355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Карл Гильзин » Воздушно-реактивные двигатели » Текст книги (страница 4)
Воздушно-реактивные двигатели
  • Текст добавлен: 11 сентября 2016, 16:10

Текст книги "Воздушно-реактивные двигатели"


Автор книги: Карл Гильзин



сообщить о нарушении

Текущая страница: 4 (всего у книги 11 страниц)

Очевидно, материал, из которого можно изготовить лопатки газовой турбины, должен обладать по крайней мере двумя качествами: быть исключительно жаропрочным и вместе с тем не обладать склонностью к ползучести.

Готовых металлов с такими свойствами в природе нет, их нужно было создавать заново. Поэтому борьба за газовую турбину шла двумя путями. Ученые и конструкторы совершенствовали компрессор и турбину, ибо чем они совершеннее, чем больше их коэффициент полезного действия, тем меньше минимальная температура газов, при которой турбина в состоянии не только вращать компрессор, но и развивать полезную мощность. Металлурги же создавали новые сплавы для лопаток турбины.

Наконец, задача была решена. В настоящее время компрессор и турбина стали высокосовершенными машинами с небывало высоким к. п. д. (к. п. д. компрессора достигает 80—82 %, а к. п. д. турбины – почти 90 %). Были получены замечательные сплавы различных редких металлов – никеля, хрома, кобальта, молибдена, вольфрама, тантала, ниобия; эти сплавы обладают большой жаропрочностью и малой ползучестью. Изготовленные из них лопатки турбины надежно работают в течение сотен часов при температуре газов 750—800° С и более.

Интересно отметить, что немалый вклад в решение задачи создания газовой турбины сделали ученые, конструкторы и технологи, работавшие над усовершенствованием... поршневого авиационного двигателя. Вот как это произошло.

Более трети века назад ученые и конструкторы стали задумываться над тем, чтобы научиться использовать теряющуюся энергию отходящих газов поршневого двигателя. Ведь из двигателя через выхлопные патрубки вытекают в атмосферу продукты горения топлива – газы, обладающие температурой до 1000° С. Тепловая энергия этих газов вдвое – втрое превышает мощность двигателя; это значит, что на каждую лошадиную силу мощности, которую развивает двигатель, 2—3 л. с. «вылетают в трубу», теряются с выхлопными газами. Предлагались и исследовались различные методы использования этой теряющейся энергии газов, но наиболее широкое применение нашли турбокомпрессоры.

Идея турбокомпрессора была очень простой. На большинстве авиационных поршневых двигателей, в особенности в предвоенное десятилетие, стали устанавливаться компрессоры для сжатия засасываемого из атмосферы воздуха перед его подачей в цилиндры двигателя. Такой метод подачи в цилиндры поршневого авиационного двигателя предварительно сжатого воздуха называется наддувом, а компрессор, сжимающий воздух,– нагнетателем.Применение нагнетателей позволило значительно улучшить характеристики поршневых авиационных двигателей. В результате наддува в тех же цилиндрах двигателя помещается больше (по весу) воздуха; но это значит, что больше образуется и рабочей топливовоздушной смеси, больше выделяется тепла при ее сгорании и увеличивается, следовательно, мощность двигателя. Наддув очень важен и для обеспечения высотности двигателя, т. е. сохранения его мощности с увеличением высоты полета, – без наддува мощность двигателя с высотой быстро уменьшается из-за того, что на большой высоте воздух разрежен.

Рис. 22. Применение турбокомпрессора на поршневом двигателе:

а– поршневой авиационный двигатель с приводным центробежным нагнетателем; б—поршневой авиационный двигатель с турбокомпрессором, 1 – двигатель, 2—всасывающий воздушный патрубок; 3– карбюратор; 4– крыльчатка приводного нагнетателя, 5 – выхлопной трубопровод; 6– крыльчатка турбокомпрессора; 7 – турбинное колесо турбокомпрессора; 8– выход выхлопных газов в атмосферу

В качестве нагнетателей поршневых двигателей применяются центробежные компрессоры. Привод во вращение крыльчатки компрессора осуществляется обычно от коленчатого вала двигателя с помощью шестеренчатой передачи, причем число оборотов крыльчатки достигает 20 тысяч в минуту и более.

