355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Глеб Анфилов » Что такое полупроводник » Текст книги (страница 3)
Что такое полупроводник
  • Текст добавлен: 10 октября 2016, 02:45

Текст книги "Что такое полупроводник"


Автор книги: Глеб Анфилов



сообщить о нарушении

Текущая страница: 3 (всего у книги 8 страниц)

ОЧЕРЕДЬ ДВИГАТЕЛЕЙ

Без минуты восемь часов. В огромном цехе-автомате металлообрабатывающего завода все готово, к началу трудового дня. Тысячи электродвигателей ждут включения, чтобы приняться за работу.

Дежурный инженер подходит к рубильнику и быстрым движением, поднимает вверх его трехпалую лапу.

Но не сразу загудели двигатели. Сперва завертелся ротор одного мотора, спустя несколько секунд к нему присоединился другой, потом третий, четвертый... Деловитый гул нарастает, разливается по цеху, и вот уже всё кругом в разумном, до мелочей рассчитанном движении.

Почему двигатели начали работать неодновременно?

Иначе нельзя. При одновременном их включении на полную мощность слишком резким было бы изменение нагрузки в сети. Да и сами моторы не могут рвануть «с места в карьер» – они должны раскручиваться постепенно.

Но почему они включились один за другим? Ведь рубильник-то был один на всех.

Здесь опять поработали полупроводники, введенные в систему распределения энергии между двигателями.

Электрический ток поступает в двигатель через термистор. В первый момент после включения рубильника температура полупроводника мала, и он плохо проводит ток. В электродвигатель поступает недостаточное количество энергии, вал его пока еще не вращается. Но под действием тока полупроводник постепенно разогревается, сопротивление его падает, соответственно растет и ток, который, в свою очередь, разогревает термистор и уменьшает его сопротивление.

И вот наконец ротор двигателя начинает вращаться. Теперь надобность в термосопротивлении отпала. Несложное приспособление автоматически отключает его.

Так же и со всеми остальными двигателями. Чтобы они  {40}  принимались за работу по очереди, термисторы на них устанавливают различные. И задержать включение двигателей они могут на разные промежутки времени: от долей секунды до нескольких минут.

Еще не так давно, когда термисторов не было, туго приходилось инженерам при решении подобных задач. Применяли сложные и капризные электронные реле времени. Иногда ставили даже различные часовые механизмы. Теперь все стало несравненно проще, дешевле, а главное – надежнее.

ДЫХАНИЕ ДОМНЫ

Много хлопот доставляет обслуживание доменной печи. Надо вовремя и строго по рецепту давать ей обильную «пищу» – шихту, надо тщательно следить за ее «дыханием»: количество, температура, влажность воздуха, вдуваемого в печь, должны быть строго постоянными.

На глазок, вручную при нынешних режимах чугунолитейного производства возле домны не поработаешь. Что стоит недосмотреть какую-нибудь мелочь! Скажем, солнце припекло, воздух стал чуть суше. Человек и не заметил – до того ли рядом с пышащей жаром махиной! А домна заметила. Сразу изменился «ход» печи, ухудшился чугун. Вот почему инженеры оснастили домну множеством автоматов. Человек может теперь вполне положиться на них.

Один из самых важных приборов домны – автоматический регулятор влажности дутья. Основой его может отлично служить термистор.

Термосопротивление, поставленное в потоке дутья, покрыто полоской ткани, которая все время искусственно увлажняется. Но ткань обдувается воздухом, и влага с нее испаряется – словно белье сохнет на ветру. Испарение всегда сопровождается охлаждением (вспомните, как на ветерке после купанья «мороз пробегает» по коже). Белье сохнет лучше в ясный день. Значит, если чуть суше  {41}  воздух дутья – сильнее испаряется влага с ткани. Но при этом ткань больше охлаждается и остужает термистор. Сразу уменьшается ток, текущий через прибор. Эту перемену тут же воспринимает механизм, который вводит в дутье добавочный водяной пар. Влажность воздуха автоматически поддерживается одинаковой.

Другие устройства регулируют, температуру дутья и его количество. Автоматы гарантируют домне спокойное, ровное «дыхание».

Можно без конца рассказывать о применениях термосопротивлений. Но, пожалуй, и без того понятно, как велика практическая важность этих несложных приборов,

Термисторы воплотили в себе только одно свойство полупроводников: резкую зависимость электропроводности от температуры. Но при нагревании полупроводников проявляется и другая их особенность – несколько более сложная, но чрезвычайно интересная и важная для технического прогресса. К ней мы сейчас и переходим.


