Текст книги "Как расщепляют мгновение"
Автор книги: Игорь Иванов
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 2 (всего у книги 3 страниц)
Такие эксперименты тоже проводились буквально несколько лет назад. И вот результат из одной из работ. Здесь люди проэкспериментировали с разнообразными поляризациями и разнообразными углами падения луча и смогли просто в трехмерном пространстве восстановить динамику вектора намагниченности. То есть оказывается, что когда по нему ударяют с помощью инфракрасного импульса, он начинает как-то дрожать, иногда уменьшаться, сжиматься, переворачиваться, прецессировать. И вот это всё действительно прекрасно видно с помощью этой техники. Ну вот, скажем: здесь, конечно, нарисованы какие-то загогулины, ничего не понятно, но реально это три разных проекции, три разных взгляда на динамику вектора намагниченности в пленочке. И изучая их, физики смогли восстановить последовательно этапы того, что там происходит. Оказалось, что буквально за долю первой пикосекунды у вас происходит сначала нагрев электронов – то есть сначала электроны поглощают свет – и резкое падение намагниченности. То есть из-за того, что электроны горячие, и из-за того, что магнетизм связан с электронами, у вас получается резкое проседание намагниченности. Затем через 2–3 пикосекунды электронная теплота передается решетке, и решетка начинает как-то колебаться. А потом намагниченность восстанавливается до старого уровня, и происходит просто прецессия вокруг магнитного поля. Вот такие картинки получаются.
Фемтосекунды
Ну что ж, переходим дальше, к фемтосекундам. Фемтосекунда (фс) – это 10–15 секунды. Фемтосекундный диапазон – еще более мелкий по времени диапазон. Атомы здесь практически не движутся. Только, может быть, на сотнях фемтосекунд еще можно заметить какое-нибудь смещение атомов в кристаллической решетке, но на десятках единиц фемтосекунд атомы уже можно считать просто неподвижными, и это уже область, в которой господствуют электроны, разнообразные электронные явления. Но электроны, на самом деле, тоже движутся с разными частотам, с разными скоростями. То есть внешние электроны движутся медленнее, внутренние атомные электроны движутся быстрее. Но под словом «движутся» я, конечно, не имею ввиду, что они прямо крутятся вокруг атома, но если запустить какой-то нестационарный процесс – например, возмутить как-то атом или выбить у него электрон, – то у вас начинается какое-то перетекание волновых функций. Вот это перетекание волновых функций у вас тоже происходит на фемтосекундном масштабе.
Здесь есть стандартные методы исследования, то есть это фактически та же самая методика накачки и зондирования, о которой я говорил, только она уже в 80-е годы эволюционировала вплоть до единиц фемтосекунд. Ну и здесь она, конечно, столкнулась с определенным и неизбежным пределом. Просто период колебания электромагнитного поля обычной световой волны составляет от 1,5 до 3 фемтосекунд. То есть получить, скажем, 1 фемтосекунду просто нереально, потому что вы не можете получить световой импульс с половиной периода колебания – у вас неизбежно хотя бы 1–2 колебания есть. Поэтому оптические импульсы у вас неизбежно получаются длительностью несколько фемтосекунд. Но с помощью этих методов можно действительно изучать фемтосекундные процессы.
Вместо того чтобы показывать это, я решил, что полезно будет рассказать пример, ну, несколько иного взгляда на быстро протекающие процессы, то есть несколько иного метода детектирования этих явлений. Прежде чем я переключу на следующий слайд, я вам просто скажу словами.
Значит, если у вас есть быстропротекающий процесс, в котором переносятся заряды, например электроны, протоны, то, значит, у вас может возникать электромагнитное излучение, причем частота этого электромагнитного излучения как раз соответствует тем типичным временам переходов, которые у вас в этом процессе и имеются. Поэтому, если внимательно посмотреть на этот процесс и зарегистрировать от него вспышку электромагнитного излучения, то можно, расшифровав эту вспышку, кое-что узнать и про сам процесс. И вот здесь рассказывается о том, как буквально год назад это было применено к интересному биологическому белку под названием бактериородопсин.
