355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Георгий Гуревич » Лоция будущих открытий: Книга обо всём » Текст книги (страница 1)
Лоция будущих открытий: Книга обо всём
  • Текст добавлен: 19 марта 2017, 07:00

Текст книги "Лоция будущих открытий: Книга обо всём"


Автор книги: Георгий Гуревич


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 1 (всего у книги 7 страниц)

Георгий Гуревич
Лоция будущих открытий: Книга обо всём

ВВЕДЕНИЕ

Человечеству требуются открытия.

Требуются прежде всего потому, что нас не удовлетворяет сегодняшний уровень жизни. Хотим есть лучше, одеваться лучше, жить лучше во всех отношениях: просторнее, интереснее. Человек – существо, стремящееся к лучшему. Достигнутое – бесцветные будни для нас. Кроме того, во многих странах миллионы не имеют даже и необходимого: нищенствуют, недоедают, умирают от голода. Для того чтобы поднять их уровень жизни хотя бы до нашего сегодняшнего, надо бы увеличить производство пищи раза в полтора–два, промышленных товаров – в пять раз, энергии – раз в десять.

Кроме того, население земного шара растет. Недавно мы миновали пятимиллиардный рубеж. К 2000 году ждем еще миллиард с лишним юных гостей с отменным аппетитом. Их тоже надо накормить, одеть, расселить, обучить, снабдить всем необходимым.

Открытия требуются и потому, что природа – наша кормилица – неорганизованна, капризна, стихийна. А стихии то и дело подводят нас то засухой, то морозом, то наводнением, губят землетрясениями, ураганами, вулканами, эпидемиями…

И потому еще требуются открытия, что планета наша не резиновая: список едоков растет, а территории–то не растут. У планеты определенные размеры, определенная площадь поверхности и запасы сырья. Не все израсходованное восстанавливается, не все можно добывать в пяти–, десяти–, в стократном размере.

Для сытости, для обеспеченности, для безопасности, для здоровья и долголетия, для благополучия требуются многочисленные открытия.

Надо искать. Но где?

Где угодно! Всюду! Везде!

Однако чтобы искать везде, надо увидеть ВСЁ. Нужна обзорная книга обо ВСЕМ.

Она у вас в руках.

Итак, книга обо всем. Автор понимает, что даже такое намерение вызывает протест. Со времен Козьмы Пруткова известно, что нельзя объять необъятное. Столько на Земле людей, столько на небе звезд, столько атомов! И столько наук занимаются исследованием деталей! Да плюньте в глаза тому, – так советует Козьма Прутков, – кто попробует описать это все, хотя бы перечислить!

Однако для того чтобы рассказать обо всем, вовсе не надо перечислять каждый предмет; чтобы сосчитать, нет необходимости пересчитывать. В Москве девять миллионов жителей, но девять миллионов фамилий не приводятся в справочнике «Вся Москва». Указывается общее количество жителей, рассказывается об улицах и зданиях, далеко не обо всех. В географических атласах не помечены все деревни, все мысы, все бухточки. Дана ОБЩАЯ КАРТИНА: вся планета – в одной книге, на одной странице – целый материк, а на карте полушарий – все материки и океаны сразу. Не все, что есть на Земле, но вся Земля.

В книге этой и описывается ВСЕ вместе взятое.

Все вместе взятое нужно окинуть взором, чтобы наметить, где искать открытия. И еще необходим какой–то план поиска с пояснениями, некая лоция с описанием берегов новооткрытого с удобными выходами в океан неведомого, перечнем маршрутов, трасс, а также рифов и мелей, где уже потерпели в прошлом крушение искатели научных кладов.

«Лоция будущих открытий» – так названа эта книга.

Еще одно уточнение – терминологическое.