Рис. 23. Конструкция турбокомпрессора (рядом для сравнения изображен обычный настольный вентилятор):

1– выход отработавших газов из турбины в атмосферу; 2– выход охлаждающего воздуха в атмосферу, 3– колесо турбины; 4– корпус турбины, 5 – корпус компрессора; 6– крыльчатка компрессора, 7– отвод сжатого воздуха к двигателю, 8– подвод выхлопных газов от двигателя к турбине, 9– подвод воздуха для охлаждения турбины

На вращение крыльчатки нагнетателя приходится затрачивать значительную часть мощности, развиваемой двигателем, в то время как огромная энергия, заключенная в выхлопных газах двигателя, не используется. Поэтому и родилась идея турбокомпрессора, идея использования газовой турбины для вращения крыльчатки нагнетателя.

Турбокомпрессор представляет собой смонтированные на общем валу крыльчатку компрессора и газовую турбину, которая работает от выхлопных газов двигателя и развивает мощность, необходимую для привода во вращение компрессора (рис. 22). В этом случае мощность, развиваемая двигателем, на привод крыльчатки нагнетателя уже не расходуется. Устройство одного из современных турбокомпрессоров показано на рис. 23.

Шли годы, постепенно совершенствовался турбокомпрессор, значительно улучшая общие характеристики поршневого авиационного двигателя. И вместе с тем все надежнее и лучше становилась газовая турбина, без которой нельзя было создать нового двигателя.

Так в развивающемся старом, поршневом двигателе зарождались ростки нового, турбокомпрессорного воздушно-реактивного двигателя.

Глава четвертая
Достоинства и недостатки турбореактивного двигателя

Турбореактивный двигатель уже давно вышел из «младенческого возраста» и стал совершенной и надежной машиной. Послевоенные годы были годами невиданного по размаху и быстроте технического перевооружения авиации – перехода на самолеты с реактивными двигателями.

Первой начала перевооружаться военная истребительная авиация, так как в воздушном бою при прочих равных условиях шансов на победу всегда больше у того самолета, который обладает большей скоростью полета.

Вслед за истребителями турбореактивные двигатели стали устанавливаться и на другие самолеты военной авиации. Появились реактивные самолеты-бомбардировщики сравнительно небольшого радиуса действия (так называемые фронтовые), разведчики, штурмовики и, наконец, тяжелые дальние бомбардировщики.

Появились реактивные двигатели и в гражданской авиации. Пассажирские и транспортные реактивные самолеты совершают регулярные рейсы на авиалиниях гражданской авиации. Не далеко то время, когда можно будет попасть из Москвы в Ленинград за полчаса, затратив больше времени на то, чтобы добраться из города до аэродрома. Перелет же из Москвы до Владивостока возможно будет совершать всего за один день.

Реактивные самолеты летают сейчас по крайней мере в полтора раза быстрее и на несколько километров выше, чем самолеты с поршневыми двигателями. Об успехах, достигнутых реактивной авиацией в борьбе за увеличение скорости и высоты полета, свидетельствуют официальные мировые рекорды, поставленные в 1955 г.: скорость полета – 1323 км/час, высота – 20079 м.Имеются все основания полагать, что эти рекордные показатели в настоящее время превзойдены.

В чем же секрет успехов, достигнутых в развитии турбореактивного двигателя? Почему его применение на самолетах означает качественно новую ступень развития авиации?

Этот «секрет» состоит в том, что турбореактивный двигатель при большой скорости полета может развить мощность, в несколько раз превосходящую мощность самых совершенных поршневых двигателей, при значительно меньшем весе, приходящемся на одну лошадиную силу. А ведь именно это, как указывалось выше, и необходимо для двигателя скоростного самолета.

Какую же мощность развивают современные турбореактивные двигатели? Эту мощность можно определить, если известна тяга двигателя и скорость полета.

Современные турбореактивные двигатели при испытании на стенде или при стоянке самолета развивают тягу до 5000—6000 кги более. Но чтобы определить мощность двигателя, нужно знать его тягу не на стоянке, а в полете с большой скоростью. Чему же равна эта тяга? Выше было указано, что тяга поршневого двигателя с винтом с ростом скорости полета уменьшается обратно пропорционально скорости. Иначе ведут себя в этом отношении турбореактивные двигатели – с ростом скорости полета их тяга сначала несколько уменьшается, а потом снова возрастает и при полете со скоростью, близкой к скорости звука, турбореактивный двигатель развивает такую же (или даже большую) тягу, как и при стоянке. В этом и заключается огромное преимущество турбореактивного двигателя перед поршневым авиационным двигателем с винтом.