Бактериородопсин – это вообще уникальный белок, у него много интересных физических свойств есть. Ну, реально в природе он вырабатывается определенным типом бактерий, и причем он встроен в их мембрану, то есть он сидит в мембране, и делает он следующую функцию. Это светочувствительный белок: когда его освещают светом, в нём запускается цикл, то есть каскад процессов, перестройки, разнообразные переконфигурации этого белка, результатом которого является передача протона от одного конца молекулы к другому. Ну и поскольку у нас этот белок встроен в мембрану, получается, что при освещении этот белок работает как протонный насос. То есть он из одной части, из одной области прокачивает протоны в другую область и там их отпускает, снова берет протон, перекачивает в другую и отпускает.
Конечно, это очень важно для биологии, это один из фундаментальных процессов в биологии. Поэтому, конечно, физики и, там, биофизики это активно всё изучали. Вот выяснилось, что есть много разных стадий, здесь примерно нарисовано, я не расшифровываю, что это такое, просто типичные стадии, типичные времена, в течение которых эти стадии все проходятся. И оказалось, что в этом белке, на самом деле, есть стадии с совершенно разным временным масштабом. То есть вообще весь цикл проходит примерно за 20–30 миллисекунд, то есть достаточно медленно. Но определенные этапы проходят за микросекунды, а некоторые шаги в этих этапах проходят даже за наносекунды и даже за пикосекунды, то есть есть целый диапазон в 12 порядков разнообразных переходов в этой молекуле. Ну и оказалось, что самые-самые первые явления, то есть самый первый отклик этой молекулы на свет, когда только-только ее осветили, вот он протекает буквально за считанные пикосекунды, за 1–2 пикосекунды. И для того чтобы разобраться в динамике этого процесса, требуется методика, которая позволяет зайти глубже, чем пикосекундный диапазон, тр есть в фемтосекундный диапазон, хотя бы сотни или десятки фемтосекунд желательно разглядеть с помощью этой методики.
Вот, ну, как я уже говорил, идея, которая здесь была применена, – очень простая. Если у вас есть перемещение зарядов, а в этой молекуле есть, естественно, перемещение зарядов, то у вас может возникать излучение. Вопрос: какого оно диапазона? Значит, если речь идет про пикосекундный диапазон времен, то одной пикосекунде, если пересчитать это в частоту, отвечает 1012 Гц, то есть это первое герцовое излучение. Ну, как мы слышали, на языке астрономов это называется дальний инфракрасный диапазон. То есть длина волны сотни микрон. Ну и вообще это очень тяжелый для изучения диапазон, как в астрофизике, так и, в принципе, в обычной физике. Вот, то есть в течение долгого времени не было не только надежных методов детектирования слабых терагерцовых импульсов, даже надежных методов генерации слабых терагерцовых импульсов. Поэтому прогресса большого не было. Вот буквально последние 5-10 лет наметилось несколько новых концепций, с помощью которых можно излучать эти терагерцовые волны и детектировать их тоже. То есть сейчас большой проблемы это не представляет.
Итак, если у нас тут будут процессы с типичным временем порядка пикосекунд или долей пикосекунд – то есть это значит, что будет производиться вспышка терагерцового излучения, – вот если эту вспышку задетектировать и промерить, то можно узнать многое... и сравнить с теоретическими расчетами – можно узнать много про динамику перемещения зарядов в этой молекуле. Ну, конечно, нереально от одной молекулы увидеть вспышку терагерцового излучения, особенно с учетом того, что оно плохо детектируется, поэтому здесь на помощь пришел тот факт, что эти молекулы можно концентрировать и выстраивать их примерно, ну, в одном направлении. И поэтому когда у вас есть вспышка света, которая инициирует процессы, то она сразу инициирует процессы в этих тысячах, миллионах молекул. И они все начинают излучать терагерцовое излучение, причем излучение это идет когерентно, то есть сразу со всей пленочки. И вот этот импульс уже можно задетектировать.