{42}

ПОГОНЯ ЗА ТЕПЛОМ

{43}

В ЛЕСНОЙ ИЗБУШКЕ

Мы далеко от города – в таежном краю, в непроходимой лесной чаще.

Среди занесенных снегом могучих елей приютилось несколько приземистых избушек охотничьей фактории.

Зимний день короток. Рано загораются огоньки керосиновых ламп за морозными узорами окошек. С наступлением темноты совсем тихо, спокойно становится кругом. Тайга спит. Но люди бодрствуют, они живут, связанные незримыми нитями со всей страной.

Войдите в любой из домиков. Вы услышите перезвон курантов Спасской башни, голос прославленного ученого из столицы, музыку дальних стран. Радио! Оно особенно дорого в глуши, куда не дотянулись еще линии электропередач.

Приемник черпает энергию от электрических батарей. Когда они в порядке, комната полна звуками большого мира. Но случается – батареи подводят. Истощились они, и стало тихо, сиротливо. Еще совсем недавно это считалось неизбежностью. А теперь батарейный приемник может работать без батарей.  {45}


Термоэлектрогенератор на керосиновой лампе.

Под потолком на цепочках висит странного вида керосиновая лампа. В верхней части ее – темная трубка. Она окружена большими металлическими пластинами – словно старинный воротник «жабо» надет на лампу. Из-под «воротника» тянется пара проводов к стоящему рядом приемнику «Родина».

Возвращается к вечеру домой охотник или лесник, зажигает лампу. В комнате светло. Проходит несколько минут, и приемник словно пробуждается. Освещается шкала настройки, набирает громкость голос далекого города.

Почему ожил приемник?

НОВОЕ СВОЙСТВО

Раньше мы подробно говорили о двух видах полупроводников – электронном и дырочном. В первом при нагревании освобождаются электроны, во втором – появляются дырки.

Сделаем из каждого такого полупроводника по брусочку, поставим их рядом и припаяем сверху к их торцам металлическую пластину. Получилось нечто вроде буквы «П» – так называемая термопара, или термоэлемент. Теперь прижмем спаянные концы брусочков (верхнюю перекладину буквы) к чему-нибудь горячему, а свободные концы, наоборот, охладим.


Простейшая полупроводниковая термопара.


Справа – столбик электронного полупроводника, а слева – дырочного. В концах столбиков скапливаются освобожденные теплом электрические заряды. Так тепло преобразуется в электрическую энергию.

В нагретом конце электронного брусочка появятся  {46}  освобожденные нагреванием электроны. Они забегают, начнут сталкиваться между собой, разлетаться в разные стороны. И при этом многие перекочуют в холодный конец брусочка – туда, где свободнее, меньше «толкотни». Но мы помним, что электроны – отрицательно заряженные частички. Стало быть, как только в холодном конце брусочка появится их избыток, там возникает отрицательный электрический заряд.

В горячем конце дырочного бруска возникают дырки. Они также перемещаются в холодный конец. Но, как вы помните, дырка ведет себя подобно частице, наделенной положительным электрическим зарядом. Значит, холодный конец дырочного брусочка термопары приобретает положительный заряд.

Эти заряды тем больше, чем значительнее разность температур горячего и холодного концов обоих брусочков.  {47}

Итак, на холодных концах термопары появились разноименные электрические заряды. Стоит соединить их проволочкой, и по ней потечет электрический ток. Тепло превращено в электроэнергию. Это и происходит в нашей лампе.

СЕКРЕТ «ВОРОТНИКА»

Заглянем под «воротник» лампы. Там тесно прижались друг к другу серые, тускло блестящие столбики величиной с ириску «Золотой ключик». Это термоэлементы. В них и рождается электрический ток.

Какие полупроводники можно применить для термопар? Нетрудно понять, что они должны удовлетворять следующим требованиям: во-первых, создавать нужное количество электронов или дырок при нагревании; во-вторых, неплохо проводить электрический ток (тогда электроны или дырки легче перекочуют от нагретых концов к холодным); в-третьих, плохо передавать тепло (чтобы резче была разница температур на противоположных концах термопар).

Нелегко найти вещества, наделенные одновременно всеми этими свойствами. Как правило, материал, хорошо проводящий электрический ток, отлично проводит и тепло. Только глубокий теоретический анализ явления и многочисленные опыты помогли ученым создать нужные материалы – особые сплавы со специальными примесями; сплавы эти неплохо проводят ток, а примеси как бы укрепляют, «дисциплинируют» внутренний строй атомов, удерживают их от чрезмерно сильного теплового движения. В результате теплопроводность материала уменьшается. Из таких сплавов и сделаны термоэлементы нашего «воротника».

