355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Илья Леенсон » Удивительная химия » Текст книги (страница 6)
Удивительная химия
  • Текст добавлен: 6 октября 2016, 01:32

Текст книги "Удивительная химия"


Автор книги: Илья Леенсон



сообщить о нарушении

Текущая страница: 6 (всего у книги 14 страниц) [доступный отрывок для чтения: 6 страниц]

Пример второй. Как-то в редакцию журнала «Химия и жизнь» пришло письмо от матери школьника 7-го класса: «Мой сын отравился каким-то едким газом. При этом он уверял, что смешивал самые безобидные вещества – уксус и жидкость для стирки белья. Сыну, конечно, здорово влетело. Я уверена, что на самом деле он что-то скрывает. Ведь уксус – не серная кислота. Да и стиральным порошком, я не слышала, чтобы кто-нибудь отравился».

Что же произошло? Уксус, конечно, не серная кислота, но смешивать без разбора все подряд – дело, не достойное любителя химии. В данном случае уксус выступал просто в качестве кислоты, хотя и слабой. Вместо него могла быть любая другая кислота. Стиральный порошок здесь, конечно, ни при чем. «Жидкость для стирки белья», которую использовал незадачливый юный химик, – это, скорее всего, отбеливатель. Вот в нем-то, очевидно, и было все дело. Отбеливатели бывают разные. В состав многих моющих средств входят так называемые оптические отбеливатели. Это вполне безопасные вещества; их назначение, образно говоря, – «обмануть глаз», выдать желтоватую ткань за белоснежную. Справляются они с этим за счет явления, которое называется флуоресценцией (об этом интересном и красивом явлении будет рассказано в главе «Химики разгадывают тайны свечения»). Преобразуя невидимый ультрафиолетовый свет (он поступает с солнечным светом) в голубой, синий и фиолетовый, оптический отбеливатель, который сам может быть бесцветным, «подправляет» цвет ткани так, что она кажется нам белой. Этот прием давно известен, только вместо синтетических флуоресцирующих красителей наши мамы и бабушки подкрашивали (а иногда и сейчас подкрашивают) ткань синькой. При сильном разведении ее бледно-синий цвет, смешиваясь с ослабленным желтоватым цветом ткани, давал ощущение белого цвета, поскольку желтый и голубой – дополнительные цвета, которые в сумме дают белый цвет. Современные оптические отбеливатели придают белью гораздо более яркий белый цвет, особенно при прямом солнечном освещении.

Совершенно иначе действуют химические отбеливатели. В их состав входят вещества, которые химически разрушают различные загрязнения на ткани, а заодно и дезинфицируют ее. Раньше ткани (хлопчатобумажные и льняные) белили на солнце: под действием ультрафиолетового света большинство красителей постепенно выцветает. С ростом промышленного производства тканей для той же цели стали использовать хлорную известь, которую называли также белильной. Это смешанная кальциевая соль двух кислот – соляной и хлорноватистой. Впервые хлорную известь получил английский химик Смитсон Теннант (1761–1815), тот самый, который в 1804 году открыл самые тяжелые металлы платиновой группы – осмий и иридий. За несколько десятилетий производство хлорной извести выросло в десятки раз, она стала довольно дешевым препаратом. Действующее начало этого вещества – так называемый активный хлор, окислитель, разрушающий загрязнения (а при неправильном употреблении – и саму ткань). В настоящее время хлорную известь используют в основном для дезинфекции.

Активный хлор содержится и в иных веществах. Издавна (с 1789 года) известна жавелевая вода, близкая родственница хлорной извести, в формуле которой место кальция занимает калий. Свое название она получила от названия пригорода Парижа – Жавеля, где располагались заводы по ее производству (сейчас это один из парижских районов). Наравне с ней использовали и так называемую «лабарракову воду»; в ней на месте калия находится его «родственник» натрий. А назвали этот отбеливающий раствор по имени парижского аптекаря Антуана Жермена Лабаррака (1777–1850); его начали использовать с 1820 года. Натриевая соль хлорноватистой кислоты (химики называют ее гипохлоритом натрия) входит в состав многих современных средств для отбеливания.

