Текст книги "Открытие «шестого чувства»"
Автор книги: Игорь Акимушкин
Жанр:
Биология
сообщить о нарушении
Текущая страница: 3 (всего у книги 5 страниц)
А сама эта доза, мы уже знаем, зависит от чередования света и темноты. Свет – тот внешний источник энергии, который заводит внутренние часы обитателей подсолнечной планеты.
Если нормальное суточное чередование света и темноты изменить, то физиологические часы животных (и растений тоже) начнут отмечать время по-новому.
Подобные опыты делали сотни раз. Например, крыс, тараканов, мух, голубей или… фасоль освещали, скажем, десять часов подряд, а потом на десять часов помещали в полную темноту. Их физиологические часы уже через день-два, в крайнем случае через неделю-две, полностью перестраивались и приспосабливались к 20-часовым суткам [1]1
Человеку требуется 8–10 дней, чтобы полностью приспособить свои физиологические ритмы к новому течению дня и ночи.
[Закрыть] .
Часто даже не нужно все десять часов освещать содержащихся во тьме животных. Достаточно каждый раз в одно и то же время включать свет хотя бы на час и даже всего на несколько минут, и физиологические часы подопытных «кроликов» приобретут новый «завод».
Делали и так: не нарушая нормального 24-часового ритма, лишь на шесть часов раньше включали освещение, еще когда на дворе была темная ночь; или, наоборот, уже наступал рассвет, а животных еще шесть часов держали в темноте. Их физиологические часы уже через несколько дней показывали новое время – спешили или отставали на шесть часов.
И сон, и пробуждение, и поиск пищи, и все другие внешние и внутренние проявления жизнедеятельности животного начинались на шесть часов раньше или позже прежнего.
Физиологические часы можно отвести назад и воздействием низкой температуры.
Возьмите пчел, обученных прилетать в полдень за сахарным сиропом к кормушке, и продержите несколько часов на холоде, где-нибудь в погребе, чтоб температура там была около 0–5 градусов. Как только пчел выпустите, они вспомнят о сиропе. Но вспомнят с запозданием ровно на столько часов, сколько вы их продержали в погребе.
Опыты показали, что после длительной обработки холодом организм ведет себя так, как будто в течение этой обработки физиологические часы находились в состоянии покоя.
«Замораживание» быстрее достигает своей цели, чем многодневная перестройка внутренних ритмов искусственным чередованием света и тьмы, и к нему часто прибегают ученые, когда экспериментируют с растениями или с холоднокровными животными, температура тела которых быстро повышается или понижается.
Должен предупредить читателей, что в науке нет еще достаточно ясного представления ни о природе, ни о работе физиологических часов. Поэтому беглый обзор на предыдущих страницах следует рассматривать лишь как весьма схематичное и приблизительное изложение принципов действия очень сложной механики природных хронометров.
Но тем не менее, к чтению следующих глав мы приступаем теперь более подготовленными.
Солнечная навигация
Итак, вернемся к скворцам.
Когда опыты Крамера стали известны орнитологам, некоторые ученые захотели их повторить. К этому времени и изучение физиологических часов значительно продвинулось вперед. Немец Гофманн решил использовать эти достижения в своих опытах со скворцами.
Он начал с того, что проделал Крамер: приучил двух скворцов находить по солнцу корм в одной из двенадцати однотипных кормушек. Потом скворцов около двух недель продержали в помещении, в котором были созданы искусственные день и ночь, на шесть часов отстающие от нормальных суток. «Часы» скворцов тоже отстали. Когда их посадили снова в клетку под открытым небом, они, проголодавшись, полетели к кормушке, в которой привыкли всегда находить пищу. Но кормушку не нашли, хотя день был ясный. Скворцы ошиблись ровно на 90 градусов: кормушка помещалась на юге, а они искали ее на западе [2]2
Это у одного скворца. У второго кормушка была на западе, а искал он ее на севере.