Такое различие объясняется тем, что в работе поршневого двигателя при увеличении скорости полета не происходит существенных изменений и его мощность остается почти неизменной. В работе турбореактивного двигателя при увеличении скорости полета происходят существенные изменения. Расход воздуха через двигатель при этом увеличивается, увеличивается также давление воздуха за турбиной, а значит, и скорость истечения газов из двигателя.

Какую же мощность будет иметь турбореактивный двигатель, развивающий тягу Р= 6000 кгпри полете со скоростью V, равной, допустим, 1260 км/часили 350 м/сек? Эта мощность, очевидно, будет равна

Огромная мощность! А ведь тяга, равная 6000 кг, не является пределом для турбореактивного двигателя, так же как и скорость 350 м/секне является предельной скоростью полета реактивного самолета.

Вместе с тем турбореактивный двигатель, развивающий такую огромную мощность, весит меньше, чем поршневой авиационный двигатель мощностью примерно 4000 л. с. В этом нет ничего удивительного, если учесть, что в поршневом авиационном двигателе действуют большие силы, резко меняющиеся по величине и направлению. Достаточно указать на то, что при вспышке в цилиндрах поршневого двигателя давление мгновенно возрастает почти до 100 кг/см 2.Для того чтобы выдержать возникающие при этом нагрузки, основные силовые детали поршневого двигателя должны быть очень прочными, а следовательно, массивными, тяжелыми. В турбореактивном же двигателе давления не превышают 10, самое большое– 15 кг/см 2, причем эти давления постоянные, не меняющиеся по времени. Поэтому большинство частей турбореактивного двигателя – либо легкие тонкостенные отливки, обычно из легких сплавов, либо детали, изготовленные из тонкого стального листа. Это делает турбореактивный двигатель более легким, чем поршневой, хотя через поршневой двигатель протекает в десятки раз меньше воздуха, чем через турбореактивный.

При большой скорости полета турбореактивный авиационный двигатель превосходит поршневой авиационный двигатель и по экономичности. Уже при скорости полета, равной 1000—1100 км/час, турбореактивный двигатель расходует на одну лошадиную силу развиваемой им мощности [2]2
  Расход топлива, приходящийся на одну лошадиную силу мощности, развиваемой двигателем, называется удельным расходом топлива.


[Закрыть]
не больше топлива, чем поршневой двигатель при максимальной скорости полета, которую он в состоянии обеспечить. С дальнейшим ростом скорости полета удельный расход топлива турбореактивного авиационного двигателя становится даже меньшим, чем удельный расход топлива поршневого авиационного двигателя. Но при уменьшении скорости полета экономичность турбореактивного двигателя резко ухудшается. Например, при скорости полета, равной 300 км/час, удельный расход топлива турбореактивного двигателя втрое больше удельного расхода топлива поршневого двигателя. Значит ли это, что турбореактивный двигатель на самолете выгоден только при очень больших, околозвуковых скоростях полета, а область меньших скоростей полета является выгодной только для самолетов с поршневыми двигателями? Нет, не значит. Но, вместе с тем простой турбореактивный двигатель не может заменить поршневой авиационный двигатель в зоне промежуточных скоростей полета, равных 500—800 км/час, так как при этих скоростях он менее экономичен, чем поршневой. Это под силу лишь газотурбинным двигателям другого типа.

