Текст книги "Проклятые вопросы"
Автор книги: Ирина Радунская
Жанр:
Физика
сообщить о нарушении
Текущая страница: 15 (всего у книги 23 страниц)
Поэтому учёные начали поиск веществ для лазеров, которые позволили бы перестраивать рабочую частоту световой волны. Лучшими из них оказались растворы органических красителей. Их оптические спектры содержат широкие линии и полосы. Конечно, создание монохроматических перестраиваемых лазеров на основе таких красителей потребовало усовершенствования систем обратной связи: пары зеркал, применявшихся ранее, оказалось недостаточным.
Перестраиваемые системы обратной связи были созданы при помощи давно известных оптикам элементов – призм и дифракционных решёток, с которыми знаком каждый школьник.
Большая часть достижений в области создания перестраиваемых лазеров на красителях принадлежит белорусскому академику Б. И. Степанову и руководимому им коллективу физики Института Белорусской академии наук в Минске.
Создание первых лазеров стало началом пути, который ещё не пройден до конца. Более того, этот путь сразу начал ветвиться по мере того, как открывались новые возможности применения лазеров и, соответственно, возникали новые требования к ним.
Один из путей – увеличение энергии лазерного излучения.
На этом пути началось увлекательное соревнование газовых лазеров и лазеров на стекле. Учёные перепробовали множество газовых смесей. В результате были получены сотни составов, способных к лазерной генерации. Каждый из них генерировал на своей, отличной от других, частоте. Некоторые генерировали сразу на нескольких частотах. Впрочем, применение особых систем обратной связи позволяет варьировать обе возможности.
Наиболее мощными, способными непрерывно выделять большую энергию лазерного излучения, оказались смесь углекислого газа с азотом и некоторыми другими добавками, а также смесь окиси углерода (угарного газа) с азотом и другими добавками. Излучение обоих лежит в инфракрасном диапазоне. Первый работает на волне около десяти микрон, а второй – около пяти микрон.
Увеличение мощности лазера требует увеличения количества рабочего вещества, а это связано с увеличением выделяемого тепла и, естественно, ведёт к поискам мер эффективного охлаждения рабочего вещества. Для газовых лазеров эта задача оказалась более простой, чем для лазеров других типов. Здесь можно просто заменять (продувать) газовую смесь через рабочий объём лазера. В начале нагретые газы выпускали наружу, а на их место из баллонов вводили новые порции. Но когда мощности (а следовательно, и расход газов) стали слишком большими, были разработаны лазеры с замкнутым циклом. В них нагретая газовая смесь вытягивается из рабочего объёма при помощи вентилятора, продувается через теплообменник, где она интенсивно охлаждается, и снова направляется в рабочий объём.
Именно такие лазеры применяют технологи для резки металлов и сплавов, реставрации металлических изделий направлением, закалки сталей и для других целей. Создание таких лазеров – заслуга промышленности. Ho, конечно, принципы их построения родились в лабораториях учёных.
Газовые лазеры заняли лидирующее место и в других областях науки и техники. Сейчас лазеры на смеси гелия и неона, а также лазеры на углекислом газе успешно соревнуются с квантовыми стандартами частоты радиодиапазона. Они открыли реальную возможность создания единого эталона времени и длины.
Сейчас эталонами времени (частоты) служат квантовые эталоны. Они основаны на применении пучков атомов цезия, пролетающих внутри вакуумной трубки через специально сформированные магнитные и высокочастотные поля сантиметрового диапазона волн. Их преимуществом является не только огромная стабильность каждого прибора (ошибка в одну секунду может накопиться лишь за миллионы лет), но и надёжность конструкции, обеспечивающая возможность того, что любой из правильно изготовленных приборов такого типа фиксирует одну и ту же частоту с погрешностью не более 10–14.
Лазерные стандарты частоты уже догнали цезиевые эталоны по стабильности работы, но ещё нет уверенности в том, что каждый из них воспроизводит с этой точностью одну и ту же частоту. Когда удастся реализовать эту возможность, отпадёт и необходимость пользоваться отдельным эталоном длины.