[Закрыть] . Было три часа дня, а так как их часы отставали на шесть часов, скворцы «решили», что сейчас только девять часов утра, потому и отклонились сильно вправо: ведь солнце за шесть часов продвинулось на 90 градусов к западу, то есть вправо, если смотреть на его путь по небосводу.
В течение 23 дней, пока скворцов содержали и днем и ночью при свете, часы их шли неправильно, и они ошибались в своих поисках. Затем скворцов поместили под открытым небом, и недели через две часы их нагнали потерянные шесть часов.
Птицы, у которых внутренние хронометры отводили на шесть часов вперед, ошибались в поисках нужного направления, отклоняясь на 90 градусов влево.
Эти опыты, проделанные и с голубями, и со славками, и с сорокопутами, ясно показывают, что солнце у птиц – главный ориентир. Но ориентир этот не стоит на месте. Найти дорогу по нему нельзя, если не знаешь, в какой части неба в каждый час дня он находится. Тут птиц выручают хорошая память и «часы», которыми природа наделила все живое на земле.
«Это удивительно, – пишет доктор Мэтьюз, один из ведущих специалистов в науке об ориентации птиц, – что люди, веками определявшие свое местоположение по солнцу, всего лишь несколько лет назад узнали, что и птицы поступают так же».
Теперь сомнений нет, что пернатые, как и люди, находят дорогу по солнцу.
Осталось сказать несколько слов о тех птицах, которые совершают перелеты по ночам, а днем отдыхают. Таких птиц немало. Садовая славка, славка-черноголовка и сорокопут-жулан путешествуют по ночам. В экспериментах с зеркалом и искусственным солнцем они вели себя так же, как и скворцы. По-видимому, эти птицы, хотя и летают ночью, а ориентируются все-таки по солнцу. Полагают, что они избирают нужное направление на закате, а потом всю ночь помнят его.
Что дело обстоит именно так, подтверждают некоторые наблюдения. Однажды Крамер выпустил славку-черноголовку и двух серых славок вблизи большого города. Выпустил он их после того, как солнце давно уже село, в темноте, и птички приняли отблеск на небе огней большого города за закат и взяли неправильное направление полета. Когда же на том самом месте выпускали птиц до заката, они успевали правильно ориентироваться, и городские огни их не сбивали.
Однако другие наблюдения показывают, что черноголовка и садовая славка избирают правильное направление и не видя солнца на закате. Когда ночное небо звездное, они летят без ошибок. Густые облака и слишком яркая луна мешают им. По-видимому, птички эти, помимо солнца, могут ориентироваться еще и по звездам. Опыты в планетарии подтвердили и это предположение.
Кто еще ориентируется по солнцу?
Некоторые животные методам солнечной навигации обучаются постепенно, не сразу берут солнце в помощники, а лишь когда поживут немного, да привыкнут к расписанию, по которому термоядерный шарик перекатывается по небу.
Рыжие лесные муравьи, например, весной еще «не знают», по-видимому, что солнце – ориентир подвижный. За лето они эту истину усваивают твердо и, ориентируясь по солнцу, постоянно помнят о ней. Но если весной, на некоторое время, накрыть лесного муравья непрозрачным колпаком, а потом его снять, он побежит по неправильному пути. Впечатление такое, что, находясь в темноте, муравей не учел, что солнце это время не стояло на месте, поэтому когда он снова увидел свет, побежал под прежним углом к подвижному светилу и, конечно, побежал не туда. Летом и осенью этого не происходит: муравьи уже «знают», что солнце на месте не стоит, а природные хронометры помогают им внести поправку, как бы долго ни длилась их вынужденная остановка.
Итак, муравьи тоже ориентируются по солнцу. Но, по-видимому, не все: некоторые виды их, несмотря на все усилия экспериментаторов, не обнаружили таких способностей.
Паук-волк живет у берегов рек и озер. Если паука бросить в воду, он поплывет к берегу, на котором его поймали. Поплывет прямо, как бы далеко ни занесли его.
Исследователи брали этого паука, переносили на противоположный берег и там бросали в воду. Паук плыл изо всех сил к берегу, но странное дело, не к ближайшему, около которого бросили его, а к тому, где родился и жил. Рискуя жизнью, плыл поперек течения.