Помимо веществ с активным хлором для той же цели используют и вещества с «активным кислородом». К таким веществам относится, например, перекись водорода (женщинам она хорошо известна в качестве средства для обесцвечивания волос), ее соединение с мочевиной (гидроперит), некоторые другие вещества. Все эти вещества обладают сильным окислительным действием.

Какая же опасность может возникнуть от химических отбеливателей? Активного вещества в растворе для стирки немного, и опасности такие отбеливатели никакой не представляют – если использовать их строго в соответствии с инструкцией. И если даже взять неразбавленный концентрат отбеливателя на основе активного кислорода, то при неправильном употреблении его действие будет проявляться разве что в бурном выделении газообразного кислорода, который для белья бесполезен, но и для человека безвреден. Иначе обстоит дело с активным хлором в составе гипохлоритов. Растворы гипохлоритов устойчивы только в щелочной среде. При подкислении идет реакция образования хлорноватистой кислоты. Это опасная реакция, так как образующаяся в свободном виде хлорноватистая кислота – вещество токсичное и нестабильное. Она разлагается с выделением хлора, которым, скорее всего, и отравился незадачливый юный химик. Ведь предельно допустимой (и, следовательно, сравнительно безопасной) считается такая концентрация хлора в воздухе, при которой на одну часть хлора приходится миллион частей воздуха (один маленький наперсток хлора, «разведенный» в кубометре воздуха)! Смешав неразбавленный отбеливатель с уксусом, юный химик мог получить в воздухе в сотни раз большую концентрацию ядовитого газа. Более того, известны случаи, когда гипохлориты давал и взрывчатые смеси с некоторыми веществами, которые используются в быту (по понятным причинам мы их здесь не указываем). Так что, работая с любым, даже привычным химикатом, следует строго соблюдать инструкцию.

Описание третьего случая предоставим самому пострадавшему. Вот запись того, что с ним случилось много лет назад: «Пишу по поводу странного и в некотором роде трагического случая, произошедшего со мной. Но сначала немного о себе. Химией увлекся в 4-м классе, а в 7-м классе, выступая по программе восьмого, победил на районной, городской и республиканской олимпиадах. В следующем году опять победил на республиканской, на Всероссийской – третий диплом, на Всесоюзной моя работа отмечена первым дипломом. В нынешнем году собирался ехать на Всесоюзную олимпиаду, прошел по конкурсу – и не поехал. Причиной был взрыв.

Как всякий уважающий себя химик, помимо теории я занимаюсь и практикой в небольшой домашней лаборатории. Услышал где-то рецепт приготовления… (дальше название вещества мы будем заменять буквой Х – на всякий случай) и решил исследовать свойства этого вещества. Получил кристаллы X, отфильтровал их, промыл, высушил. Подумал – нелишне бы сделать порошок…

В общем, у меня было 2,5 г чистого вещества X.Взяв на пробу кристаллик. я поднес к нему спичку. Он с треском разлетелся; стало быть, к открытому пламени неустойчив. Пересыпал кристаллы в фарфоровую ступку, стал крайне осторожно, на вытянутой руке, перетирать пестиком. Заметил несколько неперетертых кристаллов, стряхнул их на край ступки, коснулся пестиком, едва-едва провел (повторяю, крайне осторожно) – и взрыв, неожиданный, ужасной силы. А всего-то два с половиной грамма…

Руки и ноги в крови. Если бы я не был близорук и не носил бы очков, остался бы слепым: оба стекла – вдребезги, фарфоровая ступка превратилась в пыль, газовая плита из стального листа пробита фарфоровым осколком почти насквозь. Так что мне еще очень и очень повезло. Вызвал скорую, попал в больницу. В справке написали: «Множественные раны обеих рук, повреждение сухожилий-сгибателей, травматическая ампутация первой фаланги среднего пальца правой руки». Наложили массу швов – 24 на одной руке и 4 на другой.