Первоначально эталоном длины служил тщательно изготовленный стержень из платино-иридиевого сплава. Затем этот уникальный рукотворный эталон был заменён природным: в качестве эталона была избрана длина волны, соответствующая одной из спектральных линий, испускаемых атомами криптона.
Техническое воплощение такого эталона имеет вид стеклянного баллона, заполненного газообразным криптоном при малом давлении. При пользовании эталоном внутри него зажигают электрический разряд.
Таким путём не удалось существенно уменьшить погрешность определения единицы длины (она равна 10-8), но переход от искусственного эталона к природному обеспечил устойчивость системы мер.
Теперь, когда погрешность частоты лазера уменьшилась до 10–14, стало естественным принять длину его волны (обладающую столь же малой погрешностью) за основу эталона длины. Погрешность лазерного эталона длины в миллион раз меньше, чем у принятого теперь эталона, основанного на длине волны спектральной линии криптона.
Сверхстабильные лазеры дали потрясающую возможность наблюдать спектры одиночных атомов и ионов. А это открывает перспективу получения эталонов частоты с погрешностью 10–17, то есть ещё в тысячу раз меньшей, чем у существующих эталонов.
Наблюдения спектров одиночных атомов и ионов открывают небывалые возможности изучения их строения и свойств сил, действующих в микромире.
Лидирующее место в развитии этого направления занимают коллективы сотрудников Института теплофизики РАН в Новосибирске под руководством члена-корреспондента РАН В. Н. Чебатаева и Института спектроскопии РАН в городе Троицке (под Москвой), руководимого профессором В. С. Летоховым.
ДЛЯ ЛАЗЕРНОГО ТЕРМОЯДА
Имеется ряд задач, для решения которых за короткое время необходимо сосредоточить на мишени большую энергию. Наиболее остро эта задача возникает в исследовании высокотемпературной плазмы, связанном с получением управляемой термоядерной реакции. На лабораторном жаргоне это направление получило название «лазерный термояд». Мы уже знакомы с физическими проблемами, стоящими перед учёными, работающими в этой области.
Для того чтобы получить большую энергию в течение короткого времени, необходимо заставить множество ионов согласованно порождать лазерное излучение.
Для достижения этого при помощи лазеров приходится применять газы, находящиеся под высоким давлением. Это усложняет установки и всё же не может обеспечить плотность рабочих частиц, легко достижимую в твёрдых телах. Поэтому здесь возникает своеобразное соревнование между твердотельными и газовыми лазерами.
Для нагрева плазмы применяются главным образом твёрдотельные лазеры на стекле потому, что наряду с большой плотностью рабочих частиц в стекле из него можно изготавливать рабочие лазерные элементы больших размеров, недоступные при выращивании искусственных кристаллов.
Промышленность выпускает сверходнородные рабочие элементы из стекла столь большие, что в лабораториях их назвали «шпалами». Иногда им придают форму толстых прямоугольных пластин, которые по размерам сопоставимы с цементными плитами для тротуаров.
В течение первых десяти лет все рабочие элементы для лазеров на стекле изготовляли, вслед за Снитцером, из силикатного стекла. Когда коллектив сотрудников Института радиотехники и электроники РАН и Института общей и неорганической химии РАН по инициативе профессора М. Е. Жаботинского и аспиранта Ю. П. Рудницкого высказал уверенность в том, что лазерное стекло, сваренное на основе фосфатов, может иметь ряд преимуществ по сравнению с традиционным силикатным стеклом, они встретили дружные возражения лазерщиков и технологов.
Технологи были знакомы с обычным нелазерным фосфатным стеклом и знали его как сложное в изготовлении, склонное к кристаллизации и к возникновению внутренних неоднородностей. Кроме прочих недостатков, оно ещё неустойчиво по отношению к воздействию влаги и даже паров воды, присутствующих в воздухе. Такое стекло изготавливали с большим трудом для узких применений.
Но уверенность физиков увлекла химиков, и они преодолели капризы фосфатного стекла. Когда в исходную смесь фосфатов добавили окись неодима, сварили первое лазерное фосфатное стекло и изготовили из него рабочие элементы для лазеров, все ожидания подтвердились.