Какой берег родной, а какой не родной, паук узнавал по солнцу., Исследователи это доказали, искажая положение солнца с помощью зеркала. Потом паука подвергли тем же испытаниям, что и скворцов. После того, как продержали его много дней в темноте, физиологические часы паука вышли из строя, и он не мог уже, глядя на солнце, определить, какой берег свой, а какой чужой. Ненормальное чередование искусственного дня и ночи, пережитое накануне, сбивало его с толку.
Береговые блохи, рачки-бокоплавы, прыгающие, как кузнечики, по морским пляжам тоже находят свой дом по солнцу.
Эти рачки любят путешествовать, их не раз находили на суше далеко от моря. А однажды морского скакуна поймали на вершине горы. Он, правда, еще не добрался до самой вершины, но был схвачен на пути к ней – на высоте больше тысячи метров над уровнем моря.
У морских блох навигационные способности развиты прекрасно. В лабораториях они не хуже скворцов умели находить по солнцу правильное направление. Их всегда тянуло к морю и, где бы вы ни выпустили песчаных скакунов, они кратчайшей дорогой устремлялись к нему. Это на своей родине, в Италии. А вот когда песчаных скакунов привезли в Аргентину, они не смогли найти моря: их хронометры работали еще по европейскому времени, без связи с местным солнцем и только путали рачков.
Некоторые исследователи думают, что песчаные скакунчики, а также осьминоги, крабы и другие морские животные безошибочно находят дорогу к морю (когда заносят их на сушу), руководствуясь морскими шумами: инфра– и ультразвуками, которые не слышит человек.
Чтобы проверить и эту гипотезу, несколько сот морских блох продержали в лаборатории в условиях искусственного дня и ночи. На дворе был день, а в лаборатории ночь, и наоборот.
Когда рачков выпустили невдалеке от моря, они поползли не к нему, а прямо от него. Никакие морские шумы не помогли потому, что физиологические часы их опаздывали на 12 часов. Выпущенные же вместе с ними контрольные, не обработанные светом и тьмой, рачки поскакали правильно – прямо к морю.
Опыты с раками, крабами, пауками, саранчой и другими членистоногими животными окончательно подтвердили, теорию солнечной навигации. Почти каждое животное, подвергнутое испытанию, рано или поздно обнаруживало незаурядное умение ориентироваться по солнцу. Невольно приходит на ум мысль: видимо, это обычное в природе дело – отправляясь в путь, доверять судьбу свою солнцу. Возможно, и киты, и дельфины, и тюлени, так же как и птицы, пересекающие весной и осенью морские широты, плывут по планете, поглядывая на солнце в небе и прислушиваясь к «стуку хронометров» в своей груди.
Уже недолго осталось ждать – новые исследования скоро покажут, так ли это.
Радары и термолокаторы
Радар водяного слона
Археологи раскопали на месте древних городов Египта кладбища кошек в Бубастисе и Бени-Хасане, ибисов – в Ашмунене, баранов – в Элефантине и крокодилов – в Омбосе. Всем этим животным поклонялись, как богам. Много сил, много средств и времени потратили люди на сооружение гробниц, мумифицирование и похороны животных, которым жрецы приписали сверхъестественные свойства.
Даже древние греки поражались обилию богов-зверей и богов-растений в религиозных культах Египта. Смоковница, здесь не просто дерево, а перевоплощенная богиня Хатор. Лотос не болотная трава, а бог Нефертум. Баран – бог Хнум. Бога Гора представлял сокол, Анубиса – шакал, Тота – ибис, Сухоса – крокодил, а богиню Баст – кошка.
Среди многочисленных богов древнего Египта была и одна рыбка, обладающая совершенно уникальными способностями. (И поныне еще она вызывает суеверные страхи у жителей Нильской долины).
