355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Георгий Береговой » Космическая академия » Текст книги (страница 10)
Космическая академия
  • Текст добавлен: 29 сентября 2016, 01:14

Текст книги "Космическая академия"


Автор книги: Георгий Береговой


Соавторы: Иван Почкаев,Владимир Григоренко,Ростислав Богдашевский
сообщить о нарушении

Текущая страница: 10 (всего у книги 12 страниц)

В тисках перегрузок

По мере развития и совершенствования средств профессиональной подготовки космонавтов, в условия наземных тренировок все полнее включают неблагоприятные факторы, сопровождающие космический полет. Если орбитальный полет ПКА непременно сопровождается невесомостью, то его выведению на орбиту и спуску с нее сопутствуют перегрузки.

Проблеме влияния перегрузок на организм человека посвящены многие исследования [101]. В них изучались характер и степень выраженности реакций организма человека при различных параметрах ускорений, устанавливались пороги переносимости, выявлялись основные механизмы расстройств, изыскивались средства и методы повышения устойчивости организма к перегрузкам.

Перегрузки не имеют размерности и выражаются относительными единицами, показывающими, по существу, во сколько раз увеличился вес человека при действующем ускорении по сравнению с ускорением силы тяжести.

В зависимости от направления перегрузки по отношению к вертикальной оси тела человека различают продольные и поперечные. Продольные перегрузки от головы к ногам принято называть положительными, а от ног к голове – отрицательными. Поперечные нагрузки имеют направления: «спина – грудь», «грудь – спина» и «бок – бок» (боковые).

Принятая международным Аэрокосмическим Комитетом по проблемам ускорений система координат и обозначений показана на рис. 5. Ось z проходит через центр тяжести тела, параллельно позвоночнику. Направление перегрузки от головы к тазу обозначено +Gz, от груди к спине – +Gx, боковой справа налево – +Gy, боковой слева направо – -Gy.

Рис. 5. Система координат и обозначений при действии перегрузок

Переносимость человеком перегрузки определяется ее величиной, продолжительностью, градиентом нарастания и спада, направлением по отношению к той или иной оси тела и индивидуальными особенностями организма. Величина переносимой человеком перегрузки тем больше, чем короче время ее действия, а воздействие перегрузки в поперечном направлении к оси тела переносится легче, чем в продольном.

Оценка устойчивости организма к действию ускорений зависит от выбранного критерия переносимости. В связи с этим различают границы «выживаемости» и пределы физиологической устойчивости, оцениваемой по начальным признаком нарушений деятельности различных функциональных систем организма.

В качестве объективных критериев переносимости человеком перегрузок наиболее часто используются показатели, связанные с расстройством зрения: отсутствие реакции на световые сигналы, симптомы нарушения глазодвигательной реакции, прекращение слежения за заданным объектом и др. Так, при действии продольных ускорений +Gz основными критериями устойчивости являются зрительные нарушения в виде серой или черной пелены, отсутствие реакции на световые сигналы, свидетельствующие о близости полной потери работоспособности и сознания. Снижение давления в сосудах ушной раковины до 50—40 мм рт.ст. у подавляющего большинства людей предшествует потере зрения.

При поперечных ускорениях +Gx достоверным критерием достижения предельной переносимости являются расстройства сердечной деятельности и потеря зрения.

Переносимость перегрузки существенно индивидуальна и зависит от состояния здоровья, возраста, психологической подготовленности.

Допустимые величины и длительность действия ускорений определяются физиологической переносимостью и операторскими возможностями человека. Физиологические пределы выносливости и работоспособности могут быть связаны между собой, но не обязательно равны. Как правило, работоспособность ухудшается раньше достижения предела физиологической устойчивости. Вот как описал субъективное восприятие перегрузок во время опасного испытательного полета американский летчик Джимми Коллинз: «Центробежная сила – огромное невидимое чудовище – вдавливала мою голову в плечи и так прижимала меня к сидению, что мой позвоночник сгибался и стонал под тяжестью. Кровь отлила от головы, в глазах потемнело. Сквозь сгущающуюся дымку я смотрел на акселерометр и неясно различал, что прибор показывает 5,5 g. Я освободил ручку и последнее, что увидел, была стрелка акселерометра, движущаяся обратно к 1 g. Я был слеп, как летучая мышь. У меня страшно кружилась голова. Я посмотрел по сторонам на крылья самолета. Я их не видел. Я ничего не видел. Я посмотрел туда, где должна быть Земля. Спустя немного она начала показываться, словно из утреннего тумана. Зрение возвращалось ко мне, так как я освободил ручку и уменьшил перегрузку».

