергетические знаки супрамолекулярных соединений:
– нескомпенсированные, частично нескомпенсированные и временно скомпенсированные электрические заряды, их потенциальные, потоковые и полевые характеристики;
– конституция, в том числе хиральная, конфигурация, конформация носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их потенциальными, потоковыми и полевыми характеристикам;
– пекулиарная структура, обусловленная конституцией, в том числе хиральной, конфигурацией, конформацией носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их потенциальными, потоковыми и полевыми характеристикам и пространственным распределением;
– стереоформация, образованная селективной коннексией носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их потенциальными, потоковыми и полевыми характеристикам и пространственным распределением, которые имеют пекулиарную структуру, обусловленную их конституцией, в том числе хиральной, конфигурацией, конформацией.
Селективная самосборка молекул в супрамолекулярное соединение определённой стереоформации предстаёт предшественником самодействия, аутоактантности, сциенции.
Супрамолекулярная система, приобретшая способность к созданию копии одного из своих компонентов становится протоорганоидом.
В соответствии с теорией кодофлексии эволюционное возникновение первичного биотранскодинга могло происходить следующим образом:
1. Последовательное абиогенное образование мономеров, олигомеров, полимеров, в том числе рацемической смеси полимеров.
2. Воздействие фотонов отражённого поляризованного электромагнитного излучения на рацемическую смесь полимеров с достижением хиральной чистоты.
3. Аутоактантное преобразование полимера с энантиомерными субчастицами с возникновением его копии.
Протоорганоид является первично транскодирующей супрамолекулярной системой с компонентами, отдельные частицы которых обладают хиральной чистотой.
В состав протосциенции входят следующие вещественно-энергетические знаки протоорганоидов:
– нескомпенсированные, частично нескомпенсированные и временно скомпенсированные электрические заряды, их потенциальные, потоковые и полевые характеристики;
– хиральная конституция, конфигурация, конформация носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их потенциальными, потоковыми и полевыми характеристикам;
– пекулиарная структура, обусловленная хиральной конституцией, конфигурацией, конформацией носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их потенциальными, потоковыми и полевыми характеристикам и пространственным распределением;
– стереоформация, образованная селективной коннексией носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их потенциальными, потоковыми и полевыми характеристикам и пространственным распределением, которые имеют пекулиарную структуру, обусловленную их хиральной конституцией, конфигурацией, конформацией.
Совокупность вещественно-энергетических знаков протоорганоидов, предстающая стереоформацией, образованной селективной коннексией носителей нескомпенсированных, частично нескомпенсированных и временно скомпенсированных электрических зарядов с их пространственным распределением, которые имеют пекулиарную структуру, обусловленную их хиральной конституцией, конфигурацией, конформацией, является энграммной протосциенцией.
Текущая реализация потенциальных, потоковых и полевых характеристик энграммной протосциенции является куррентной протосциенцией.
Энграммная протосциенция, являющаяся транскодирующей, и куррентная протосциенция, исполняющая энграммную, предстают протосциенцией протоорганоида.
Первичный биотранскодинг осуществляют, в частности, рибозимы вироидов. Рибозим – аббревиатура от слов «рибонуклеиновая кислота (РНК)» и «энзим8585
греч. – закваска
[Закрыть]».
РНК – полимер, в котором каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. К азотистым основаниям относят аденин, гуанин, цитозин, урацил. Рибоза – моносахарид из группы пентоз в форме правовращающей β-рибофуранозы. Фосфатная группа – остаток фосфорной кислоты (H3PO4). Четыре азотистых основания могут располагаться вдоль цепи мономеров в самой разной последовательности. Энзим представляет собой ускоритель, катализатор, коннексных преобразований.
Вироиды8686
лат. virus – яд; греч. eidos – вид
[Закрыть] – лишенные оболочки небольшие молекулы кольцевой одноцепочечной РНК длиной в несколько сотен нуклеотидов. Рибозим как компонент вироида обладает способностью к первичному биотранскодингу, т.е. переносу вещественно-энергетических знаков сциенции с РНК на её копию при репликации8787
лат. replicatio – возобновление
[Закрыть].
Сциенция протоорганоида синергирует квазисциенцию супрамолекулярных соединений, которая совмещает в себе антесциенцию органических полимеров.
Гипотетическая эволюционная стадия перехода от абиогенеза к биогенезу именуется «миром РНК». В соответствии с теорией кодофлексии репликация в «мире РНК», т.е. перенос вещественно-энергетических знаков сциенции с оригинала на копию, происходил вследствие воздействия высокоэнергетических фотонов поляризованной электромагнитной энергии на супрамолекулярную систему с компонентами, отдельные субмолекулярные частицы которых обладали хиральной чистотой.
Энергия фотонов поляризованного электромагнитного излучения, поглощаемая хиральными субмолекулярными частицами, придавала им кинетическую активность, которая в сочетании со всей совокупностью вещественно-энергетических знаков сциенции и с участием абиотических компонентов внешней среды супрамолекулярной системы вызывала репликацию.
Дарвиновская эволюция в «мире РНК» совершается через наследственность, изменчивость, отбор, но с преобладающим развитием и под влиянием сциенции, и приводит к образованию более сложных супрамолекулярных систем, таких как псевдоциты8888
др.-греч. – обманываю, ввожу в заблуждение; – вместилище, клетка
[Закрыть], затем квазициты8989
лат. quasi – якобы, почти, словно
[Закрыть].