Вроде бы самая обычная рыбка, ничем особенно не примечательная. Правда, челюсти у нее несколько удлинены – вроде пинцета или небольшого хоботка, за что рыбку и прозвали водяным слоном. Но мало ли каких рыб не бывает. Есть рыбы с «клювами», есть похожие на лягушек, ежей, лошадей, на иглы, трубки и даже на луну. Что ж, всем им и поклоняться?
Нет, не челюсти водяного слона поразили воображение жрецов Египта: говорят, что рыбка эта может видеть… невидимое. Далее если зароется с головой в ил, а вы тихонечко к ней подойдете – все равно она почувствует, что кто-то стоит рядом и спрячется под корягу. В мутной воде водяной слон (ученые называют его сейчас мормирусом) отлично плавает хвостом вперед и ни на что не натыкается. И никакой сетью его нельзя поймать! Да и редкая хищная рыба может похвастаться, что закусывала мормирусом.
Разве это не чудо? Разве водяной слон не наделен сверхъестественным даром?
Лишь несколько лет назад наука сумела раскрыть тайну мормируса. Оказывается, природа наделила его удивительнейшим органом – радаром!
У многих рыб, всем это известно, есть электрические органы. У мормируса в хвосте тоже помещается небольшая «карманная батарейка». Напряжение тока, который она вырабатывает, невелико: всего 6 вольт. Но этого достаточно.
Каждую минуту радиолокатор мсрмируса посылает в пространство 80–100 электрических импульсов. Возникающие от разряда «батарейки» электромагнитные колебания частично отражаются от окружающих предметов и в виде радиоэха вновь возвращаются к мормирусу. «Приемник», улавливающий эхо, расположен в основании спинного плавника удивительной рыбки. Мормирус «ощупывает» окрестности с помощью радиоволн!
Сообщение о необычайных свойствах мормируса было сделано в 1953 году Восточноафриканским ихтиологическим институтом. Сотрудники института обратили внимание, что содержавшиеся в аквариуме мормирусы начинали беспокойно метаться, когда в воду опускали какой-нибудь предмет, обладающий высокой электропроводностью, например кусок проволоки. Возникла мысль: быть может, мормирус обладает способностью ощущать изменения электромагнитного поля, возбужденного его электрическим органом? Анатомы исследовали рыбку: парные ветви крупных нервов проходили вдоль ее спины – от головного мозга к основанию спинного плавника, где, разветвляясь на мелкие веточки, заканчивались. Видимо, здесь помещается орган, улавливающий отраженные радиоволны. Попробовали перерезать нервы, обслуживающие этот орган, и мормирус потерял чувствительность к электромагнитному излучению.
Живет мормирус на дне рек и озер и питается личинками насекомых, которые извлекает из ила длинными челюстями, словно пинцетом. Во время поисков пищи рыбка окружена обычно густым облаком мутной воды и ничего вокруг не видит. Капитаны кораблей по собственному опыту знают, насколько незаменим в таких условиях радиолокатор.
Мормирус не единственный на свете «живой радар». Замечательный радиоглаз обнаружен также и в хвосте электрического угря Южной Америки, «аккумуляторы» которого развивают рекордное напряжение тока – до 500 a, по некоторым данным, до 800 вольт!
Американский исследователь Кристофор Коутес после серии экспериментов, проведенных в Нью-Йоркском аквариуме, пришел к выводу, что небольшие бородавки на голове электрического угря – антенны радиолокатора. Они улавливают отраженные от окружающих предметов электромагнитные волны, излучатель которых расположен в конце хвоста угря. Чувствительность радарной системы этой рыбы такова, что угорь, очевидно, в состоянии установить, какой природы предмет попал в поле действия локатора. Если это годное в пищу животное, электрический угорь немедленно поворачивает голову в его сторону. Затем приводит в действие мощные электрические органы передней части тела, «мечет в жертву молнии» и не спеша пожирает убитую электрическим разрядом добычу.
Физическая природа электролокаторов у рыб еще не совсем ясна. Органы радиолокационного чувства животных только начинают изучаться, и нас ожидает здесь много интересных открытий.
Можно ли видеть тепло?