И повторилась, к сожалению нередкая, научная реакция. Увидев новые лазерные элементы из фосфатного стекла, некоторые специалисты заявили, что этого не может быть. Возражения приближались к аргументации одного из героев Чехова: этого не может быть потому, что не может быть никогда. Говорили даже, что это обычное силикатное стекло, что было, по существу, обвинением в обмане.
Сомнения были отвергнуты беспристрастным анализом. Тогда мнения изменились: стекло как стекло, но сварить из него крупные однородные рабочие элементы не удастся. Не удастся потому, что крупные элементы нужно охлаждать медленно, а при этом фосфатное стекло закристаллизуется. Да и неоднородности в нём неизбежны.
Прошло время, и мнения ещё раз изменились. Во многих местах заявляли: «Что здесь удивительного, я говорил, что будущее за фосфатным лазерным стеклом».
Теперь не только в России, но и в Японии, США и Франции в установках для исследования лазерного термояда применяют лазеры, работающие на фосфатном стекле, содержащем ионы неодима. Оно работает и во многих промышленных установках.
Конечно, силикатное лазерное стекло не сошло со сцены: оно дешевле и его проще изготавливать. Появились и другие лазерные стекла, но они не получили широкого применения.
ГИГАНТСКИЙ ИМПУЛЬС
С развитием лазеров выяснилось, что для ряда целей важно добиваться высокой мощности излучения, хотя бы в течение коротких промежутков времени.
Первым шагом в этом направлении было осуществление необычного режима работы лазеров. Такой режим был реализован в твердотельных лазерах на рубине американским учёным Р. В. Хеллворсом и на силикатном стекле сотрудником ФИАНа В. И. Малышевым.
Идея состояла в том, что освещать рабочий элемент лазера лампой-вспышкой следует при отсутствии обратной связи. При этом лазерная генерация не может начаться и в течение всего времени горения лампы-вспышки её свет поглощается рабочим веществом лазера, а накопленная в нём энергия возрастает.
Правда, вследствие различных причин часть энергии, способной участвовать в лазерной генерации, исчезает. Поэтому, когда величина запасённой энергии достигнет максимума, следует очень быстро включить обратную связь. При этом возникнет короткий, чрезвычайно мощный импульс лазерного излучения. Лабораторный жаргон нарек его гигантским импульсом. Уже в первых опытах мощность импульса достигла миллионов ватт, а длительность – лишь нескольких стомиллионных долей секунды. Первоначально быстрое включение обратной связи производили механическими средствами. Например, между зеркалами, осуществляющими обратную связь, располагали вращающийся непрозрачный диск с отверстием. При этом обратная связь возникала только тогда, когда между зеркалами появлялось отверстие. В других системах одно из зеркал делали быстро вращающимся вокруг оси, параллельной неподвижному зеркалу. При этом обратная связь возникала, когда вращающееся зеркало оказывалось параллельным неподвижному.
Затем был найден другой способ. Его назвали пассивным, ибо он сделал ненужным применение движущихся элементов или других способов внешнего воздействия на систему обратной связи. Происхождение названия «пассивный» возникло потому, что элемент, управляющий включением обратной связи, «пассивно ждёт», пока рабочий элемент лазера запасает в себе энергию. Затем происходит самоуправляемый процесс, ход которого зависит от свойств и размеров рабочего элемента лазера и от свойств «пассивного» управляющего элемента.
Этот элемент представляет собой кювету с раствором одного из специальных красителей. Кювета и рабочий элемент лазера расположены соосно между зеркалами обратной связи. Концентрация красителя выбрана такой, что зеркала «не видят» друг друга из-за сильного поглощения света красителем.
При включении лампы-вспышки в ионах, сообщающих лазерные свойства веществу, из которого изготовлен рабочий элемент лазера, быстро накапливаются запасы энергии. Эта энергия частично превращается в световую энергию в результате люминесценции – явления, порождающего свечение люминесцентных ламп (например, ламп дневного света), свечение циферблатов часов, свечение гнилушек, светлячков и некоторых морских организмов. Это свечение возникает в ионах рабочего элемента лазера, причём в каждом из ионов независимо – по законам случая.