Одним из таких двигателей является так называемый двухконтурный турбореактивный двигатель.Чтобы понять идею этого двигателя, вспомним, чем отличается турбореактивный двигатель от воздушного винта в отношении (метода создания тяги. Мы знаем, что и турбореактивный двигатель, и винт создают тягу, отбрасывая воздух. Разница состоит в том, что винт отбрасывает много воздуха с малой скоростью, а турбореактивный двигатель – мало воздуха с большой скоростью. Но метод создания тяги, используемый турбореактивным двигателем, выгоден лишь при большой скорости полета. Если скорость полета мала, то кинетическая энергия, приобретенная газами в двигателе, полностью не используется. Лишь незначительная часть этой энергии затрачивается на совершение полезной работы продвижения самолета в воздухе, большая же часть ее теряется, бесполезно рассеиваясь в окружающей атмосфере. Потери же кинетической энергии при работе винта сравнительно малы, так как мала сама кинетическая энергия отбрасываемого воздуха. Чем больше скорость полета, тем выгоднее становится турбореактивный двигатель, так как уменьшаются потери кинетической энергии с отходящими газами, и, наоборот, тем менее выгодным становится воздушный винт из-за увеличения потерь при его вращении. Следовательно, для того чтобы сохранить преимущества турбореактивного двигателя перед двигателем поршневым во всем диапазоне скоростей полета самолета, нужно при уменьшении скорости полета уменьшать скорость отбрасываемых газов и увеличивать их массу, т. е. как бы постепенно переходить от метода создания тяги, характерного для турбореактивного двигателя, к методу создания тяги, характерному для воздушного винта.

Конечно, трудно разработать такую конструкцию двигателя, в которой по мере уменьшения скорости полета автоматически происходило бы увеличение расхода воздуха и уменьшение скорости истечения газов. Но можно создать такой газотурбинный двигатель, который в этом отношении был бы более близким к воздушному винту, чем турбореактивный двигатель. Таким двигателем является двухконтурный турбореактивный двигатель.

Как же в этом двигателе осуществляется увеличение количества и соответственное уменьшение скорости вытекающих газов по сравнению с обычным турбореактивным двигателем? Для этой цели в двухконтурном турбореактивном двигателе в камеру сгорания направляется лишь часть воздуха, поступающего в двигатель. Эта часть воздуха в результате сжигания топлива превращается в раскаленные газы, вытекающие затем наружу так же, как в обычном турбореактивном двигателе. Другая часть воздуха направляется в обход камеры сгорания по другому каналу, или, как говорят, контуру, отчего и сам двигатель получил название двухконтурного (рис. 24). Этот воздух сначала сжимается, а затем расширяется в сопле и вытекает из двигателя с большой скоростью, хотя скорость его истечения меньше, чем скорость истечения газов, так как газы имеют гораздо большую температуру.

Конструктивно двухконтурный турбореактивный двигатель устраивается так, что либо лопатки первых ступеней компрессора делаются более длинными, вследствие чего воздух, проходящий через удлиненные части лопаток, поступает не в следующие ступени компрессора, а во второй контур (см. рис. 24, сверху), либо во втором контуре устанавливается специальный высоконапорный вентилятор, приводимый во вращение турбиной двигателя (см. рис. 24, снизу). Так или иначе, но из сопла двухконтурною турбореактивною двигателя вытекают два газовых потока: в центре – раскаленные газы, снаружи – кольцевая струя холодного воздуха; при этом расход воздуха через двигатель увеличивается, а скорость отбрасывания газовоздушной струи уменьшается. Понятно, что двухконтурный двигатель более выгоден по сравнению с обычным турбореактивным двигателем при меньших скоростях полета и менее выгоден при больших скоростях: выигрыш в одном получается за счет проигрыша в другом. В настоящее время двухконтурные турбореактивные двигатели еще не получили широкого применения, но они могут найти применение в будущем на самолетах, предназначенных для скоростных дальних перелетов, например для трансконтинентальных или трансокеанских авиалиний. Следует отметить, что первые проекты двухконтурных двигателей были разработаны К. Э. Циолковским и конструктором А. М. Люлька.