Что именно будем считать открытием? Ведь многие видные ученые на Западе и у нас высказывались в том смысле, что настоящее открытие всегда неожиданность, этакий самородок, валяющийся в мусорной куче. И таких самородков не так уж много в истории науки, по пальцам можно пересчитать: радиоактивность, Х-лучи, пенициллин, инфузории под линзой микроскопа, Америка, перегородившая дорогу в Индию… Тем не менее в разговоре, да и в словарях, открытием называется и то, что отыскивалось долго. Говорится: открытие Северного полюса, истоков Нила, пролива, перешейка, перевала, возбудителя болезни, происхождения, закономерности, метода…

Отличаются ли принципиально непредвиденные открытия от предвиденных? Только исторически: их не предвидели. Если бы предвидели, не оказались бы непредвиденными. Можно, конечно, предвиденные переименовать, придумать для них другое слово, назвать их ненастоящими открытиями, полуоткрытиями. Не в названии суть. За терминологическим спором, как обычно в науке, стоит методический. Если подлинные открытия обязательно неожиданны, тогда всякая методика бессмысленна, надо ждать, уповая на счастливый случай. Везучему само в руки приплывет, а невезучий только зря будет пот проливать.

Но у человечества нет возможности ждать, проблемы держат за горло. Впрочем, и вся научная, и вся житейская практика противоречит пассивному выжиданию. Мы ищем необходимое и ищем там, где рассчитываем найти, соображаем, где стоит искать, ищем целеустремленно и методично. И не осматриваем все предметы подряд, на это науке не хватит времени, сил и людей. А как будет называться находка, «настоящим» или «ненастоящим» открытием, нам безразлично. Нам требуется результат.

Эта «Лоция» написана о всяких открытиях, но больше об ожидаемых, о требующихся, необходимых, которым уже пришла пора. И желательно делать открытия поскорее. Не наугад и не сканируя все подряд. Требуется разумный подход. Иными словами – Методика! Методика заглядывания за горизонт.

Книга эта складывалась очень долго, не писалась, а росла почти сорок лет, практически всю мою жизнь. Сначала появились отдельные гипотезы, они излагались в статьях, иногда и с таблицами, или же публиковались в главах других моих работ. Постепенно выстроилась и методика, потом она была сформулирована. Когда сформулировалась, я понял, что был у меня и предшественник, даже очень почетный – Дмитрий Иванович Менделеев.

Впрочем, какое же дело обходится без предшественников?

Перед Менделеевым стояла задача, не такая уж обычная для ученого: надо было составить учебник выстраивающейся, не совсем еще сложившейся науки – химии. В ту пору – в середине XIX века – химия состояла из описания бессвязного набора элементов и их реакций. Студентам же, как и всем людям, трудно запоминать бессвязный набор. Логика была желательна. Логику химии искал Дмитрий Иванович.

В его распоряжении были факты, ранее собранные алхимиками и химиками сведения о свойствах шести десятков видов атомов. В наше время научные труды начинаются с обзора литературы, т. е. мнений предшественников. Но в данном случае мнения чего–то стоили лишь в соединении с логикой, а ее–то не нашли. Менделеев приступил к обзору фактов. Г Тут еще надо было выбрать некий порядок обзора, кр_и-терий расстановки фактов – «осью» буду я называть его в I дальнейшем. Менделеев принял атомный вес в качестве оси. Решение – не само собой разумеющееся. Недаром скептики издевательски вопрошали тогда английского химика–систематика Ньюлендса: «А по алфавиту вы не пробовали расставлять?»

Порядок обозначил грани неведомого – «горизонты» – водород и уран. Перед водородом и после урана – широчайшие поля для открытий. Они и были сделаны в XX веке: элементарные частицы до водорода и радиоактивные элементы около и после урана.

Внутри же ряда обнаружилась закономерность: периодическое повторение химических свойств. И это позволило построить таблицу, где в каждой строке щелочность уменьшалась, а кислотность возрастала. По вертикали же, в каждом столбике таблицы, щелочность усиливалась, кислотность падала.

Пока что я рассказываю общеизвестные школьные истины, чтобы подчеркнуть ход мысли Менделеева. Ход мысли – метод!