Вот выздоровел, но не могу понять, почему же все-таки произошел взрыв? Я неплохо знаю правила работы в лаборатории, но я азартен, работая, теряю представление о времени и о многом забываю. Надо исправляться; этот случай меня многому научил. Чрезмерная увлеченность, неосторожность, излишняя самоуверенность стали причиной несчастья. А ведь всего через пять дней надо было лететь на Всесоюзную олимпиаду.

До сих пор мне просто везло. Например, вышел я как-то из дому и увидел соседа, на два года моложе меня, – трясет перед носом пузырек с бурой смесью. Спрашиваю, что в пузырьке, а он небрежно отвечает: «Бсртолетка с фосфором». Я пузырек взял и отшвырнул подальше. Не успел долететь до земли, как взорвался. А сосед только в затылке почесал…»

Что можно было ответить автору письма? Он допустил непростительную ошибку, работая с веществом X в домашних условиях. И помимо прочего, не прочитал предварительно об этом веществе, не узнал о его коварных свойствах. А ведь о нем написано достаточно. Например, в химической энциклопедии сказано, что высокая взрывоопасность вещества Xограничивает применение соединений этого класса, причем для близкого по строению вещества Yзамечено: «Взрывается от удара, трения и даже от прикосновения острым предметом». Словом, растирать в ступке пестиком более двух граммов такого вещества – почти то же самое, что положить в костер неразорвавшийся снаряд и стоять рядом, ожидая, что будет дальше (к сожалению, и такие случаи бывают). Вещество X, как и многие другие взрывчатые вещества, опасно держать в сухом виде даже в склянках с притертой стеклянной пробкой, так как крупинка, попавшая в зазор между пробкой и горлышком, при открывании может привести к взрыву.

Если бы юный химик заранее прочитал о свойствах вещества Х, он, скорее всего, отказался бы от его получения и тем более – от «изучения свойств». А если у него не было доступа к книгам, в которых это вещество достаточно подробно описано, то он вообще не должен был получать его.

В этой книге, конечно, не будет опытов с взрывчатыми, ядовитыми и прочими опасными веществами. Но даже работая с безобидным столовым уксусом, следует соблюдать аккуратность и осторожность. Место для опытов должно быть свободно от ненужных предметов. Под рукой должна быть тряпка, чтобы сразу убрать пролившуюся жидкость или просыпавшееся вещество. А закончив работу, надо оставить после себя идеальный порядок – это одно из основных правил работы в химической лаборатории. Вообще, химики – люди достаточно аккуратные и знают, что если сразу после окончания эксперимента не вымыть посуду, потом сделать это будет намного труднее. Для мытья химической посуды используются специальные кислотные или щелочные растворы, но если грязь отмывается легко, в ход идут обычные ершики, похожие на те, которыми пользуются в домашнем хозяйстве (рис. 2.28).



Рис. 2.28. Ершики для мытья химической посуды

Заканчивая разговор о безопасности и аккуратности, уместно привести любопытную выдержку из системы штрафов, налагаемых на студентов за нарушение правил работы в лаборатории. Эти штрафы были введены самими студентами знаменитого германского университета в Гейдельберге еще в 1854 году (собранные деньги шли на покупку химической литературы).

Вероятно, это был первый и единственный случай, когда студенты постановили штрафовать самих себя! Вот некоторые положения этого документа:

«Кто оставляет открытым газовый кран при негорящем газе, платит 12 крейцеров (около 10 долларов в современных ценах.

Кто бросает в раковины осколки керамики, бумагу и другие предметы, препятствующие стоку воды, платит 3 крейцера.

Кто оставляет открытым кран для воды, когда она не используется, платит 3 крейцера.

Кто после использования лабораторного прибора не убирает его или его части на место, платит 6 крейцеров».