Безусловно, о надежности и безопасности пилотирования в данном случае говорить не приходится.

Пределы физиологической устойчивости человека к действию перегрузок различного направления в зависимости от величины и длительности их действия могут существенно отличаться.

Физиологическая переносимость ускорений ограничена главным образом реакциями организма на перераспределение крови, механическое затруднение дыхания, смещение и деформацию внутренних органов. Чем больше величина составляющей перегрузки совпадает с направлением основных магистральных сосудов тела, проходящих вдоль позвоночника, тем нарушение со стороны общей гемодинамики выражены сильнее. В этом случае перераспределение крови приводит к появлению признаков нарушения мозгового кровообращения, что лимитирует продолжение воздействия.

При поперечных ускорениях изменения со стороны общей гемодинамики существенно меньше. Этим и был определен выбор позы для космонавтов в ПКА при его выведении на орбиту и спуске на Землю. Оптимальной, с этих позиции, оказалась поза, показанная на рис. 6, где а – угол между результирующим вектором ускорения и вертикалью корабля; е – угол наклона спинки кресла; х – угол между линиями: центр сердца – сетчатка глаза и продольной анатомической осью тела.

Рис. 6. Оптимальная поза космонавта в ПКА

Положение космонавта в горизонтальном кресле при угле α+ε=8...12° с бедрами, согнутыми так, что колени подняты на высоту глаз, представляет собой наилучший компромисс для переносимости ускорений +Gx.

Профилактика расстройств и повышение устойчивости организма к перегрузкам осуществляется в двух основных направлениях.

1. Физические методы: применение противоперегрузочных компенсирующих костюмов; придание оптимальной позы по отношению к вектору перегрузки с помощью специального кресла с профилированным ложементом; дыхание при повышенном давлении.

2. Физиологические методы: неспецифические и специфические виды физической тренировки, общее закаливание организма; применение фармакологических средств; тренировки на центрифуге.

Повышение адаптационных возможностей организма к перегрузкам целенаправленными тренировками на центрифуге связано с проявлением скрытого механизма перераспределения крови, который включается при нарушении кровообращения. При систематических воздействиях перегрузок в центральной нервной системе образуются новые (требуемые) условно-рефлекторные связи, начинающие действовать с появлением перегрузки. Таким образом может быть повышена устойчивость организма к ускорениям на 1,5—2 g.

В этом здании размещена уникальная центрифуга ЦФ-18

Рассмотрим кратко устройство и основные характеристики одной из самых больших в мире центрифуг ЦФ-18, которая функционирует в ЦПК им. Ю. А. Гагарина.

Это уникальное инженерное сооружение со следующими техническими характеристиками:

радиус вращения центра тяжести кабины ........................................ 18 м

диапазон создаваемых перегрузок:

с одноместной кабиной.................. 0—30 g

с двухместной .............................. 0—20 g

максимальный градиент нарастания (убывания) перегрузок ........................ 5 g/c

полезный вес в кабине ........................ 500 кг

вес вращающихся масс........................ 300 т

Ферма ЦФ-18 установлена непосредственно на роторе двигателя постоянного тока номинальной мощностью 6 МВт. Кабина центрифуги помещена в карданов подвес, что обеспечивает ориентацию вектора перегрузки в любом заданном направлении. Кабина герметична и, по существу, представляет собой миниатюрную термобарокамеру с регулировкой:

температуры в диапазоне ........... +12 – + 50° С

давления в пределах .................. 800 – 40 мм.рт.ст.