Вот картинка этого импульса, который получен в эксперименте. Здесь у нас пикосекунды, здесь, ну, электрическое поле в терагерцовом импульсе, вот эти зелененькие – это точки экспериментальные, видите с какой плотностью они стоят, то есть у нас на каждую пикосекунду приходится, ну, пара десятков этих точечек. И это необходимо, потому что иначе такую быструю динамику просто было бы не заметить. Вот. На эти точки здесь наложено несколько кривых. Что это за кривые – не сильно важно, просто видно, что разные теоретические подходы к описанию отклика этой молекулы, скажем, с учетом переноса электронов или протонов или того и другого вместе дают немножко разные предсказания, и самые лучшие предсказания дает кривая, которая учитывает, скажем, перенос и электронов и протонов. То есть это может показаться каким-то мелким вопросом, но я хочу, чтобы вы обратили внимание на саму методику. То есть с помощью внимательного изучения этого профиля и сравнения с теорией мы можем действительно много что узнать про субпикосекундные явления, то есть про явления, длящиеся сотни фемтосекунд. Вот ссылка на эту статью.
Аттосекунды
Так. Значит, дальше. Хорошо. Ну, фемтосекунды мы прошли, но на этом спектр еще не заканчивается, диапазон времен идет дальше. Следующими идут аттосекунды (1 ас = 10–18 с). Аттосекундный диапазон – это нечто совсем уже передовое, то есть буквально последние годы люди только-только залезли в аттосекундный диапазон с помощью импульсов рентгеновского или далекого ультрафиолетового излучения. То есть сейчас действительно уже можно получать импульсы длительностью в сотни аттосекунд – скажем, 300, 400 аттосекунд – ну и с помощью них изучать процессы, которые происходят тоже на этом масштабе.
Ну, как я уже говорил, на аттосекундном масштабе уже никакого движения атомов совершенно нет, да и электроны, в общем-то, уже почти неподвижны, даже если они не в стационарных слоях. Единственное, что хоть как-то движется на этих масштабах, – это самые-самые внутренние электроны, то есть самые быстрые, самые внутренние электроны в многоэлектронных атомах. И здесь полезно подчеркнуть, что для того чтобы просто оценить, какие явления там происходят, а какие можно считать остановившимися, полезно смотреть не на расстояния, а полезно смотреть на энергии, которые используются в этих процессах.
Значит, здесь мы немножко уже залезаем в область квантовой механики. В квантовой механике есть такое соотношение определенности между энергией и временем, которое можно сформулировать так, что если у вас есть какой-то процесс, в котором у вас имеются переходы между энергиями с типичной разностью Е, то этот процесс у вас не может длиться меньше, чем h делить на Е, где h – постоянная Планка. И примерная линейка пересчета вот такая, то есть по порядку величины явления, которые протекают на внешних атомных оболочках, то есть затрагивают порядка электронвольт, длятся типичное время фемтосекунды. Явления, которые происходят на самых внутренних оболочках, длятся типичное время аттосекунды. И вот пример одной из работ, в которой люди залезли прямо в аттосекундный диапазон и смогли что-то узнать. Это динамика Оже-эффекта.
Оже-эффект – это достаточно простой эффект. Это двухэлектронная ионизация атома и поглощение рентгеновского фотона. Значит, когда у вас попадает какой-то фотон, он может поглотиться электронами, например самым внутренним электроном. При этом, если энергии достаточно, этот электрон может просто вылететь из атома и улететь, да? На его месте образуется вакансия, она очень глубокая, у нее очень большая энергия связи и она не может жить долго. Эта вакансия заполняется каким-либо из более высоких электронов, то есть этот электрон падает сюда, и, когда он падает, он испускает свой фотон. Так вот, этот фотон не всегда улетает прочь, а иногда может перепоглотиться вновь внутри этого же атома – скажем, каким-нибудь совсем внешним электроном. И тогда этот совсем внешний электрон, который называется Оже-электрон, тоже вылетает из атома. И энергия этих двух электронов – первичного и Оже-электрона – она скоррелированная и она связана с энергией этого падающего фотона.