Итак, был найден порядок, установленный природой. Нашлись и отклонения: по три элемента в одной клетке (железо, кобальт, никель), а в клетке лантана позднее пришлось разместить целых пятнадцать элементов. Величие Менделеева, в частности, состояло и в том, что для него эти мелкие зигзаги не заслонили общую картину. Общую! Постараемся следовать его примеру.

Де – Щанкуртуа, один из предшественников Менделеева Д. И. (у всех были предшественники) предлагал строить таблицу элементов, навивая ось на цилиндр. Если сделать это, добавляя сведения, которых не было в XIX веке, получается довольно наглядно. Особенно четко видны в таком варианте отклонения от правила, даже правила отклонений от правила. Строки таблицы при этом превращаются в витки спирали, напоминая о диалектичности природы.

Яснее видны переход в противоположность (после сильной кислотности, например у хлора, следует перескок через инертный аргон к сильно щелочному калию) или повторение качества на новом уровне: после лития – более активный натрий, после натрия – еще более активный калий.

Когда таблица построена, на ней видны не только ее границы – горизонты, – но и пустые клетки, белые пятна, нечто пропущенное наукой. О белых пятнах можно строить гипбтезы на основе интерполяции, т. е. предполагая, что свойства элемента в промежутке промежуточные. Именно так предсказал Менделеев свойства еще неоткрытых элементов: скандия, галлия, германия. Для гипотез же о белых просторах неведомого за горизонтом имеются два приема – экстраполяция и аналогия. Все прочие методики – комбинация этих двух приемов.

Простая экстраполяция: за горизонтом продолжается уже известная тенденция к росту или к уменьшению и по такой же формуле. Но так как природа изменчива и непрямолинейна, заведомо известно, что где–нибудь рано или поздно найденная закономерность иссякнет. Поэтому надежнее сочетать экстраполяцию с аналогией, сравнивая данный виток (строку) с другими витками или данную ось с другими осями.

Подведем итоги.

Методика этой книги такова:

1. Напоминаются факты: о химических элементах, о неживой природе, о разуме, о науке. Факты, а не теории!

2. Выбирается ось для их расстановки, количественная или качественная. Факты выстраиваются по оси.

3. Отмечаются белые пятна, а также границы известного, ось уходит за горизонт.

4. Изучаются закономерности изменения свойств на оси.

5. На основе закономерностей строятся гипотезы о предполагаемых открытиях в белых пятнах и за горизонтом.

Методика сформулирована. Приступаем к применению

Раздел первый НЕЖИВАЯ ПРИРОДА

Порядок изложения продиктован методикой. Факты. Расстановка. Горизонты и белые пятна. Закономерности. Гипотезы. Буду придерживаться его во всех разделах.

Итак, факты. Атомы, звезды, горы, песчинки, кристаллы, молекулы, галактики, электроны… Не будем тратить время, перечисляя все, что есть в неживой природе. Имеем в виду любые тела, а также их свойства.

Расстановка. Надо выбрать ось для расстановки фактов. Не такая это простая задача. Для неживой природы возможны оси:

пространственные (местоположение, удаление от нас, размеры тел);

вещественные (масса, плотность);

временные: дата (местонахождение во времени, удаление от нас в прошлом или в будущем), срок существования (как бы размер тела во времени), событийность (аналогия массе), частота (аналогия плотности), но все это будет объясняться позже;

энергетические: энергонасыщенность (аналогия массе), энергоемкость (аналогия плотности), и то и другое по кинетической энергии, внешней – механической и внутренней – тепловой, а также потенциальной, положительной и отрицательной. Это тоже будет разбираться отдельно.

Я перебрал все эти оси. Наиболее характерной для неживой природы оказалась ось масс. На ней закономерности проявляются ярче всего.