Однако по мере накопления энергии в рабочем элементе всё большее количество ионов приобретает способность к люминесценции. Постепенно таких ионов становится так много, что они перестают быть независимыми. Когда способность к люминесценции приобретёт более половины ионов, содержащихся в рабочем элементе, возникнет эффект, предсказанный Эйнштейном в 1918 году, задолго до лазерной эры. Эйнштейн назвал его вынужденным испусканием. Суть его состоит в том, что фотон, испущенный одним ионом (или другой квантовой системой микромира), побуждает другие ионы того же типа испустить точно такой же фотон, причём в том же направлении. Имеется в виду, что первый из испущенных фотонов пролетает достаточно близко к ионам, получившим дополнительную энергию (в нашем случае – получившим её от лампы-вспышки).
В результате этого число актов вынужденного испускания быстро, подобно лавине, возрастает по мере того, как первоначальный фотон порождает себе свиту близнецов. Физики называют такой процесс вынужденной люминесценцией. Она развивается особенно сильно вдоль рабочего элемента и, выходя через его торец, обращённый в сторону кюветы с красителем, поглощается в нём.
Но поглощающая способность красителя не безгранична. Поглощая фотоны, он постепенно обесцвечивается. При этом часть фотонов проникает сквозь кювету, отражается от зеркала, вторично проходит сквозь кювету и опять попадает в рабочий элемент. Там эти фотоны снова вызывают новые акты вынужденного испускания. Поток фотонов, усиленный таким образом, отражается от второго зеркала обратно в рабочий элемент.
Так начинает действовать обратная связь и возникает лазерная генерация. Теперь она развивается много быстрее, чем при применении механических средств. Импульсы излучения, возникающие в таких лазерах, обладают замечательными свойствами. Анализ показал, что они состоят из регулярной последовательности чрезвычайно коротких импульсов, длительность которых может составлять лишь доли наносекунды (наносекунда равна 10-9 секунды). Промежутки между сверхкороткими импульсами излучения равны времени, затрачиваемому светом для то го, чтобы дважды пройти расстояние между зеркалами, осуществляющими обратную связь.
Физики научились выделять один из этого потока сверхкоротких импульсов. А недавно они разработали способы дополнительного уменьшения длительности импульсов вплоть до нескольких фемптосекунд (фемптосекунда равна 10–15 секунды). Это открыло возможность изучать кратковременные процессы, происходящие за время, в течение которого свет успевает пролететь расстояние всего в три микрона.
ПРОЧИЕ ШЕДЕВРЫ
Для некоторых технических целей нужны столь большие энергии, что их невозможно получить при помощи лазеров, описанных выше. Поиски новых возможностей привели к успеху.
Прохоров и его сотрудник Конюхов особенно преуспели в создании лазеров нового типа – газодинамических лазеров. Их действие основано на особенностях охлаждения очень горячих газов, движущихся со сверхзвуковыми скоростями в особых соплах. При таком движении в газе нарушается тепловое равновесие. Молекулы, обладающие более высокой внутренней энергией, начинают численно преобладать над теми, внутренняя энергия которых меньше.
Именно в подобных случаях вынужденное испускание фотонов, предсказанное Эйнштейном, преобладает над поглощением. Пропустив такой газовый поток между зеркалами, реализующими обратную связь, получают лазерную генерацию.
Таким образом, газодинамический лазер состоит из устройства для нагрева газа, сверхзвукового сопла, системы обратной связи – оптического резонатора – и устройства для нейтрализации отработавшего газа.
Самые мощные газодинамические лазеры работают на смеси углекислого газа с азотом и другими примесями, близкими к тем, о которых говорилось выше. Но в отличие от них генерацию в газодинамических лазерах получают в продуктах сгорания углеводородных топлив. Так можно в течение длительного времени получать непрерывную лазерную генерацию с мощностью до сотен киловатт.
Несколько слов о химических лазерах. Их получили академик Басов, член-корреспондент РАН, В. Л. Тальрозе, профессор А. Н. Ораевский и их сотрудники. Они добились больших успехов в разработке и создании химических лазеров. Энергия, необходимая для генерации, черпается в них непосредственно из химической реакции газов. Наиболее изучена и наиболее широко применяется реакция соединения фтора с водородом.