Немало есть животных, за которыми прочно укоренилась недобрая слава оборотней. В каждом случае причиной суеверных страхов служила какая-нибудь необычная особенность их строения или образа жизни.
Сколько басен, легенд, поверий сложено о совах! Сколько этих несчастных птиц было распято на дверях домов, на стенах амбаров! Ведь суеверие утверждает, что замученная таким образом сова служит предупреждением нечистой силе и охраняет будто бы от ее вторжения жилища людей. Говорят, до сих пор в Тироле и в некоторых долинах Швейцарии можно увидеть пригвожденных сов.
Суеверных жителей Амазонки пугает «оборотень» с поэтическим именем «Мать Луны». Речь тоже идет о сове, которая летает над лесом с жуткой песней. Когда она летит, шелеста крыльев не слышно, и чудится, будто лес вокруг наполнен невидимыми духами, чьи стоны сжимают сердце даже храброго человека.
В Индии тоже водится сова улама, которую зовут здесь «чертовой птицей».
Именно потому, что они бесшумно летают и умеют так хорошо видеть в полном мраке, в то время как человек не в состоянии рассмотреть даже своих пальцев на вытянутой руке, суеверные люди во многих странах считают сов оборотнями. Между тем бесшумность полета совы и ее исключительная зоркость – величайшие из чудес природы, а не дьявола.
Все дело в удивительной конструкции крыльев и глаз совы.
По переднему краю крыла совы тянется острый гребень. При взмахе крыльев он тормозит потоки встречного воздуха, отклоняет их в сторону и таким образом гасит шумы, возникающие при смешении воздушных струй.
Задний край крыла совы тоже снабжен своеобразным глушителем – мягкой бахромой, которая уничтожает воздушные завихрения позади крыльев.
Вот почему совы летают бесшумно, точно призраки. Услышать приближение совы совершенно невозможно, даже если она пролетает над вами так низко, что ее можно схватить рукой.
Тонкость зрения совы всегда поражала и натуралистов. Птицы охотятся в темноте на мелких грызунов и десятками вылавливают их за ночь.
Может быть, совы, как и животные, с которыми мы уже познакомились, тоже разыскивают добычу с помощью какого-нибудь необычного чувства?
Некоторые ученые считают, что совы видят тепло, которое испускает тело их жертв. Возможно, что глаза совы улавливают невидимые для нашего зрения инфракрасные, то есть тепловые, лучи.
Каждая живая мышь, каждая пичужка излучает инфракрасные лучи. Хищник, наделенный своеобразными «термометрами», чувствительными к тепловым лучам, мог бы определять с их помощью местонахождение своих жертв.
Опыты с совами дали разноречивый результат. Одним ученым удалось подтвердить предположение о «тепловом» зрении совы. Другие же своими работами показали, что такого зрения у совы нет. Вопрос этот еще подлежит выяснению.
Однако термолокаторы все-таки были обнаружены у животных. Некоторые глубоководные кальмары, помимо обычных глаз, наделены еще так называемыми термоскопическими глазами, то есть органами, способными улавливать инфракрасные лучи. Эти глаза – небольшие темные точки, рассеяны у них по всей нижней поверхности хвоста. Под микроскопом видно, что устроены они как обычный глаз, но снабжены светофильтром, задерживающим все лучи, кроме инфракрасных. Светофильтр расположен перед преломляющей линзой – хрусталиком. Линза отбрасывает сконцентрированный пучок тепловых лучей на воспринимающий их орган.
Термолокаторы иной конструкции изучены недавно у змей. Об этом открытии стоит рассказать подробнее.
Термолокаторы змей
На востоке СССР, от прикаспийского Заволжья и среднеазиатских степей до Забайкалья и Уссурийской тайги, водятся некрупные ядовитые змеи, прозванные щитомордниками: голова у них сверху покрыта не мелкой чешуей, а крупными щитками.
Люди, которые рассматривали щитомордников вблизи, утверждают, что у этих змей будто бы четыре ноздри. Во всяком случае, по бокам головы (между настоящей ноздрей и глазом) у щитомордников хорошо заметны две большие и глубокие ямки.