В заключение этого очень серьезного и важного раздела – немного юмора. В 1970 году директор Иркутского института органической химии академик Михаил Григорьевич Воронков был в командировке в Индии. Во время посещения университета в городе Джайпур (он расположен юго-западнее Дели) М. Г. Воронков обнаружил «Правила выживания в химической лаборатории». Вернувшись домой, он восстановил их по памяти и прислал в редакцию журнала «Химия и жизнь». После публикации эти правила были перепечатаны и повешены на дверях в сотнях химических лабораторий, что вызвало улыбку старожилов и удивление новичков: некоторые из них все написанное восприняли вполне серьезно.

Вот эти правила:

«Если вы откупорили что-либо – закупорьте.

Если в руках у вас жидкое – не разлейте, порошкообразное – не рассыпьте, газообразное – не выпустите наружу.

Если включили – выключите.

Если открыли – закройте.

Если разобрали – соберите.

Если вы не можете собрать – позовите на помощь умельца.

Если вы не разбирали – не вздумайте собирать.

Если вы одолжили что-либо – верните.

Если вы пользуетесь чем-либо – держите в чистоте и порядке.

Если вы привели что-либо в беспорядок – восстановите статус-кво.

Если вы сдвинули что-либо – верните на место.

Если вы хотите воспользоваться чем-либо, принадлежащим другому, попросите разрешения.

Если вы не знаете, как это действует, ради бога, не трогайте.

Если это вас не касается – не вмешивайтесь.

Если не знаете, как это делается, сразу спросите.

Если не можете что-либо понять – почешите в затылке.

Если все же не поймете, то и не пытайтесь.

Если вы горите на работе, постарайтесь, чтобы у вас ничего не загоралось.

Если у вас что-либо взорвалось, проверьте, остались ли вы живы.

Если не усвоили этих правил, не входите в лабораторию».

Ну вот, теперь самое время заняться экспериментом. Помимо весов нам понадобятся самые простые вещи, например, обычная аптечная пипетка.

ПЕРВЫЕ ЭКСПЕРИМЕНТЫ
Измеряем плотность металла

Один из самых великих ученых древности Архимед был родственником царя Гиерона, который правил в городе Сиракузы на острове Сицилия. Как-то царь заказал своему ювелиру изготовить ритуальный золотой венец, который использовался во время жертвоприношений. Чистое золото слишком мягкое, поэтому в золотые изделия дня придания им твердости добавляют определенное количество меди или серебра. Гиерон, подозревая своего ювелира в обмане, поручил Архимеду доказать, что в корону подмешано больше меди, чем следовало. Архимед долго и безуспешно пытался решить эту задачу. Ведь никаких методов химического анализа в те времена еще не существовало. Единственный способ заключался в определении плотности металла, а для этого надо было взвесить корону (что не составляло труда) и определить ее объем – а вот это сделать для предмета неправильной формы не так-то просто! Предание гласит, что решение пришло неожиданно, во время приема ванны: ученый обратил внимание на то. что его тело выплеснуло из ванны часть воды на пол, а само стало весить намного меньше. Значит, об объеме веса тела (причем не обязательно Архимедова!) можно судить по тому, насколько оно потеряет в весе при погружении в воду. Архимед был настолько взволнован этим открытием, что выскочил из ванны и, забыв о том, что он голый, побежал по улицам Сиракуз с радостным криком: «Эврика!» (что в переводе означает «Нашел!»). Так это было или иначе – доподлинно неизвестно, несомненно лишь то, что именно Архимед открыл знаменитый закон, названный впоследствии его именем. После этого задача с короной была быстро решена: Архимед знал плотность чистого золота (по современным данным 19,3 г/см 3– это один из самых тяжелых металлов) и меди (8,96 г/см 3). Возможно, при изготовлении короны золото было сплавлено не с чистой медью, а с бронзой – сплавом меди и олова; Архимед, конечно, знал и плотность бронзы. Измерив плотность короны, Архимед вычислил долю золота в сплаве.