В начале XX века такой выбор казался бы самым естественным. Тогда считали, что масса – это количество материи. Теория относительности осложнила вопрос; выяснилось, что масса зависит от скорости. Появилось определение: масса – мера инерции, мера сопротивления нарушению покоя. Вторичное что–то! Однако ныне становится ясным, что масса – это количество энергии, потраченное на создание движущегося тела. Пожалуй, существенная характеристика. Неудивительно, что от нее зависят основные свойства. Итак, нанизываем тела на ось масс, расставляя их но порядку (см. табл.1).

Начинаем от человека – условная точка отсчета. Мы для себя – мера вещей. Природу мы сравниваем с собой, от себя отмеряем близкое и далекое.

От человека вверх – скалы, горы, острова, моря; затем тела небесные: астероиды, планеты, звезды, звездные скопления вплоть до галактик и метагалактики, которую в последние годы принято называть Вселенной с большой буквы.

От человека вниз – клетки, молекулы, атомы, атомные оболочки и ядра, элементарные частицы, кварки и глюоны, фотоны.

Горизонты уже обозначились. Верхний – на уровне около 1054 г, нижний – около 1047 г. За ними океан неведомого, архипелаги открытий. Но, как условились, прежде чем пускаться в плавание по неведомому, надо отметить закономерности изведанного участка.

Даже неудобно называть участком маршрут длиной в сотню порядков.

Закономерности. Вертикаль. Сразу же бросается в глаза свойство, которое буду называть «этажностью». У каждого типа тел определенные границы массы – от сих и до сих. Тела как бы чуждаются друг друга, занимают определенные полки на оси масс, иногда с резкими границами, иногда с промежутками между «этажами».

Под «этажами» подразумеваем интервал существования данного типа тел в пространстве или же во времени. В неживой природе этажи почти всегда, но все же не всегда, совпадают со структурными уровнями материи. Галактики состоят из небесных тел, небесные тела – из молекул и атомов, молекулы – из атомов и т. д. Однако в дальнейшем, когда мы в следующих разделах перейдем к жизни и ее проявлениям, окажется, что этажи необязательно связаны со структурностью.

На таблице масс сразу бросаются в глаза этажи галактик, этаж небесных тел, этаж земных тел, в том числе и живых, этажи молекул, атомов, ядер, частиц…

Чем объясняется эта нетерпимая избирательность?

УСТОЙЧИВОСТЬЮ!

Заглавными буквами выделил я это важнейшее свойство материи, оно пройдет насквозь через все части нашей книги. Пожалуй, свойство это вытекает из философского определения материи: материя – реальность, существующая вне нашего сознания. Существует устойчивое, неустойчивое распадается, как бы «дематериализуется», на самом деле переходит в другую, устойчивую форму.

Устойчивость же выявляется в борьбе сил, скрепляющих и разрушающих, плюс–сил и минус–сил. Каждая из них изменяется по своим, неодинаковым законам. Когда минус–силы побеждают, этажу конец.

От плюс–сил зависит форма тела. Если силы направлены к центру, образуются тела вращения: шары, эллипсоиды, диски, например звезды, планетные системы, галактики. Поверхностные силы, подобные клею, создают тела любой формы, в том числе и геометрически правильные, например кристаллы. Сочетание вертикальных и горизонтальных сил образует волны. Среди волн бывают и кольцеобразные, о них много разговора впереди.

Второе свойство – структурность. Тела верхних этажей состоят из тел нижних этажей: галактики – из звезд, звезды – из атомов, атомы – из частиц… Все известные нам тела структурны. И сразу же возникает вопрос: бесконечна ли структурность? Если да, тогда к трем известным нам бесконечностям – пространственной, временной и энергетической – присоединяется еще и четвертая – структурная.

Горизонталь. У каждой конкретной плюс–силы или минус–силы свой график изменения. Из сложения их образуется график прочности данного этажа. Очертания их различны. На этажах звездном и галактическом – пологое нарастание прочности и резкий обрыв. На ядерном и молекулярном – крутое возрастание и пологое ослабление прочности. Нельзя ли по графикам судить о сходстве сил? Не сходно ли строение атомных ядер и молекул? Бывают и более капризные варианты: выборочная прочность у атомных оболочек и элементарных частиц, зигзагообразная – у химических элементов.