Щитомордники – близкие родичи гремучих змей Америки, которых местные жители иногда называют квартонарицами, то есть четырехноздрыми. Значит, и у гремучих змей тоже есть на морде странные ямки.
Всех змей с четырьмя «ноздрями» зоологи объединяют в одно семейство, так называемых кроталид, или ямкоголовых. Ямкоголовые змеи водятся в Америке (Северной и Южной) и в Азии. По своему строению они похожи на гадюк, но отличаются от них упомянутыми ямками на голове.
Более 200 лет ученые решают заданную природой головоломку, пытаясь установить, какую роль в жизни змей играют эти ямки. Какие только не делались предположения!
Думали, что это органы обоняния, осязания, усилители слуха, железы, выделяющие смазку для роговицы глаз, улавливатели тонких колебаний воздуха (вроде боковой линии рыб) и, наконец, даже воздухонагнетатели, доставляющие в полость рта необходимый будто бы для образования яда кислород.
Проведенные анатомами 30 лет назад тщательные исследования показали, что лицевые ямки гремучих змей не связаны ни с ушами, ни с глазами, ни с какими-либо другими известными органами. Они представляют собой углубления в верхней челюсти. Каждая ямка на некоторой глубине от входного отверстия разделена поперечной перегородкой (мембраной) на две камеры – внутреннюю и наружную. Наружная камера лежит впереди и широким воронкообразным отверстием открывается наружу, между глазом и ноздрей. Задняя (внутренняя) камера совершенно замкнута. Лишь позднее удалось заметить, что она сообщается с внешней средой узким и длинным каналом, который заканчивается на поверхности головы около переднего угла глаза почти микроскопической порой. Однако размеры поры, когда это необходимо, могут, по-видимому, значительно увеличиваться: отверстие снабжено кольцевой замыкающей мускулатурой.
Перегородка (мембрана), разделяющая обе камеры, очень тонка (толщина около 0,025 миллиметра). Густые переплетения нервных окончаний пронизывают ее во всех направлениях.
Бесспорно, лицевые ямки представляют собой органы каких-то чувств. Но каких?
В 1937 году два американских ученых – Д. Нобл и А. Шмидт опубликовали большую работу, в которой сообщали о результатах своих многолетних опытов. Им удалось доказать, что лицевые ямки представляют собой термолокаторы! Они улавливают тепловые лучи и определяют по их направлению местонахождение нагретого тела, испускающего эти лучи.
Д. Нобл и А. Шмидт экспериментировали с гремучими змеями, искусственно лишенными всех известных науке органов чувств. К змеям подносили обернутые черной бумагой электрические лампочки. Пока лампы были холодные, змеи не обращали на них никакого внимания. Но вот лампочка нагрелась – змея это сразу почувствовала. Подняла голову, насторожилась. Лампочку еще приблизили. Змея сделала молниеносный бросок и укусила теплую «жертву». Не видела ее, но укусила точно, без промаха.
Экспериментаторы установили, что змеи обнаруживают нагретые предметы, температура которых хотя бы только на 0,2 градуса Цельсия выше окружающего воздуха (если их приблизить к самой морде). Более теплые предметы распознают на расстоянии до 35 сантиметров.
В холодной комнате термолокаторы работают точнее. Они приспособлены, очевидно, для ночной охоты. С их помощью змея разыскивает мелких теплокровных зверьков и птиц. Не запах, а тепло тела выдает жертву! У змей ведь слабое зрение и обоняние и совсем неважный слух. На помощь им пришло новое, совсем особенное чувство – термолокация.
В опытах Д. Нобла и А. Шмидта показателем того, что змея обнаружила тепловую лампочку, служил ее бросок. Но ведь змея, конечно, еще до того, как бросалась в атаку, уже чувствовала приближение теплого предмета. Значит, нужно найти какие-то другие, более точные признаки, по которым можно было бы судить о тонкости термолокационного чувства змеи.