Попробуем повторить опыт Архимеда. Конечно, мы возьмем не золотую корону, а что-нибудь попроще, например, старую серебряную ложку. А действительно ли она серебряная? Естественно, если сохранилось клеймо, на котором указана проба серебра, то никаких измерений не потребуется. А если оно не сохранилось или на нем ничего разобрать нельзя даже с помощью лупы? Тут-то и пригодится способ, придуманный Архимедом. Плотность – это отношение массы к объему. Массу ложки легко определить взвешиванием. А как найти ее объем? С помощью тонкой нитки привяжем ложку к одной из чашек весов и взвесим ее. Теперь повторим взвешивание, аккуратно опустив ложку в кастрюлю или большую банку с водой так, чтобы ложка не касалась стенок (подобные измерения плотности проводил еще Роберт Бойль, как это видно из рис. 1.1). В соответствии с законом Архимеда, ложка должна потерять в весе ровно столько, сколько весит вода, вытесненная ложкой. Плотность воды при комнатной температуре почти не отличается от 1,00 г/см 3, поэтому разность двух взвешиваний ложки – в воздухе и в воде – как раз и равна объему ложки в кубических сантиметрах. Пусть, например, ложка весила в воздухе 89 г, а в воде – 78 г. Разность дает нам объем ложки – 11 см 3. Плотность ложки получается равной 89 г/11 см 3= 8,1 г/см 3(с округлением первого знака после запятой из-за не очень точного взвешивания). Значит, ложка не серебряная (плотность серебра 10,50 г/см 3), а скорее всего – стальная. Таким же способом можно отличить и многие другие металлы, например, свинец (плотность 11,3 см 3) от олова (плотность 7,29 см 3).

Если у кого-нибудь есть дома школьная медаль – «золотая» или «серебряная», можете попробовать таким же способом измерить ее плотность. После этого станет понятно, почему слова, обозначающие достоинства медали, взяты здесь в кавычки. Если таких «сувениров» не отыщется, вот результаты измерений автора.

Медаль № 1. «Золотая» медаль, выданная в 1962 году. Диаметр – 40 мм. На одной стороне – надпись «РСФСР» и соответствующий герб (сейчас уже мало кто помнит, в каком порядке в этой аббревиатуре следуют слова «социалистическая» и «советская»); на другой стороне изображена книга в лавровом венке и надпись «За отличные успехи в учении, труде и за примерное поведение» (ее острословы быстро переиначили: «За тихие успехи и громкое поведение»). Масса медали (взвешивание проводилось в домашних условиях на простых аптекарских весах, которые подвешиваются за колечко на гвоздик) равна 26,46 г в воздухе и 23,48 г – в воде. Отсюда объем медали – 2,98 см 3, а плотность – 2,46 г/ 2,98 см 3= 8,88 г/см 3= 8,9 г/см 3. Полученное значение очень близко к плотности меди – 8,96 г/см 3. Напомним, что золото более чем вдвое тяжелее. Значит, медаль сделана из меди (или медного сплава, например, из латуни или бронзы – сплавов меди с цинком и оловом) и лишь позолочена с поверхности. Как сказали знающие люди, до 1960 года школьные медали действительно были золотыми, 375-й пробы, т. е. золота в них было 37,5 %; теперь же «золотые» медали делают из томпака (это сплав меди с цинком, близкий к латуни, но с меньшим содержанием цинка) и только снаружи покрывают позолотой.

Медаль № 2. «Серебряная» медаль, выданная в 1968 году. Внешне она отличается от предыдущей только цветом. Масса – 24.96 г в воздухе и 22,06 г в воде, объем – 2,90 см 3, плотность – 8,61 = 8,6 г/см 3. Видимо, это тоже медный сплав; такую плотность имеет, например, сплав, очень близкий к мельхиору: 75  %меди, 20 % никеля и 5 % цинка, а также бронза состава 67  %меди, 33 % олова. А довольно сильное потемнение медали за несколько десятков лет говорит о том, что она, скорее всего, посеребрена (серебро темнеет на воздухе, если в нем есть хотя бы малейшие следы сероводорода, который может выделяться из резины, при варке яиц и т. п.). О серебряном покрытии непосредственно свидетельствует и проба, применяемая ювелирами. Когда на очищенную боковую поверхность медали капнули раствором дихромата калия («хромпика») в серной кислоте, под каплей сразу же появилось характерное красное пятно (легко потом счищаемое) – осадок дихромата серебра красного цвета.