Значит, это интересный процесс, который рассказывает вам о том, как у вас перетекают электронные плотности внутри атома. И теоретические оценки говорят о том, что – ну, для типичных многоэлектронных атомов – это времена порядка единиц фемтосекунд, может быть даже меньше. Поэтому для того, чтобы в деталях его проследить, требуется техника, с помощью которой мы можем заглянуть внутрь фемтосекунды, то есть в сотни, хотя бы в сотни аттосекунд.
И вот картинка из работы, выполненной несколько лет назад, в которой эта динамка была изучена на примере атома криптона. Значит, суть здесь такая. Вообще, на самом деле, здесь уже становится принципиально сложным найти хоть какой-нибудь эффект, который бы, ну, менялся в аттосекундном диапазоне. Потому что в аттосекундном диапазоне почти всё уже стоит, почти всё уже неподвижно. Вот, скажем, если есть у вас какой-нибудь электромагнитный импульс, то за одну фемтосекунду он только-только успеет начаться. Да. Поэтому трудно от него что-либо ожидать.
Но, тем не менее, этот сам факт можно использовать – что внутри оптического импульса есть меняющееся электрическое поле. Используется это таким образом. Значит, ну, здесь экспериментальная установка нарисована, здесь просто показано, что с помощью двойного зеркала вот в эту точечку, где этот эксперимент, собственно, и протекает, фокусируется сразу два импульса. Во-первых, это очень короткий рентгеновский импульс – здесь вот он на развертке показан. Значит, короткий рентгеновский импульс, который и инициирует этот процесс, то есть он выбивает первый электрон и запускает падение остальных в эту вакансию. И на это накладывается оптический импульс, который очень, конечно, медленный по сравнению с аттосекундами, но тем не менее он есть.
Так вот, значит, вылет первого и второго электронов происходит в какой-то конкретный момент времени. И оказывается, что, когда вот электрон только вылетает, он вдруг ощущает себя внутри электромагнитного поля от светового импульса. Внутри электрического поля светового импульса. И это электрическое поле этот электрон слегка подталкивает – ну, или притормаживает – в зависимости от того, в какой момент времени вылетел электрон, то есть в какую именно фазу этого колебания попал электрон. Вот. То есть с помощью этой методики можно, по крайней мере, различить 1/10 от периода колебания световой волны. То есть в зависимости от того, электрон вылетел в какой-то определенный момент времени или спустя, скажем, 200 аттосекунд, у него уже будет слегка другое распределение по кинетической энергии.
Вот. Здесь показана картинка, но на самом деле это моделирование, то есть здесь – наверное, плохо видно – штрихами показана интенсивность электрического поля в оптическом луче. По оси Х здесь единицы фемтосекунд, а по оси Y здесь, по-моему, энергия... да, это энергия выходящих электронов в килоэлектронвольтах. Ну и здесь видно, что, да, вот эти картинки нарисованы при разных предположениях о времени жизни вот этой глубокой вакансии внутри атома. Скажем, если бы она жила 200 аттосекунд, то эксперимент должен был бы показать вот такое колебание энергии вылетевших электронов, которое более или менее в фазе относительно электрического импульса. Вот. Если 500 ас, то картинка чуть смазывается, если 1 фс – она смазывается еще больше, и т. д.
То есть исследователи просто промоделировали это явление на компьютере, получили ожидаемые картинки, которые были бы при разных предположениях о времени жизни этой вакансии, и просто сравнили затем с экспериментально наблюдаемыми распределениями по энергии электронов. Вот. Ну и получили величину порядка 8 фемтосекунд. То есть в конкретном атоме криптона самая глубокая вакансия жила примерно столько времени.
Зептосекунды
И на этом спектр тоже не кончается, диапазон времен. Есть еще более мелкие процессы, более быстрые процессы, которые протекают на еще более мелких единицах времени. Эти единицы времени называются зептосекунды, 1 зс это 10–21 секунды. На зептосекундном масштабе уже, конечно, нет никаких движений ни атомов, ни даже электронов. И электроны, и атомы стоят. Всё, что может происходить на этом масштабе, – это ядерные реакции. То есть мы уже залезли вглубь ядра.