относительной влажности в пределах........................................ 30 – 70%: газового состава Од, N2 и СО2 в любых соотношениях



Центрифуга позволяет имитировать перегрузки, сопровождающие космический полёт

Управление вращением ЦФ-18 может осуществляться как в ручном режиме испытателем с пульта, установленного в кабине, так и в автоматическом режиме по программам, задаваемым от бортовой цифровой вычислительной машины или внешнего вычислительного комплекса.

Электрические связи кабины с внешними устройствами, пультами и вычислительным комплексом осуществляются через вращающиеся контактные устройства.

Пневматическая связь системы вакуумирования и регулирования газового состава кабины осуществляется через герметичные вращающиеся воздушные переходы.

Для анализа вдыхаемого и выдыхаемого испытателем воздуха в кабине установлен газоанализатор.

Оперативный контроль за состоянием испытателя в процессе вращения осуществляется с главного пульта врача, куда выводятся такие параметры, как электрокардиограмма, частота пульса, частота дыхания, электромиограмма, артериальное давление в плече, в мочке уха и др. С пульта врача ведутся двусторонние переговоры с испытуемым и телевизионное наблюдение за его состоянием.

Для углубленного анализа процесса тренировки в ходе ее разбора параметры психофизиологического состояния и параметры, характеризующие операторские возможности, записываются на магнитных и графических регистраторах.

Центрифуга ЦФ-18 используется в Центре подготовки космонавтов для отбора кандидатов в космонавты, проведения врачебно-летной комиссии, клинико-физиологических обследований космонавтов, исследований возможностей космонавтов управлять ПКА в условиях, максимально приближенных к полетным. На базе этой центрифуги функционирует тренажер по выполнению операций на таких ответственных участках полета, как выведение на орбиту и спуск на Землю.

Особые требования к операторским возможностям космонавтов возникают при ручном управлении спуском ПКА с орбиты после длительного пребывания в условиях невесомости и возникновении аварийных ситуаций в полете.

Моделирование такого режима в наземных условиях осуществляется на центрифуге ЦФ-18 посредством создания избыточного давления на нижнюю часть туловища испытателя. В этом случае его сердечнососудистая система функционирует в режиме, характерном для невесомости. По достижении адаптации сердечно-сосудистой системы к этим условиям испытатель подвергается перегрузкам, значения которых соответствуют условиям спуска ПКА с орбиты. Такая методика позволяет приблизить условия тренировок космонавтов к условиям возвращения ПКА с орбиты, увеличить надежность его ручной системы управления и повысить безопасность космических полетов.

С кинофотоаппаратом и телекамерой

Кинофотоподготовка космонавтов занимает важное место в системе профессиональной подготовки. Это связано с большими возможностями средств и методов кинофототехники, широко используемой в настоящее время на ПКА и орбитальных станциях. Результаты космических экспериментов и исследований во многом определяются качеством выполненных кинофотосъемок, являющихся объективными данными этих работ. Исходя из этого, Кинофотоподготовка космонавтов проводится с целью:

• ознакомления с основами теории кинофототехники, светотехники и оптики;

• ознакомления со средствами и методами кино– и фотосъемки;

• привития и совершенствования практических навыков по работе с кинофотоаппаратурой в условиях, приближенных к космическому полету;

• формирования навыков работы со штатной кинофотоаппаратурой на Земле по полетной программе кинофотосъемок.

Основными задачами, решаемыми кинофотосъемкой, являются:

• исследование Земли и окружающего ее пространства (облачного, снежного и ледового покровов, залежей полезных ископаемых, состояния атмосферы, акватории морей и океанов и др.);

• картографирование ландшафтов поверхности Земли, ее природных ресурсов и растительного покрова;

• регистрация научных, технических и медико-биологических экспериментов с целью анализа и отработки методик их проведения в космическом полете (стыковка, выход в открытый космос, переход из корабля в корабль, исследование координации движений космонавтов и т. д.);

• исследование Луны, Солнца, планет и звезд непосредственно из космоса, где исключено влияние атмосферы Земли;

• оценка работоспособности экипажа и систем ПКА на различных этапах полета;

• создание научно-технических и учебно-методических кинофильмов для совершенствования подготовки космонавтов.