На каждом этаже есть максимум устойчивости, «железной сердцевиной» назвал я его – ядра железа на ядерном этаже, нерастворимые соли на молекулярном. В естественных условиях менее устойчивое, предоставленное само себе, стремится превратиться в более устойчивое: все тела сползают к желез-' ной сердцевине, отдавая при этом энергию. В максимуме прочности – максимум устойчивости и минимальная энергонасыщенность. Как правило, процесс сползания медленный, постепенный, он чаще наблюдается, чем взрывные подъемы, и поэтому его сочли основным процессом природы – стремлением к успокоению, к равновесию, к наиболее вероятному состоянию, к максимальной энтропии, к тепловой смерти.

Сочли те, которым очень хотелось, чтобы материальный мир был конечен, если не в пространстве, то во времени хотя бы.

Максимум прочности – где–то в середине этажа. Сползая с края графика к середине, тела отдают энергию. Края в результате – источник энергии. Нижний край отдает энергию, укрупняясь в реакциях синтеза химического или ядерного, верхний край – при распаде. Самые громоздкие тела распадаются сами собой (высокие горы, радиоактивные ядра, крупные молекулы).

Для распада же существует три варианта: откалывание, раскалывание на две части, рассыпание. Радиоактивность познакомила нас со всеми тремя, а звездный мир подтвердит правило.

Примеры: откалывание – излучение альфа–лучей, образование планет; раскалывание – распад урана, образование двойных звезд; рассыпание – распад на мелкие осколки, взрыв. Видимо, так кончают существование рекордно тяжелые сверхатомы, сверхзвезды, сверхгалактики.

Итак, на каждом этаже рост прочности, максимум, упадок и распад.

Всеобщий универсальный порядок!

Вселенская таблица. Изложенное выше позволяет построить для всех физических тел таблицу наподобие менделеевской (см. табл.2).

Каждая строка – этаж, на каждом этаже плюс–силы и минус–силы, зона роста, сердцевина, зона упадка. В отличие от химической таблицы здесь больше сходства в горизонтальных строчках, чем в вертикальных столбцах. Звезды больше похожи на звезды, чем на атомы. Междуэтажное же сходство как–то упущено специализированной наукой XX века. Однако сходство есть, можно подметить немало интересного.

Но важнее всего, что на таблице сразу бросается в глаза неоткрытое. Не все клетки можно заполнить. Где–то неизвестны плюс–силы, где–то неизвестны минус–силы. Нечетки границы этажей, есть надежда найти еще более массивные тела, суператомы, суперзвезды. На самом же нижнем этаже, в «подвале» вещества, – сплошные вопросительные знаки – неведомо строение. Вопросительные знаки и на верхнем этаже – неведомо продолжение. Видно, ГДЕ можно сделать открытия, но ЧТО откроется?

Неведомое. Сначала предварительные замечания для читателя. Передо мной стоит композиционная трудность. Изложение гипотез – самая емкая часть книги. Исходные–то факты общеизвестны, их достаточно перечислить: имеются звезды и атомы такого–то типа… Выводы же спорны и новы; гипотезы полагается обосновать, опровергая варианты ссылками на опыты, вычислениями и рассуждениями. Но в длинных рассуждениях утонет важный мотив сравнения закономерностей природы, единой вселенской связи простого и наисложнейшего, всеобщности Всего. Поэтому гипотетическое придется излагать кратко, почти декларативно.