Рис. 24. Принципиальные схемы двухконтурных турбореактивных двигателей

В двухконтурном турбореактивном двигателе сделан только первый шаг на пути уменьшения расхода топлива при малых скоростях полета. В турбовинтовомдвигателе сделан второй такой шаг. В турбовинтовом двигателе, как и в турбореактивном, весь воздух направляется в камеру сгорания, но газы, вытекающие из камеры сгорания, расширяются в газовой турбине полностью, а не частично, как в турбореактивном двигателе. Вследствие этого давление газов за турбиной турбовинтового двигателя равно атмосферному, поэтому газы вытекают из двигателя наружу с небольшой скоростью, создавая таким образом лишь небольшую реактивную тягу. Но зато мощность газовой турбины, которой газы передают весь свой запас полезной энергии, значительно увеличивается и становится большей, чем мощность, необходимая для привода компрессора. Таким образом получается избыточная мощность, которая используется для вращения воздушного винта. Для передачи мощности с вала двигателя на воздушный винт применяется шестеренчатый редуктор (рис. 25), без которого в турбовинтовом двигателе обойтись нельзя, так как нельзя вращать винт с таким большим числом оборотов, которое развивает газовая турбина. Для более эффективной работы газовая турбина должна вращаться гораздо быстрее, чем это допустимо с точки зрения эффективной работы воздушного винта, так как воздушный винт имеет гораздо больший диаметр. Редуктор уменьшает число оборотов воздушного винта по сравнению с числом оборотов турбины раз в 10—15, а то и более. Следует заметить, что редуктор вызвал немало трудностей при доводке турбовинтового двигателя, что было одной из причин, задержавших широкое внедрение этих двигателей в авиации. Но еще большие трудности, однако, были связаны с доводкой систем регулирования турбовинтовых двигателей.

В настоящее время можно считать, что основные трудности, задерживавшие серийное производство турбовинтовых двигателей, преодолены. Турбовинтовые двигатели, сочетающие достоинства воздушного винта как движителя для умеренных скоростей полета с конструктивными преимуществами газотурбинного двигателя, в частности гораздо меньшим «лбом» (диаметром) (рис. 26), имеют несомненные перспективы широкого применения в авиации.

Рис. 25 Турбовинтовой двигатель: а– принципиальная схема; б– двигатель на испытательном стенде

В особенности они выгодны для самолетов гражданской авиации. В будущем основным типом самолетов, летающих на местных и на магистральных авиалиниях, будут, вероятно, самолеты с турбовинтовыми, а не с поршневыми двигателями. На экспрессных же линиях будут эксплуатироваться реактивные самолеты с турбореактивными двигателями, выгодные в тех случаях, когда на первый план выступает скорость полета, а его экономичность является второстепенным фактором.

Рис. 26. Относительные размеры поршневого (сверху) и турбовинтового (снизу) двигателей при одинаковой их мощности

Рассказ о двухконтурном и турбовинтовом двигателях может вызвать у читателя неверное представление о том, что обычный турбореактивный двигатель усложняется только тогда, когда его приспосабливают к меньшим скоростям полета. Это, конечно, не так. Турбореактивный двигатель прост лишь по принципиальной схеме; в действительности он представляет собой весьма сложную машину. Дальнейшее совершенствование двигателя приводит к его постепенному усложнению, которое оказывается необходимым в связи с ростом требований, предъявляемых к двигателям современных самолетов. В подтверждение этого достаточно привести следующие два примера.

Первый примерсвязан с одной из тенденций развития современных турбореактивных двигателей – увеличением степени повышения давления в компрессоре двигателя. В первых турбореактивных двигателях давление воздуха в компрессоре повышалось в 3—4 раза, а теперь повышение давления воздуха в компрессоре в 6—7 раз не всегда удовлетворяет конструкторов. Но как можно достичь дальнейшего увеличения степени повышения давления? Оказывается, простое увеличение числа ступеней осевого компрессора двигателя не всегда приводит к желательному результату – двигатель с таким компрессором начинает плохо работать, в особенности при запуске и на режимах неполной мощности, т. е. на режимах пониженной тяги. Это связано с явлением так называемого помпажа, о котором будет сказано ниже. Одним из способов преодоления этой трудности является устройство турбореактивного двигателя по так называемой двухвальной схеме (рис. 27). В этом случае ротор двигателя имеет два самостоятельных вала, с двумя самостоятельными осевыми компрессорами и двумя самостоятельными турбинами, причем валы вращаются с разным числом оборотов. Оба компрессора устанавливаются один за другим, так что сначала воздух, поступивший в двигатель, сжимается в переднем компрессоре (низкого давления), а затем он поступает в следующий, задний компрессор (высокого давления). Каждый из этих компрессоров приводится во вращение своей турбиной, так что обе турбины двигателя тоже оказываются установленными одна за другой. Передняя турбина, в которую газы поступают непосредственно из камеры сгорания, имея еще большое давление, приводит во вращение задний компрессор; таким образом турбина высокого давления приводит во вращение компрессор высокого давления. Задняя турбина, в которую газы поступают после расширения в передней турбине и которая поэтому является турбиной низкого давления, приводит во вращение компрессор низкого давления – передний. Вал, связывающий турбину и компрессор низкого давления, проходит внутри полого вала, связывающего турбину и компрессор высокого давления. Понятно, что такой турбореактивный двигатель оказывается сложнее обычного, но зато он обладает и лучшими характеристиками.