Условия космического полета накладывают специфические особенности на проведение кинофотосъемок. Основными из них являются: невесомость; недостаточная освещенность внутри ПКА или орбитальной станции; ограниченные размеры иллюминаторов; существенные отличия условий освещенности Земли в зависимости от параметров орбиты ПКА; необходимость работы в скафандре; дефицит времени; изменения состояния иллюминаторов (точечные загрязнения, запотевание, изморозь, засветки и др.); остаточные вращения ПКА; ограниченный запас фото– и кинопленки.

При кинофотоподготовке космонавты выполняют следующие виды съемки: в интерьере (павильоне, классе); при тренировках в различных климатогеографических зонах; в макетах ПКА (станции) на комплексных и специализированных тренажерах; при парашютных прыжках, тренировках на море и в гидролаборатории; при полетах на самолетах.

Программа кинофотоподготовки космонавтов разрабатывается на основании руководства по подготовке космонавтов; программы подготовки экипажей конкретного ПКА; инструкций по выполнению экспериментов в космическом полете; инструкций по выполнению бортовых кинофотосъемок и телепередач; технических описаний бортовой кинофотоаппаратуры.

Программа кинофотоподготовки космонавтов включает следующие основные разделы.

1. Изучение бортовой документации: программа полета; инструкции по выполнению экспериментов, бортовых кинофотосъемок и телепередач; технические описания бортовой кинофотоаппаратуры; сценарий планируемого кинофильма; программа бортовых кинофотосъемок.

2. Изучение бортовой кинофотоаппаратуры: инструкции по эксплуатации комплекта фотоаппаратуры, киноаппаратуры, фотовспышечного освещения, экспонометрических приборов, размещение кинофотооборудования – пленок, осветительных приборов, кронштейнов и приспособлений для съемок, розеток электропитания; устройство, особенности эксплуатации, зарядка и перезарядка кассет и аппаратов; кинооборудование и его устройство (кронштейны, система освещения, кабели подключения, переходные детали, кинофотообъективы и т. д.).

3. Светочувствительные материалы: практическое изучение основных характеристик кино– и фотопленок, используемых для выполнения программы бортовых съемок; типы и виды кино– и фотопленок, строение эмульсии, светочувствительность; упаковка кино– и фотопленок, условные обозначения.

4. Практические фотосъемки на тренажерах: фотосъемка по сюжетам бортдокументации с целью формирования навыков использования различных вариантов размещения штатных осветительных приборов; фотосъемка штатной фотоаппаратурой со штатными фотоматериалами с использованием бортовых кронштейнов, системы фотовспышечного освещения и дистанционного управления; просмотр и обсуждение фотоматериалов с указанием на ошибки и удачные моменты при съемке.

5. Практические киносъемки на тренажерах: техника съемки; экспонометрия кинофотосъемки; светофильтры и их применение; освещение объектов съемки; виды киносъемок (нормальная, ускоренная и т. д.); киносъемка на тренажере штатной аппаратурой по сюжетам бортдокументации с использованием бортовых кронштейнов, дистанционного управления, осветительных приборов, светофильтров и других приспособлений; просмотр и анализ результатов киносъемок; монтажная киносъемка в интерьере станции по программе бортовых киносъемок; композиция кинокадров; основы монтажной съемки; статика и динамика в композиции, передача глубины пространства, ракурс, перспектива и т. д.; особенности съемки движущейся камерой, широкоугольным объективом, телеобъективом в интерьере ПКА и орбитальной станции; просмотр киноматериалов, анализ правильности выполнения рекомендаций по качественному монтажу съемки, композиции кадра, выбору объектива, правильности освещения и экспозиции, наводки на резкость.

6. Практика проведения телерепортажей: установка телевизионных камер на кронштейнах, выставка специального освещения по схеме, фотоэкспонирование; проведение по сценарному плану телевизионных передач с фиксированных точек интерьера ПКА или орбитальной станции.

Помимо традиционных кинофотосредств при проведении многочисленных технических экспериментов и экспериментов в интересах народного хозяйства применяется такая аппаратура, как многозональная фотокамера МКФ-6 для получения снимков в шести диапазонах видимого спектра. Для исследования природных ресурсов Земли из космоса используются также фототелевизионные системы с термопластическими носителями информации, не подверженными засветке видимым светом и проникающей радиации.