Медаль № 3. «Серебряная» медаль, выданная в 1998 году. Размер у нее такой же, но рисунок другой: на одной стороне – силуэт женщины в лучах солнца, на другой – герб Российской Федерации на символической «сургучной» печати и две надписи: «Россия» и «За особые успехи в учении». Ну а каковы «особые успехи» в составе сплава? Масса медали – 26,50 г в воздухе, 23,50 г в воде, объем – 3,00 см 3, плотность -8,83 = 8,8 г/см 3. Видно, что за 30 лет медаль немного потяжелела, приблизившись по плотности к «золотой». Но она, конечно, не серебряная, во всяком случае, не из чистого серебра (напомним, что его плотность 10,5 г/см 3). И даже не из «монетного сплава», содержащего 90  %серебра и 10 % меди (его плотность 10,3 г/см 3). Плотность 8,8 г/см 3имеют, например, сплавы 65 % меди, 18 % никеля и 17  %цинка, или 90  %меди и 10 % олова (бронза), или 96  %меди и 5 % марганца, а также некоторые другие. Проба с тем же раствором не дала с первой попытки положительного результата, только после зачистки небольшого участка на ребре медали на нем под действием реактива появилось красное пятно. Видимо, современные медали после серебрения покрывают каким-то защитным слоем – недаром они не темнеют со временем!

В заключение – краткие сведения о пробах, которые ставятся на изделиях из драгоценных металлов: золота, серебра, платины, палладия. Иногда, чтобы разглядеть пробу на старом изделии, нужно увеличительное стекло. Проба указывает содержание в сплаве драгметалла. Пробы бывают разные. Так, старая российская золотниковая проба, введенная указом Петра в 1700 году, обозначала количество золотников чистого металла в одном фунте сплава. Современная метрическая проба (в нашей стране она принята в 1926 году) показывает массу драгметалла в граммах в 1000 г сплава. Поэтому, например, старой пробе 84 соответствует современная (84:96) х 1000 = 875. Например, с 1886 года проба российских монет достоинством 1 рубль, 50 и 25 копеек была равна 86 х 2/5 (что соответствует современной 900-й пробе), а проба монет достоинством 20, 15,10 копеек и маленьких серебряных «пятачков» массой всего 0,9 г. которые чеканились с 1867 по 1915 год (в отличие от громадных медных пятаков массой 16,38 г), была равна 48 (по-современному – 500). Советские рубли и полтинники имели 900-ю пробу, а более мелкие серебряные монеты 1921–1931 годов содержали только 50  %серебра (500-я проба). Современные серебряные изделия могут иметь пробу 960, 925 (так называемое «стерлинговое» серебро – название происходит от серебряной английской монеты, которая чеканилась в XII–XV веках; 240 таких монет по весу составляли «фунт стерлингов»), 916, 875, 800 и 750.

На золотых украшениях часто стоит 583-я проба. Это означает, что сплав содержит 58,3  %золота. Сейчас часто можно встретить на золотых изделиях 585-ю пробу. Это не значит, что золота в них больше. Проба 583 – это пересчет на метрическую старой 56-й пробы: (56:96) х 1000 = 583,3. Допустимое отклонение в содержании драгметалла укладывается в эту разницу, поэтому пробы 583-я и 585-я – это фактически одно и то же.

В некоторых странах (Англия. Швейцария) до сих пор используют каратную пробу, по которой чистое золото имеет пробу 24 карата; таким образом, пробе «14 карат» соответствует метрическая 583-я проба.