Соединенные друг с другом последовательно и параллельно, термопары образовали трубку. Когда лампа зажжена, внутренние их спаи нагреваются «отсветившими», но еще горячими газами, которые поднимаются от фитиля.

{48}


«Прадедушка» современных термоэлектрогенераторов – «партизанский котелок».

А наружные спаи охлаждаются комнатным воздухом через пластины радиатора (их-то мы и сравнивали со складками «жабо»). Разница температур достигает 250—300 градусов. Этого вполне хватает, чтобы получить энергию для питания многолампового радиоприемника.

Удивительный светильник, с которым мы познакомились, носит название ТГК – термоэлектрогенератор керосиновый. Сейчас такой аппарат уже не редкость. Первые образцы его появились в 1950 году, а теперь он значительно усовершенствован и продается во многих сельских магазинах.

У этой установки любопытная история. Еще не имея полупроводников, физики пробовали строить термоэлектрогенераторы с термопарами из металлов. Однако экономичность таких устройств была ничтожной. В годы Великой Отечественной войны у нас был создан «партизанский котелок» – прадедушка современных термоэлектрогенераторов.  {49}  То был металлический сосуд в форме крестьянского чугуна, в дне которого находился блок полупроводниковых термоэлементов. В «партизанский котелок» наливали холодную воду и вешали его над горящим костром. Энергии, которую он вырабатывал, было достаточно для маленькой армейской радиостанции «Север».

В 1946 году появились термоэлектрогенераторы в виде самовара. Они обладали уже довольно высоким коэффициентом полезного действия – около 4 процентов (такую долю тепла они превращали в электроэнергию). Еще пять лет спустя советские физики создали печь-термоэлектрогенератор на дровах. Она вырабатывала 100—200 ватт электроэнергии.


Термоэлектрогенератор на керогазе. Прибор питает энергией колхозную радиостанцию «Урожай».

{50}

Сейчас промышленность начинает выпускать термоэлектрогенератор типа ТГУ-1 мощностью 16 ватт. Он действует от керогаза и питает энергией колхозную радиостанцию «Урожай». На полевых станах смеются: наши связисты стали сродни поварам. Шутки шутками, а энергия, «приготовленная на керогазе», дешевле, чем полученная от батарей. Любой МТС гораздо выгоднее приобрести керосиновый термоэлектрогенератор, чем покупать для своей радиостанции батареи. Над термоэлектрогенераторами трудятся и зарубежные физики. В США, например, созданы установки, где в электроэнергию преобразуется тепло горючего газа.

МЕЧТА СБЫВАЕТСЯ

Какое странное сочетание: керосиновый светильник и полупроводники. Воедино слились прошлое и будущее. То, что человек изобрел века назад, что уже уходит в историю, нашло поддержку в замечательном открытии, призванном обогатить технику завтрашнего дня. Ведь наш нехитрый термоэлектрогенератор – это исполнение давней мечты физиков и инженеров: в нем происходит непосредственное преобразование тепла в электрический ток.

Давайте вспомним, как рождается энергия на современных тепловых электростанциях.

Уголь, сгорающий в топке, нагревает в котле воду, которая превращается в пар. Пар вращает турбину, а та, в свою очередь, движет вал генератора, вырабатывающего электроэнергию. Сколько этапов! Сколько преобразований энергии из одного вида в другой! Сколько дорогих механизмов, движущихся частей, которые и смазки требуют и изнашиваются!

А что происходит на современной атомной электростанции? Ядерная энергия выделяется в реакторе главным образом в форме тепла. Это тепло тем или иным способом выводится из реактора и тратится на производство того же пара. Дальше, как на обычной тепловой станции,  {51}  следуют турбины и генератор. Словом, от тепла до электричества опять длинный окольный путь. Снова сложные механизмы, неизбежные потери энергии.

Иное дело – термоэлемент. В нем тепло превращается в электроэнергию сразу, без промежуточных звеньев.

Уже в наши дни термоэлементы из полупроводников обладают коэффициентом полезного действия 6—8, а в лабораторных условиях – до 10 процентов. Это немало. С таким коэффициентом полезного действия работают небольшие паросиловые установки. Вероятно, уже очень скоро будет выгодно перевести небольшие тепловые машины (мощностью до 100 киловатт) на питание от термоэлектрогенераторов.

Сейчас ученые стремятся удвоить коэффициент полезного действия термобатарей. Тогда он будет таким же, как и у средних тепловых электростанций. А дальше возможно новое повышение экономичности термоэлементов. И если сегодня полупроводники еще не могут заменить обычное оборудование электростанции, то, совершенствуясь по мере развития науки, они, несомненно, изменят лицо энергетики. Придет время, когда электрический ток станет рождаться прямо в топке тепловой электростанции или в реакторе атомной электростанции.