Значит, можно оценить типичное время, за которое нуклон, двигающийся с типичной ядерной кинетической энергией, проходит диаметр ядра. Это оказывается порядка 1 зептосекунды. Это дает нам примерную оценку того, сколько протекают ядерные реакции, если, скажем, у вас родилось какое-то ядро в столкновении и тут же распалось. Если оно не сдерживается никакими силами, то оно распадается примерно за зептосекунду. Если же у вас есть какие-то дополнительные силы или стимулы для этого ядра немножко пожить, то есть чуть-чуть быть постабильнее, то его время жизни будет по крайней мере на несколько порядков больше, чем зептосекунды.
Вот, оказывается, это можно изучать, и это действительно было недавно использовано, буквально в прошлом году, для обнаружения того, что некоторые изотопы элементов 120 и 124 обладают повышенной стабильностью. (Подробнее см. в новости У изотопов 120-го и 124-го химических элементов обнаружена склонность к долгожительству, «Элементы», 15.08.2008.) Конечно, это не настоящие стабильные атомы, здесь вообще о стабильности говорить не приходится, они жили всего лишь 1–2 аттосекунды, но интерес к ним связан с тем, что эти изотопы, на самом деле, очень нейтроно-дефицитны. Совершенно гарантированно, что у них есть собратья, другие изотопы, с большим количеством нейтронов, которые будут жить намного дольше. Их просто очень тяжело экспериментально получить, поэтому люди сейчас экспериментируют только вот с нейтроно-дефицитными изотопами. Вот. Но получив кое-какие экспериментальные данные даже про эти нейтроно-дефицитные изотопы и сравнив их с теоретическими расчетами, можно действительно улучшить предсказания теоретиков относительно острова стабильности, который, может быть, существует в сверхтрансурановых элементах.
Значит, как это всё можно исследовать. Казалось бы, вообще удивительная вещь: и даже свет, можно считать, стоит, электроны стоят, и атомы стоят. И тем не менее можно это тоже исследовать.
Значит, метод, который здесь используется, называется «методом теней». И выглядит он так. Значит, смотрите, у вас есть кристалл, в котором сидят в кристаллических плоскостях ядра. Вот у вас налетает на эту мишень какое-то другое ядро, сталкивается с этим ядром и на какое-то небольшое время порождает метастабильное и очень тяжелое ядро. Но поскольку закон сохранения импульса соблюдается, это ядро движется по-прежнему вперед с некоторой скоростью. И затем оно распадается. И вот в зависимости от того, где именно оно распадается, картина получается сильно разная. Если оно распадается между кристаллографическими плоскостями, то есть в достаточном удалении от своей исходной плоскости, то дочерние частицы, в принципе, могут вылетать прямо вперед, им ничто не мешает. Если мы будем смотреть на распределение по углу этих дочерних частиц, то мы будем видеть довольно большое количество частиц, которые улетают прямо вперед, то есть вдоль кристаллографической плоскости. А если у вас это ядро распалось практически тут же, на месте, совсем-совсем недалеко отойдя от этой кристаллографической плоскости, то вы не сможете увидеть никакие частицы, которые вылетают вперед, просто потому, что мешает кристаллографическая плоскость. Либо эти частицы перерассеются, либо поглотятся, либо отклонятся электрическим полем на большой угол.
То есть, если вы построите теперь такой график – это количество дочерних частиц в зависимости от угла отклонения от кристаллографической плоскости, – вы увидите настоящую тень от кристаллографической плоскости. Но только эта тень, конечно, не в оптическом диапазоне, не в лучах – эта тень в распределении дочерних ядер, получившихся в этой реакции. Вот. И с помощью этой методики действительно можно вполне надежно отличать ядра, которые живут, скажем, одну аттосекунду или 100 зептосекунд. И с помощью этой методики действительно было показано, что эти элементы – некоторые из этих изотопов – живут достаточно долго.