Для приблизительного определения пробы используют химический метод. След, оставленный изделием на пробирном камне (черный камень с отшлифованной матовой поверхностью), обрабатывают специальными растворами. Так, концентрированная 72 %-ная азотная кислота полностью растворяет след от золотого сплава, если его проба меньше 333-й. Если штрих окрасился в коричневый цвет, проба золота – от 333-й до 500-й. а если изменений не было – больше 500-й. Коричневый след – это мелкораздробленное золото, оставшееся после растворения других металлов (меди, серебра) в сплаве. Используя смесь азотной и соляной кислот, можно быстро определить приблизительное содержание золота в сплавах с пробой от 160-й до 1000-й (чистое золото). Для более точного определения пробы цвет штриха от изделия сравнивают с цветом штрихов от эталонных сплавов известной пробы. Таких сплавов (в виде специальных игл) существует множество, и отличаются они содержанием не только золота, но также меди и серебра. Дело в том. что даже при одной и той же пробе золотые изделия могут сильно отличаться по цвету. Это зависит от вида и содержания металла, с которым сплавлено золото (такой металл называют лигатурным). Так, серебро, сплавляемое с золотом в разных соотношениях, придает сплаву белый, желтый или даже зеленый оттенок. Медь делает золото красноватым, сплав, содержащий 9 % серебра и 32,5 % меди, имеет оранжевый цвет, а сплав с 20 % палладия дает так называемое «белое золото».

Реже применяются другие лигатуры. Например, кадмий придает золоту зеленоватый оттенок, цинк – белый, никель – бледно-желтый.

Измеряем диаметр атома

«Неужели это возможно в домашних условиях?» – спросите вы. Вполне возможно, только для того, чтобы рассчитать диаметр атома, надо кое-что знать. Например, что атомы многих металлов можно представить в виде маленьких, плотно упакованных шариков. В гаком случае атомы-шарики занимают 74  %всего пространства, а остальные 26 % приходятся на пустоты между ними. Еще надо знать, как связан объем шара (V) с его диаметром (d) – эту формулу можно найти в учебнике или в справочнике по математике: V= πd 3/6,где π = 3,14. Наконец, надо знать очень важную для химии величину, которая называется постоянной Авогадро (N A) – в честь итальянского ученого XIX века Амедео Авогадро (1776–1856). Эта константа показывает, сколько частиц – атомов, ионов или молекул содержится в одном моле вещества. Моль – очень удобная для химиков единица измерения, так как в одном моле любого вещества содержится одинаковое число частиц. Например, 1 моль воды (18 г), или 1 моль сахара (343 г), или 1 моль кислорода (32 г) содержит одинаковое число молекул, равное N A= 6,02 x 10 23. Ровно столько же атомов содержит 1 моль алюминия (27 г), или 1 моль меди (64 г), или 1 моль серебра (108 г). А 1 моль поваренной соли (58,5 г) содержит по 6,02 x 10 23положительно заряженных ионов (катионов) натрия и отрицательно заряженных ионов (анионов) хлора. Понятие «моль» (раньше его называли «грамм-молекулой», а еще раньше, во времена Менделеева, – «химическим паем») удобно тем, что им можно пользоваться и не зная численного значения постоянной Авогадро, так как вещества реагируют друг с другом в соответствии с числом молей в них.

О том, как ученые определили это огромное число, мы еще поговорим, а пока вернемся к нашей ложке. Итак, пусть в предыдущем опыте нам повезло, и ложка оказалась из серебра высокой пробы с плотностью 10,5 г/см 3. Теперь у нас есть все данные, чтобы определить размер «серебряного атома». В 1 см 3серебра содержится 10,5 г:108 г/моль = 0.097 моль, или 0,097 x 6,02 x 10 23= 5,84 x 10 22атомов серебра. Если не считать пустоты между атомами, то на долю самих атомов-шариков придется не 1 см 3, а немного меньше – 0.74 см 3. Значит, объем одного атома равен 0,74 см 3/5.84 x 10 22= 1.27 x 10 -23см 3. Осталось только по приведенной выше формуле рассчитать диаметр атома серебра. Он получится очень маленьким: d= 3 x 10 -8см, или 0,3 нм (нанометр – одна миллиардная часть метра – самая подходящая единица для измерения таких малых величин).