Я возлагаю надежды на графические таблицы. Вообще думаю, что точные науки напрасно преувеличивают значение алгебраических формул. Формулы безупречны для вычислений, но они отражают природу упрощенно, как правило, принимают во внимание только один–два основных процесса. Цифры кажутся точными, но за ними не видны отклонения, исключения, и совсем не видны границы применения формул там, где вмешиваются новые факторы и меняют все отношения. На графиках же с первого взгляда видно: здесь есть факты, а дальше фактов нет. Здесь плавная последовательность, а здесь перелом – вмешалось что–то непредвиденное. А непредвиденное – тема для исследования, надежда на открытие. Поэтому я сопровождаю текст многочисленными таблицами (они даны в конце книги, в разделе «Атлас природы»). Изложение гипотез будет непонятно без таблиц, а при взгляде на них иной раз и пояснения не понадобятся.

Я начал свою работу с простейшего – с неживой природы. В космосе и атомах увидел закономерности, позже понял, что они распространяются и на жизнь – на сложное и наисложнейшее. Но исторически познание шло по противоположному пути – от людей к атомам, от сложного к простому. Нам, людям, наисложнейшим существам, иной раз простое – звезды и атомы – непонятно, скучно, чуждо. И если среди читающих эту книгу найдутся гуманитарии, испытывающие отвращение к точкам, линиям и всяческим секторам–сегментам, рекомендую им, даже прошу, отложить в сторону раздел о неживой природе и приступить к чтению второй части – «Жизнь», не упустив, однако, из виду главное: чтобы заглянуть за горизонт того или иного мира, рекомендуется расставить известные факты по порядку и отметить закономерности. Как правило, при этом выявляется спираль, в ней витки, они же этажи. Каждый этаж – зона устойчивого существования, зависящего от борьбы сил, причин, факторов, благоприятных и неблагоприятных. Выявляются и изменения: вертикальные – от этажа к этажу, и горизонтальные – в пределах этажа. На основе всех этих закономерностей и выстраиваются гипотезы о запредельном, заго–ризонтном.

Гипотезы. Горизонты знания проходят по максимуму и минимуму обязательно. На временных осях сплошь и рядом неведомо происхождение и всегда неведомо будущее. На структурных осях внизу, как правило, неведомо строение, а наверху – принадлежность: к какому целому относится наблюдаемая часть? В мире неживой природы неведом верхний край – границы Вселенной и ее продолжение или принадлежность, неведом и нижний край – недра элементарных частиц.

Обычно неведомое есть и на каждом этаже, чаще по краям, иногда есть пробелы и в середке. Белые пятна в науке бесчисленны. Я скажу только о тех, которые бросились мне в глаза.

Начнем со звездного этажа.

1. Инфры. На этажах встречаются пробелы – белые пятна, пустые клетки. Пример: пробел на звездном этаже – между Юпитером и красными карликами, просвет почти в два порядка, от 1030 г. до 1032 г. Подлинный ли это пробел или кажущийся?

Интерполируем. Плюс–сила, скрепляющая, есть и выше и ниже – тяготение. Минус–сил, разрушающих, именно для этого отрезка не знаем и не предполагаем. Более крупные тела – звезды – светятся самостоятельно, меньшие – планеты – только отраженным светом. Промежуточные или не светятся, или же светятся слабо, слабее красных карликов, так что астрономам трудно или даже невозможно их увидеть.

Вероятнее всего, они испускают исключительно или преимущественно инфракрасные лучи, невидимые для глаза. Инфрами назвал я эти тела, написав о них впервые в журнале «Знание – сила» («1958. № 2).

В мире звезд заметна закономерность: гиганты редки, потому что они недолговечны, быстро, по звездным меркам, прогорают, карлики гораздо многочисленнее. Возможно, что инфры еще многочисленнее карликов. Если это так, тогда меняется привычное представление о пустоте мирового пространства. Инфры могут встречаться чаще, чем звезды. Возможно, они имеются и внутри Солнечной системы. Судя по Юпитеру, это должны быть тела с обширной газовой оболочкой, подогретой изнутри за счет тепла недр у меньших инфр на 100–200 градусов по Кельвину, у крупных – до 2000 градусов. У инфр среднего размера температура атмосферы может быть пригодна и для жизни. В сущности, подходящая температура и в глубинных слоях крупных планет Солнечной системы: Юпитера, Сатурна, Урана и Нептуна.