Рис. 27. Принципиальная схема двухвального турбореактивного двигателя

Второй пример,свидетельствующий о конструктивной сложности современного турбореактивного двигателя, относится к его регулированию. Турбореактивный двигатель имеет вспомогательные устройства и механизмы различного назначения, к которым относится, в частности, система регулирования, выполняющая ряд важных функций.

Одной из таких функций является автоматическое поддержание заданного режима работы двигателя при изменении условий полета. Можно, конечно, возложить эту задачу на летчика, но летчик и без того занят в полете.

Другой, еще более важной функцией системы регулирования является непрерывное «наблюдение» за работой двигателя для того, чтобы полностью исключить возможность возникновения опасных режимов во время его работы. Для поршневых авиационных двигателей такими опасными режимами являются, например, режимы, при которых двигатель детонирует. Если не принять срочных мер, то детонация может привести к очень неприятным последствиям, вплоть до аварии двигателя. У турбореактивных двигателей есть свои опасные режимы работы, например, режимы, при которых происходит перегрев лопаток турбины или возникает так называемый помпаж компрессора, о котором будет идти речь ниже. Можно задачу борьбы с опасными режимами возложить и на летчика, но автоматические устройства системы регулирования сделают это не хуже, а главное своевременно. В данном случае это является решающим фактором.

Часто на систему регулирования возлагается и задача «выбора» оптимальных, наивыгоднейших режимов работы двигателя, соответствующих данным условиям полета. Такие режимы обеспечивают наименьший расход топлива, а следовательно, наибольшую возможную дальность или продолжительность полета. И эту задачу, конечно, автоматы могут выполнить лучше летчика.

Следует заметить, что на работе турбореактивного двигателя изменение внешних условий – давления и температуры атмосферного воздуха, высоты и скорости полета – сказывается в гораздо большей мере, чем на работе поршневого двигателя; он очень чувствителен к этим изменениям. Даже сравнительно небольшие изменения условий полета могут привести к существенному нарушению режима работы турбореактивного двигателя – уменьшению или увеличению развиваемой им реактивной тяги, уменьшению или увеличению расхода топлива, недопустимому увеличению температуры газов перед турбиной или же чрезмерному увеличению оборотов («разносу») двигателя.

Поэтому система регулирования турбореактивного двигателя неизбежно получается сложной. Это настоящая «нервная система» двигателя, которая имеет свои «органы чувств», реагирующие на изменение внешних условий, аналогично тому, как наша кожа реагирует на изменение температуры воздуха или глаза реагируют на свет. Она имеет и свои «тормозящие» и «регулирующие» центры, аналогично тому, как наша нервная система дает «команду» прикрыть веки, когда освещение становится слишком сильным, или заставляет отдернуть руку, коснувшуюся горячего предмета.

Как же работает «нервная система» турбореактивного двигателя? В большинстве современных турбореактивных двигателей режим работы полностью определяется числом оборотов ротора двигателя, т. е. числом оборотов компрессора и турбины. Чем больше число оборотов, тем больше и тяга двигателя. Остальные показатели, характеризующие работу двигателя, в частности расход топлива и температура газов, имеют при этом вполне определенные значения. Но имеются двигатели, у которых режим работы определяется не только числом оборотов ротора. В этих двигателях истечение газов через выхлопное реактивное сопло в атмосферу регулируется, для чего на выходе из сопла устанавливаются поворотные заслонки или же внутри сопла вдоль его оси перемещается специальная регулирующая (профилированная) игла (см. рис. 10). При этом каждому значению площади выходного сечения сопла соответствуют, даже при неизменном числе оборотов, свои, отличные от других величины тяги, расхода топлива и температуры газов. В данном случае на режим работы двигателя можно воздействовать двумя путями: изменением числа оборотов ротора и изменением площади выходного сечения сопла. Естественно, такая система регулирования режимов работы двигателя сложней, чем регулирование путем изменения только числа оборотов ротора. Тем не менее она находит широкое применение, так как обеспечивает лучшие характеристики двигателя.