Завершающим этапом кинофотоподготовки и практики ведения телерепортажей является зачетная тренировка на комплексном тренажере ПКА или орбитальной станции.

В процессе зачетной тренировки контролируются:

• знания устройства штатной киноаппаратуры, телевизионной аппаратуры и технических приемов ее использования;

• навыки подготовительных операций кинофотосъемки и телерепортажа (зарядка кинокамеры и фотоаппарата, установка кинофотоаппаратуры и телекамер на кронштейны, их подключение к бортовому электропитанию, установка освещения и т. д.);

• выставка исходного состояния кинофотоаппаратуры и телекамер (установка кассеты, переключение скорости съемки, проверка перемотки пленки в кассете кинокамеры, установка подсветок, фотоэкспонирование);

• навыки монтажной киносъемки сюжета;

• заключительные операции (маркировка отснятого материала, перезарядка кассет).

По результатам зачетной тренировки комиссия дает заключение о допуске к практической работе в реальных условиях космического полета.

Подготовка на тренажерах

Общие принципы обучения на тренажерах

Особая роль в профессиональной подготовке космонавтов принадлежит тренажерам.

Учебно-тренировочный макет станции «Салют»

Обусловлено это тем, что космические тренажеры являются единственными техническими средствами подготовки экипажей пилотируемых космических аппаратов. Выполнение тренировочных космических полетов подобно тренировочным полетам на самолетах вследствие их большой стоимости и небезопасности практически невозможно. Поэтому на космических тренажерах различного назначения создаются такие информационные модели воспроизводимых полетных условий в реальном масштабе времени, чтобы зрительное восприятие и двигательная реакция тренируемого космонавта не отличались от таковых в реальных условиях. С этой целью в кабине (или ее фрагменте) космического тренажера устанавливается, как правило, оборудование, идентичное реальному. Геометрические размеры макетов кабин ПКА, расположение приборов, индикаторных устройств и органов управления соответствуют реальному кораблю. Однако общее подобие, хотя и имеет большое значение, еще не обеспечивает воспроизведения на тренажере наиболее существенных моментов трудовой деятельности космонавта, позволяющих формировать необходимые профессиональные навыки.

Вопрос о том, какие факторы условий полета ПКА, в какой полноте и с какой точностью должны имитироваться на тренажере, решается на основе психологического анализа взаимодействия космонавта с реальной средой и определяется спецификой решаемых космонавтом задач. При этом учитывается психологическая структура формируемых навыков, которая включает цель выполнения действия, особенности восприятия, внимание, мышление, характер движений.

Для восприятия условий реального процесса на тренажере реализуется математическая модель движения ПКА и модели всех его основных систем. При этом в соответствии с управляющими воздействиями обучаемого космонавта, которые вводятся в модель, воспроизводятся в реальном масштабе времени ситуации, аналогичные возникающим в космическом полете.

Тренажёр космического корабля «Союз»

Полученные в результате моделирования параметры выводятся на приборы и средства индикации пульта космонавта. Одновременно в оптических приборах и иллюминаторах в возможно полной мере воспроизводится внешняя визуальная обстановка, посредством соответствующих имитаторов, связанных с моделью динамики ПКА таким образом, чтобы наблюдаемая на тренажере картина соответствовала реальной при аналогичном состоянии в полете.

Как правило, на тренажерах моделируются физические факторы условий космического полета (исключая невесомость), вызывающие у тренируемых космонавтов ощущения, адекватно связанные с их деятельностью в реальных условиях полета.

Вместе с тем эффективность применения тренажеров в ходе подготовки космонавтов к предстоящему космическому полету зависит не только от степени приближения условий тренировок к реальным, но и от методик обучения, которые разрабатываются с учетом закономерностей становления профессиональных навыков. В программу тренировочного процесса входят прежде всего наиболее сложные критические ситуации, навыки работы в которых невозможно сформировать в реальном полете. Кроме того, тренажер позволяет инструктору изменять ситуации, вводить новые или дополнительные условия, усложняющие управление кораблем, а также формировать поэтапно упражнения дозированно-прогрессирующей сложности. При этом профессиональные навыки ранжируются по значимости, а характер задач, ставящихся в процессе тренировки, индивидуализируется с учетом функциональных обязанностей и предшествующего опыта космонавтов.