Все атомы имеют очень малые размеры. Цепочка из миллиона атомов серебра, плотно уложенных друг к другу, протянется всего на 0,3 мм. Дня сравнения: если уложить в цепочку миллион маковых зернышек диаметром 1 мм, то такая цепочка протянется на 1 км! Из-за малого размера атомов их невозможно увидеть даже в самый сильный оптический микроскоп. Зато ученые придумали другие приборы, позволяющие получать изображения отдельных атомов.

Примерно такие же размеры, как атом серебра, имеют небольшие молекулы – кислорода, азота, метана, воды; все они содержат несколько небольших атомов. Бывают молекулы, которые значительно больше: они содержат много атомов или атомы больших размеров (например, атомы иода). В следующем разделе мы познакомимся с одним из методов измерения размера молекул. А сейчас – некоторые интересные и полезные сведения об Авогадро и постоянной, названной его именем.

Итальянский химик Авогадро прожил очень долгую по меркам того времени жизнь. Он родился в 1776 году в Турине, в Северной Италии. Получил юридическое образование и в возрасте 20 лет был назначен секретарем префектуры. Это были годы, когда в Италии гремела слава молодого французского полководца Наполеона. Однако Авогадро не привлекала ни военная, ни юридическая карьера. Со временем он стал все больше интересоваться естественными науками – физикой и химией, которые изучил самостоятельно. В 1809 году он начал преподавать физику в городе Верчелли, недалеко от Турина, а в 1820 году был назначен профессором математической физики в Туринском университете. В университете Авогадро проработал до преклонного возраста и покинул его лишь в 1850 году. Умер Авогадро в Турине в 1856 году. О его личной жизни сохранилось очень мало сведений. Прославили же Авогадро две статьи, опубликованные в 1811 и 1814 годах. Вначале они не вызвали интереса и были почти забыты. Сегодня же имя Авогадро знают школьники всех стран, если они изучают физику и химию.

Закон Авогадро звучит очень просто: «Равные объемы газообразных веществ при одинаковом давлении и температуре содержат одно и то же число молекул, так что плотность различных газов служит мерой массы их молекул». Из этого закона следовало, что, измеряя плотность разных газов, можно определять относительные массы, а также состав молекул газообразных соединений. Благодарные потомки назвали число частиц в одном моле вещества постоянной Авогадро, которую обозначили как N A.Кстати, само слово «моль» – итальянского, вернее, латинского происхождения. В переводе с латыни molesозначает «тяжесть, глыба, громада». На современной двухцентовой итальянской монете изображен купол со шпилем «Антонеллиевой громады» (mole Attlonelliana), самой высокой конструкции в Италии (167,5 м); интересно, что это сооружение считается символом Турина, родного города Авогадро. Соответственно, molecula(с уменьшительным суффиксом – сиlа) —«маленькая масса», как корпускула – «маленькое тело» (так во времена Ломоносова называли молекулы). Помимо указанного значения слово molesна латыни означает «дамба, насыпь, укрепленная большими камнями» (вспомним слово «мол» – сооружение в гаванях для защиты судов от морских волн). Тот же корень в латинском слове mola —«жернов» («громадный камень») и в глаголе molo —«молоть». Отсюда и молот с молотком, и моляр – зуб, размалывающий твердую пищу, как жернов на мельнице, и даже вредная моль – насекомое, измельчающее, стирающее вещи в муку.

Постоянная Авогадро – огромное число, с трудом поддающееся воображению; оно, к примеру, в 4 миллиарда раз больше, чем расстояние от Земли до Солнца, выраженное в миллиметрах! Это означает, что атомы и молекулы очень маленькие – раз их так много помещается в сравнительно небольшом количестве вещества. Еще в XIX веке ученым было очевидно, что, поскольку атомы и молекулы очень маленькие и никто их еще не видел, постоянная Авогадро должна быть очень велика. Постепенно физики научились определять размеры молекул и значение постоянной Авогадро – сначала очень грубо, приблизительно, затем все точнее. Прежде всего им было понятно, что обе величины связаны между собой: чем меньше окажутся атомы и молекулы, тем больше получится постоянная Авогадро.


    Ваша оценка произведения:

Популярные книги за неделю