Но вот что важно: не только в промышленной электроэнергетике полупроводниковые термоэлементы способны принести – пользу нашему народному хозяйству. Они открывают и совершенно новые пути получения энергии – пути, о которых раньше и не мечтали инженеры.

БЕРЕГИТЕ ТЕПЛО

В зимние морозные дни на входах в дома хозяйственные управдомы расклеивают плакаты: «Берегите тепло. Закрывайте двери».

Берегите тепло! Этот призыв справедлив не только  {52}  зимой и не только по отношению к отоплению наших зданий.

Знаете ли вы, какая часть тепла, полученного от сжигания топлива – угля, торфа, газа, дров, – сейчас идет на пользу человеку? Не более одной пятой. Все остальное пропадает бесполезно рассеивается в атмосфере.

Почему теряется такое огромное количество тепла?

Дело здесь вот в чем.

От нас ускользает та тепловая энергия, которая заключена в массах вещества с невысокой температурой. Это тепло – в сточных водах промышленных предприятий, в дыме фабричных труб, в отходящих газах металлургических печей. На первый взгляд его и в самом деле невозможно использовать. Попытайтесь-ка вскипятить чайник водой, нагретой, скажем, до 15 градусов. Вы скажете: не удастся. Ну, а хорошо обогреть помещение такой водой можно? Вы, вероятно, ответите, что этого также нельзя сделать, как бы много ее ни было. Так люди считали долгое время и без сожаления расставались с тепловыми отходами. Но потом додумались повышать температуру воды, увеличивая на нее давление.

Подогретую этим способом воду пускают в отопительные батареи, и она отдает на обогрев помещения энергии больше, чем ушло на сдавливание воды. Однако такой метод далеко не везде применим, сложен, не дает возможности сильно нагреть воду.

Несравненно более широкие возможности открывают здесь полупроводниковые термоэлементы. Всюду, где есть тепло, они способны легко превратить значительную его делю в самый удобный вид энергии – электрическую. Ведь электроэнергию можно использовать тысячью способами– либо сразу превратить ее в свет и движение машин, либо передать по проводам на далекие расстояния, либо, наконец, собрать про запас в электрических «копилках» – аккумуляторах.

Каждый дымоход, каждую трубу с горячим или просто  {53}  теплым газом, с чуть нагретой сточной водой можно одеть в кольца из батарей полупроводниковых термоэлементов. Когда мы сделаем эта, бросовое тепло, преобразованное в электрический ток, станет двигать машины, питать энергией приборы, освещать улицы. Оснастив термобатареями котельные жилого дома, мы сможем в придачу к теплу получить столько электроэнергии, сколько требуется на все бытовые нужды – в том числе на электроплитки, холодильники, пылесосы – всем обитателям квартир.

Шоферу или владельцу автомобиля, попавшему в какой-нибудь глухой уголок, порой немало хлопот доставляет зарядка аккумуляторов. Полупроводники избавят его от этой заботы. Ведь отработанные газы автомобильного двигателя довольно сильно нагреты. И если заключить в кольца термоэлементов выхлопную трубу, по которой газ выбрасывается наружу, от них в аккумуляторы потечет ток.

Кто знает, быть может, в будущем, когда полупроводниковых материалов станет много (а к этому стремятся наука и индустрия), заводские трубы станут складывать не из кирпичей, а из полупроводниковых термопар. Внутри трубы – горячий дым, снаружи – прохладный воздух. В полупроводниковых «кирпичах» рождается электроэнергия. Заводская труба играет роль электростанции.

А если доменную печь сложить из термоэлементов? Получится сдвоенное предприятие: домна – электростанция. Конечно, до этого еще далеко. Предстоит найти полупроводники с идеальным сочетанием нужных свойств, сделать их дешевле цемента. Труднейшие задачи! Но каждый день приближает нас к их решению.  {54}

ЭНЕРГИЯ ИЗ НЕДР

Давно уже работает наука над прогрессивным способом освоения угольных залежей – подземной газификацией. Вместо того чтобы извлекать уголь из пластов и поднимать его на поверхность, в недра нагнетают кислород и прямо под землей поджигают уголь. Там твердое топливо сгорает, но лишь частично. В процессе горения образуется газ, который сам служит отличным горючим и к тому же ценным химическим сырьем. Этот газ может идти на заводы, химические комбинаты, в наши квартиры.

Подземная газификация экономит огромное количество сил и средств, а главное – избавляет человека от тяжелого подземного труда. Но как много тепла теряется понапрасну! Ведь оно уходит на бесполезный разогрев земных недр!