Но даже в тех случаях, когда реактивное сопло имеет неизменное выходное сечение, т. е., когда режим работы двигателя полностью определяется числом оборотов ротора, регулирование двигателя оказывается весьма сложным. И это несмотря на то, что по идее регулирование в данном случае очень простое: для изменения числа оборотов остается только одно средство – изменение подачи топлива в камеру сгорания двигателя. Изменяя подачу топлива, мы изменяем режим работы двигателя по нашему желанию или восстанавливаем режим, нарушенный вследствие изменения внешних условий. Таким образом, подача топлива является одновременно и средством управления, и средством регулирования двигателя. Для первого служит так называемый «рычаг управления газом», установленный в кабине летчика, для второго – специальные автоматические устройства системы регулирования, потому что осуществить это вручную практически невозможно.

Как же работает система регулирования турбореактивного двигателя?

Познакомимся с этим на примере двигателя РД-500 (рис. 28).

Пусть самолет стоит на старте. Летчик только что запустил двигатель. Рычаг управления газом передвинут немного вперед. Это значит, что дроссельный кран, с помощью которого изменяется количество топлива, впрыскиваемого в камеру сгорания, чуть приоткрыт. Игла крана приподнята и открывает доступ топливу к топливным форсункам, установленным в камерах сгорания. Так как топлива в камеру сгорания двигателя впрыскивается мало, то в ней выделяется мало тепла, и мощность, развиваемая турбиной, достаточна лишь для вращения компрессора с относительно малым числом оборотов. Двигатель работает на режиме холостого хода, или малого газа.

Рис. 28. Принципиальная схема системы управления подачей топлива турбореактивного двигателя РД-500

Но вот летчик передвигает рычаг управления газом вперед. Игла дроссельного крана приподнимается больше, проходное сечение крана увеличивается, а следовательно, увеличивается подача топлива в камеру сгорания. Вследствие этого увеличивается число оборотов двигателя и развиваемая им тяга. Чем больше топлива поступает в камеру сгорания, тем выше температура газов, выходящих из камеры на лопатки турбины, тем больше число оборотов и тяга двигателя. Наконец, достигнут взлетный режим: летчик освобождает тормоза, самолет начинает разбег по взлетной дорожке и затем, оторвавшись от земли, уходит в небо.

В течение всего полета летчик непрерывно пользуется рычагом управления газом. Когда нужно увеличить скорость полета, он передвигает рычаг от себя, увеличивая тем самым подачу топлива, а следовательно, и тягу двигателя, когда нужно уменьшить скорость, – передвигает рычаг назад. Но вот летчик избрал определенный режим горизонтального полета. Теперь ему уже не нужно воздействовать на рычаг управления. Заданный режим работы двигателя поддерживается автоматами системы регулирования, реагирующими на все изменения условий полета.

Рис. 29. Анероидный сильфон – чувствительный элемент регулятора

В качестве чувствительного элемента системы регулирования часто применяется так называемый анероидный сильфон (рис. 29). Он представляет собой герметичную металлическую «гармошку» – эластичную коробку, внутри которой находится воздух. Когда давление воздуха в камере, в которой помещается сильфон, увеличивается, гармошка сжимается. При уменьшении давления она расширяется. Иногда к этой гармошке добавляется другая, реагирующая на изменение температуры воздуха. Эти гармошки являются как бы своеобразными «органами чувств» двигателя.

Очевидно, что регулятор с таким анероидом будет реагировать на изменение высоты полета, так как с увеличением высоты давление воздуха уменьшается. Ясно, конечно, что он будет реагировать и на изменение барометрического давления. Можно заставить его «почувствовать» и изменение скорости полета. В самом деле, давление встречного потока воздуха, набегающего в полете на самолет, всегда больше атмосферного. Это избыточное давление, которое носит название скоростного напора, зависит от скорости полета: оно тем больше, чем больше скорость полета. Значит, достаточно ввести внутрь камеры регулятора, в которой находится анероид, воздух, имеющий повышенное в результате скоростного напора давление, чтобы регулятор стал реагировать и на скорость полета. Для такого регулятора увеличение скорости полета равносильно, следовательно, уменьшению высоты, т. е. снижению самолета.


    Ваша оценка произведения:

Популярные книги за неделю