Оптимизация обучения космонавтов на тренажерах достигается также такими методическими приемами, как повторное воспроизведение особо сложных элементов управления ПКА, ввод неисправностей, фиксация тренировочного упражнения для оперативного разбора инструктором ошибок, допущенных обучаемым, самоконтроль и другие методические приемы.

В ряде случаев, например, для формирования навыков выполнения быстротечных процессов управления ПКА возникает необходимость в их более медленном воспроизведении (обучение в нереальном масштабе времени) с последующим постепенным переходом к реальному времени.

Специфика профессиональной подготовки космонавта на тренажерах связана с такой особенностью, как невозможность создать на одном тренажере весь комплекс физических условий и факторов, сопровождающих космический полет. Поэтому становление необходимых профессиональных навыков у космонавтов осуществляется поэлементно на тренажерах различного назначения. На конечном этапе подготовки космонавтов у них осознанно интегрируется обобщенный внутренний образ предстоящей деятельности. Задача формирования такого образа у космонавтов на тренажерах решается психологами и инструкторами, осуществляющими руководство подготовкой. В этой связи особое значение приобретает планирование циклограмм тренировок. В его основе лежит этапность, связанная с поэлементным овладением сложными видами профессиональных навыков. Последовательность этапов подготовки к выполнению динамических операций на тренажерах представляется следующим образом [99]:

• теоретическое обучение и приобретение общей операторской культуры;

• формирование спектра частных навыков, входящих в состав интегрального навыка, необходимого для выполнения данной динамической операции;

• формирование навыков выполнения отдельных изолированных операций;

• формирование навыков выполнения отдельных операций в комплексе последовательных действий;

• формирование навыков выполнения динамической операции в аварийных ситуациях и нестандартными способами;

• перенос навыков с учебных моделей на реальный объект управления.

Схема поэтапной подготовки экипажа ПКА для выполнения операции причаливания и стыковки, как наиболее сложной типовой динамической операции, показана на рис. 7.

Рис. 7. Схеме поэтапной подготовки экипажа ПКА

Сочетание принципов теоретического обучения, образующего базу, на которой строится вся дальнейшая подготовка космонавтов, с практической работой на тренажерах позволяет слушателям активно усваивать материал в процессе обучения и формировать гибкие навыки, которые могут быть безболезненно скорректированы в реальном космическом полете, исходя из складывающейся ситуации. В этой связи необходимо отметить, что процесс обучения и подготовки осуществляется на основе сознательного и активного участия в нем самих космонавтов, формирующих в себе навыки выполнения не отдельных операций и режимов полета, а на основе познания способов выполнения конкретных операций вырабатывать в себе общую концепцию решения задач программы полета как в штатных, так и нештатных или аварийных ситуациях. Это высшая ступень достижения профессионализма в ходе подготовки к предстоящему полету. И достигается она прежде всего индивидуальным методом обучения при соблюдении максимального уровня слаженности экипажа в целом.

Ведущая роль в достижении этой цели принадлежит инструктору экипажа, который непосредственно осуществляет учебный процесс и определяет готовность экипажа к полету. При этом он решает ряд задач в двух основных направлениях.

В психологическом плане:

• изучение индивидуальных психологических особенностей членов экипажа, их речи и стиля деятельности;

• исследование влияния психической напряженности, утомления, эмоциональных воздействий и особенностей нервно-психической организации космонавта на эффективность его деятельности и варьирование в зависимости от этого интенсивности его загрузки;

• выявление «резервов» и возможности использования их в экстремальных условиях;

• учет цены физических и психических затрат космонавта при достижении заданного уровня профессионализма с целью обеспечения надежности решения поставленной задачи;

• выявление особенностей взаимодействия членов экипажа при различных видах трудовой деятельности и их психологической совместимости.