Полупроводниковые лазеры тоже прошли большой путь развития. Основной задачей исследователей было уменьшение величины электрического тока, необходимого для получения лазерной генерации. Уменьшение силы тока позволило ограничить нежелательное тепловыделение, а значит, устранить необходимость применения специальных охлаждающих устройств. Многочисленные попытки достичь этой цели изменением конструкции полупроводниковых лазеров или созданием новых полупроводниковых материалов не привели к существенному продвижению к цели. Требовалась новая радикальная идея. Следовало отказаться от попыток улучшать известное. Путь эволюционных изменений себя исчерпал.
Радикальное предложение внёс сотрудник Ленинградского физико-технического института РАН, ныне академик, лауреат Нобелевской премии за 2002 год Жорес Иванович Алфёров. Нет ничего удивительного в том, что радикальная идея в области полупроводников возникла в ленинградском Физтехе. Ведь там существует мощная школа физиков, учеников и последователей создателя Физтеха академика А. Ф. Иоффе, первым понявшего широкие перспективы исследований и применений полупроводников. В Физтехе исследования физики полупроводников и поиск путей их технического применения велись с первых лет существования этого первого научного учреждения, созданного советским народом после победы Октябрьской революции.
К началу Великой Отечественной войны из стен Физтеха вышли и были освоены промышленностью принципиально новые полупроводниковые выпрямители электрического тока, чувствительные фотоприёмники и эффективные генераторы, питавшие партизанские радиостанции.
Алфёров установил, что основным препятствием на пути совершенствования полупроводниковых лазеров является то, что кристаллическая структура полупроводниковых элементов зависит от их состава. Но для изготовления полупроводникового лазера необходимо создать структуру, в которой объединены два неодинаковых полупроводника. Объединены так, чтобы между ними возник тонкий плоский переходный слой. Именно свойства этого переходного слоя определяют достоинства и недостатки полупроводникового лазера.
Выход, предложенный Алфёровым, состоит в том, что нужно научиться создавать тонкие слои полупроводника, обладающие различным химическим составом, различными электрическими свойствами, но одинаковой кристаллической структурой. Если кристаллическая структура приграничных слоёв двух полупроводниковых веществ одинакова и одинаково ориентирована в пространстве, то возникает оптимальное согласование их свойств.
Такой переходный слой получил название «гетеропереход». «Гетеро» – от греческого слова «другой».
Применение гетеропереходов привело к существенному улучшению свойств различных полупроводниковых приборов. Особое значение они приобрели при создании новых типов лазеров. Таким путём удалось в десятки тысяч раз уменьшить силу тока, необходимого для достижения лазерной генерации.
В результате этого полупроводниковые лазеры получили широкое применение. Главная область, где в полной мере проявляются их достоинства, – световодные системы связи. С их помощью в этих системах электрические сигналы преобразуются в оптические, которые распространяются в световодах на расстояния в сотни и тысячи километров. Полупроводниковые приёмники вновь превращают световые сигналы в электрические. После усиления эти сигналы направляют к пользователям или вновь подают на следующий полупроводниковый лазер. Порождаемые им сигналы могут быть введены в следующий участок световода. Так, длинными скачками, информация передаётся на тысячи километров.
Ещё одна важнейшая область применения полупроводниковых лазеров и полупроводниковых источников света, не снабжённых обратной связью, – создание ЭВМ последующих поколений. Пока в этой области делаются лишь первые шаги. Речь идёт о передаче оптических сигналов на малые расстояния. Но эта передача должна идти так, чтобы система оказалась нечувствительной к электромагнитным помехам. И работать она должна со скоростями, значительно превышающими быстродействие современных ЭВМ как в части обработки сигналов, так и при записи информации и её извлечении из запоминающих устройств.
Всё, описанное в этой главе, – результат новаторских идей и создания материалов, не существующих в природе. Конечно, и для создания искусственных материалов, обладающих наперёд заданными свойствами, нужны оригинальные идеи, но нужна также интуиция, мастерство и настойчивость технологов. Ведь изготовить искусственные материалы, зачастую объединяющие в себе с трудом совместимые свойства, можно только в искусственно созданных и с большой точностью управляемых условиях. Это проблемы, без решения которых было бы невозможно продвижение в мир лазеров.