Американские физиологи Т. Буллок и Р. Каулс провели в 1952 году более тщательные исследования. В качестве сигнала, оповещающего о том, что предмет обнаружен термолокатором змеи, они выбрали не реакцию змеи, а изменение биотоков в нерве, обслуживающем лицевую ямку.
Известно, что все процессы возбуждения в организме животных (и человека) сопровождаются возникающими в мышцах и нервах электрическими токами. Их напряжение невелико – обычно сотые доли вольта. Это так называемые «биотоки возбуждения». Биотоки нетрудно обнаружить с помощью электроизмерительных приборов.
Т. Буллок и Р. Каулс наркотизировали змей введением определенной дозы яда кураре. Очистили от мышц и других тканей один из нервов, разветвляющихся в мембране лицевой ямки, вывели его наружу и зажали между контактами прибора, измеряющего биотоки. Затем лицевые ямки подвергались различным воздействиям: их освещали светом (без инфракрасных лучей), подносили вплотную сильно пахнущие вещества, раздражали сильным звуком, вибрацией, щипками. Нерв не реагировал: биотоки не возникали.
Но стоило к змеиной голове приблизить нагретый предмет, даже просто человеческую руку (на расстояние 30 сантиметров), как в нерве возникало возбуждение – прибор фиксировал биотоки.
Осветили ямки инфракрасными лучами – нерв возбудился еще сильней. Самая слабая реакция нерва обнаруживалась при облучении его инфракрасными лучами с длиной волны около 0,001 миллиметра. Увеличивалась длина волны – сильнее возбуждался нерв. Наибольшую реакцию вызывали самые длинноволновые инфракрасные лучи (0,01–0,015 миллиметра), то есть те лучи, которые несут максимум тепловой энергии, излучаемой теплом теплокровных животных.
Оказалось также, что термолокаторы гремучих змей обнаруживают не только более теплые, но и более холодные, чем окружающий воздух, предметы. Важно лишь, чтобы температура этого предмета была хотя бы на несколько десятых долей градуса выше или ниже окружающего воздуха.
Воронкообразные отверстия лицевых ямок направлены косо вперед. Поэтому зона действия термолокатора лежит перед головой змеи. Вверх от горизонтали она занимает сектор в 45, а вниз в 35 градусов. Вправо и влево от продольной оси тела змеи поле действия термолокатора ограничено углом в 10 градусов.
Физический принцип, на котором основано устройство термолокаторов змей, совсем другой, чем у кальмаров.
Скорее всего, в термоскопических глазах кальмаров восприятие излучающего тепло объекта достигается путем фотохимических реакций. Здесь происходят, вероятно, процессы такого же типа, как и на сетчатке обычного глаза или на фотопластинке в момент экспозиции. Поглощенная органом энергия приводит к перекомбинации светочувствительных (у кальмаров – теплочувствительных) молекул, которые воздействуют на нерв, вызывая в мозгу представление воспринимаемого объекта.
Термолокаторы змей действуют иначе – по принципу своеобразного термоэлемента.
Тончайшая мембрана, разделяющая две камеры лицевой ямки, подвергается с разных сторон воздействию двух разных температур. Внутренняя камера сообщается с внешней средой узким каналом, входное отверстие которого открывается в противоположную сторону от рабочего поля локатора. Поэтому во внутренней камере сохраняется температура окружающего воздуха. (Индикатор нейтрального уровня!) Наружная же камера широким отверстием – теплоулавливателем направляется в сторону исследуемого объекта. Тепловые лучи, которые тот испускает, нагревают переднюю стенку мембраны. По разности температур на внутренней и наружной поверхностях мембраны, одновременно воспринимаемых нервами, в мозгу и возникает ощущение излучаемого тепловую энергию предмета.
Помимо ямкоголовых змей, органы термолокации обнаружены у питонов и удавов (в виде небольших ямок на губах). Маленькие ямки, расположенные над ноздрями у африканской, персидской и некоторых других видов гадюк, служат, очевидно, для той же цели.