В плане профессиональной подготовки:

• организация обучения на тренажерах;

• определение содержания тренировочных упражнений и распределение их по времени;

• раскрытие индивидуальных профессиональных качеств каждого члена экипажа;

• анализ хода становления навыков и при необходимости его корректировка;

• оптимизация количества тренировок;

• раскрытие сущности процессов и явлений, протекающих при подготовке космонавтов;

• управление процессом обучения, исходя из задач предстоящего полета;

• оценка профессионализма экипажа и его готовности к полету.

Многолетний опыт подготовки космонавтов в ЦПК имени Ю. А. Гагарина подтверждает, что решение инструктором экипажа этих задач – залог эффективной и надежной работы космонавтов в длительных космических полетах.

Для успешного достижения этой цели инструктор экипажа должен обладать высоким уровнем профессиональных знаний, педагогическим мастерством, большими организаторскими способностями и авторитетом.

Условия тренировок

Класс программированного обучения

Как уже отмечалось, в ходе подготовки у космонавтов последовательно и целенаправленно формируется концептуальная модель предстоящего полета. Однако мысленный образ и общий интеллектуальный багаж космонавта представляют только базу для осуществления его трудовой деятельности. В ее содержание входит гамма психологических процессов, таких, как активное восприятие, память, мышление, принятие решений, а затем двигательные операции, требующие не физических нагрузок, а точных и координированных движений.

Зал вычислительного комплекса тренажёрной системы

Отсюда очевидно, как важна роль условий, воссоздаваемых на тренажере, которые воздействуют на сенсорное поле космонавта. В идеальном случае они не должны отличаться от условий, сопровождающих космический полет на всех его этапах. Однако достижение такого соответствия, несмотря на последние достижения космического тренажеростроения, практически невозможно. Прежде всего, технически невозможно воссоздать все специфические факторы космического полета в одном тренажере. Поэтому для подготовки космонавтов в зависимости от программы полета, решаемых задач и их специализации, применяется серия специализированных и комплексных тренажеров транспортных кораблей и орбитальных станций, которые позволяют осуществлять всестороннюю профессиональную подготовку, несмотря на некоторые отличия наземных условий и полетных. Достигается это, прежде всего, проверенными практикой методическими приемами.

Обобщенная структурная схема современного космического тренажера независимо от его типа и назначения (рис. 8) содержит пять основных блоков: рабочее место космонавта (РМК), систему имитации визуальной обстановки (СИВО), вычислительную систему (ВС), пульт контроля и управления (ПКУ) и устройства согласования (УС). Технический уровень реализации этой структуры определяет соотношения условий тренировки и условий космического полета, т. е. меру их подобия.

Рис. 8. Обобщённая структурная схема космического тренажёра

Современные тренажеры профессиональной подготовки космонавтов, представляющие уже третье поколение, реализуются на базе тренажерных систем или сетей [106].

Рассмотрим характеристики устройств космического тренажера, определяющих меру подобия воссоздаваемых на тренажере условий и в реальном полете, а также допустимые их отличия, обеспечивающие адекватность психических процессов, протекающих в том и другом случаях, благодаря адаптивным и мотивационным свойствам человека.

Рабочее место космонавта (РМК)

На специализированных и комплексных тренажерах транспортных кораблей и орбитальных станций установлены полноразмерные макеты или фрагменты ПКА, интерьер которых соответствует реальному ПКА. Все оборудование, система отображения информации (СОИ) и органы управления КА, с которыми работает или соприкасается экипаж, по всем характеристикам соответствует штатным. Та же часть оборудования, которая не включена в контур моделирования процессов управления ПКА (это относится прежде всего к специализированным тренажерам или стендам-тренажерам), выполнена в виде габаритно-весовых макетов.

Основным устройством контроля и управления ПКА, устанавливаемым на всех РМК, является пульт космонавта (рис. 9). Это многофункциональное оборудование, включающее командно-сигнальное устройство (КСУ), командно-сигнальные поля (КСП), индикатор контроля программ (ИКП), комбинированный электронный индикатор (КЭИ), БЧК, «Глобус» и другие приборы [43].


    Ваша оценка произведения:

Популярные книги за неделю