И вот представьте себе, что скважины, по которым поднимается раскаленный газ из огневых забоев станций подземной газификации, охвачены блоками полупроводниковых термоэлементов. Сколько драгоценной энергии пойдет тогда от пылающего пласта!

Полупроводники будут добывать электроэнергию и из природных источников тепла.

В Башкирии, на реке Юрюзань, один из прибрежных холмов окрестные жители называют Яган-тау – Горящей горой. Это название оправдано. В глубине холма тлеют сланцы, и из щелей бьют струи горячего пара. Чтобы превратить такой холм в электростанцию, достаточно забить в него сваи из полупроводников.

Получив обилие этих замечательных материалов, мы преобразуем в электроэнергию и тепло горячих гейзеров, подземных вод и газов, наконец, само солнечное тепло. Здесь полупроводники открывают поистине необозримые перспективы. Мы еще будем говорить о них дальше.

А сейчас вернемся к нашей термопаре, чтобы рассказать о ее другой интересной особенности.

{55}

ЭЛЕКТРОННЫЙ МОРОЗ

Идея полупроводниковых термоэлектрогенераторов зародилась в Ленинграде, в лаборатории полупроводников Академии наук СССР, которая впоследствии была преобразована в Институт полупроводников Академии наук СССР. Здесь возникла и другая мысль: создать на основе полупроводников новые оригинальные холодильные устройства.

Мы знаем, что если один конец термопары нагреть, а другой охладить, то в ней рождается электроэнергия. Оказывается, существует и обратный эффект: пропустите через термопару постоянный ток, и с одной стороны она начнет нагреваться, а с другой – остывать.

На холодном спае появляется иней, лед.


Стопа полупроводниковых охлаждающих батарей.

{56}

В применении к металлам это явление открыл в 1834 году французский физик Жан Пельтье. Год спустя петербургский академик Э. X. Ленц на спае стерженьков из сурьмы и висмута заморозил электрическим током каплю воды. Но лишь в наши дни удалось найти полезное применение этого интересного явления. Дело в том, что в полупроводниковых термопарах эффект Пельтье проявляется очень резко – несравненно сильнее, чем в металлах.

ХОЛОДИЛЬНИК БЕЗ МОТОРА

Несколько полупроводниковых термопар соединили последовательно и сложили в плитку. Включили ток. Наверху плитка охлаждается, внизу разогревается. Сделали другую такую же плитку. Включив и в нее ток, положили на первую, причем теплыми спаями вниз. Эти спаи остывают в холоде нижней плиты, а наверху второй плитки возникает еще более сильный мороз. Такую многоэтажную стопу полупроводниковых плит – блоков термопар – очень удобно использовать для получения искусственного холода. Не потребуется никаких двигателей, насосов, жидкостей. А ведь прежде они считались обязательной принадлежностью холодильных установок.

Простота создания электронного мороза открывает ему широкую дорогу в жизнь. Быть может, скоро в ларьках с газированной водой баки будут оснащены стопами полупроводников. Тепло встретят этот новый искусственный холод и продавцы мороженого. Ведь не нужно будет возить издалека тонны льда, твердую углекислоту. Всюду, где есть электроэнергия, появится возможность без хлопот иметь и холод.

Для небольшого домашнего холодильника не понадобится даже стопы, достаточно одной—двух одноэтажных плиток из термопар.

В Институте полупроводников построили уже несколько моделей домашнего электронного холодильника. Вот одна из них:


Полупроводниковый холодильник.

Белый шкаф – такой же, как у всех подобных аппаратов. В задней части его гребень металлических пластин радиатора. С ним соединены нагревающиеся концы брусочков полупроводниковых термопар, чтобы они легче отдавали свое тепло наружу. Такой же гребень (но уже не отдающий тепло, а как бы вбирающий его в себя) смонтирован внутри холодильного шкафа. Его пластины соединены с теми концами полупроводников, которые охлаждаются при прохождении через термопары электрического тока. Сама батарея – небольшая прямоугольная пластинка, составленная из нескольких десятков полупроводниковых брусочков. Вот и все оборудование холодильника,

Он гораздо вместительнее, чем широко известный у нас холодильник завода «Газоаппарат», но вместе с тем в десятки раз надежнее.

Уже разработаны и промышленные конструкции полупроводниковых холодильников. Их размещают в известных шкафах «Газоаппарат» и «Днепр». Эти простые и неприхотливые электроаппараты скоро начнут сходить с заводского конвейера.


    Ваша оценка произведения:

Популярные книги за неделю