2. Границы Солнечной системы. Рассмотрим условия устойчивости для спутников Солнца (см. табл.3).

Плюс–сила удерживающая – тяготение, убывает с расстоянием пропорционально квадрату радиуса. Минус–сила утоняющая – инерция собственного движения на орбите. Условие устойчивости: скорость движения должна быть меньше скорости убегания от Солнца (для Земли – 4,2 км/с) и больше скорости падения на Солнце – 2,8 км/с. У нашей планеты диапазон надежности достаточно широкий.

Но чем дальше от Солнца, тем теснее становится этот диапазон. На расстоянии в 100 астрономических единиц (а. е.) спутник должен вписаться в интервал от 280 м до 4,2 км/с; на расстоянии в 10 000 а. е. – в интервал от 2,8 м до 420 м/с. График интервалов устойчивости становится все уже, в общем он похож на обелиск в честь покорения космоса у метро «ВДНХ». Теоретически он может тянуться в бесконечность, но встречные звезды обламывают острие, а чем дальше от Солнца, тем чаще происходят эти опасные встречи.

Сказанное относится к большим планетам, малым астероидам и кометам, а также к пылинкам и молекулам, из которых образуются крупные небесные тела. Далекое Солнцу трудно удержать.

Вывод: существование крупных далеких трансплутонов сомнительно. И чем дальше от Солнца, тем сомнительнее. Но кометы там существуют, и многочисленные – целое облако Оорта на расстоянии в десятки тысяч а. е., где скорость убегания около 200 м/с. И при каждом прохождении посторонних небесных тел некоторые из комет, очень немногие, рушатся в центр Солнечной системы, тогда мы их и видим, а значительная часть покидает нас навсегда… если только нет добавочной причины, помогающей тяготению.

Все сказанное выше относится только к постоянным спутникам Солнца. Временные же, проходящие мимо, пронизывающие планетную систему насквозь, могут быть любого размера, больше планет, инфр, даже звезд–карликов, если они и в самом деле способны проникнуть внутрь Солнечной системы. Но об этом «если» – в следующей гипотезе.

В последние годы много пишут о гипотетическом спутнике Солнца – звезде Немезиде, которая вторгается в облако Оорта и сбрасывает оттуда кометы к Солнцу. Но и Немезида подчиняется тем же правилам. Она должна вписаться в энергетическое острие, где скорость убегания должна быть не свыше 200 м/с. Едва ли за миллиарды лет скорость этого опасного спутника не исказилась при встрече с другими звездами… Так что «если» относится и к Немезиде.

Изложенное было опубликовано в журнале «Техника – молодежи» (1985. № 8).

3. Источник тяготения. Всемирное тяготение известно людям триста лет, и триста лет неведомо, откуда оно берется. Объяснение Эйнштейна – «такова геометрия пространства» – ничего не объясняет. Геометрия эта заметно меняется при движении небесных тел, при росте их и даже при сжатии. Какие силы меняют ее? И как это геометрия снабжает энергией падающие тела? Они же работу выполняют. Энергетику тяготения великий Эйнштейн игнорировал, вынес ее за скобки. Но в далеком будущем, когда наши потомки займутся созданием искусственного тяготения, им надо будет разобраться, за счет чего создается естественное.

Знаменитое правило Оккама требует не придумывать новые причины, пока не проверены старые, ранее известные. Известно, что в массе всех тел заключена энергия Е=mс2. Не создается ли за ее счет энергия тяготения?

Чтобы проверить такое предположение, построим таблицу МГ: масса – гравитация (см. табл.4).

На ней по абсциссе отложены массы тел, а по ординате – гравитация, выраженная в скорости убегания (вторая космическая, она же скорость падения на данное небесное тело из бесконечности, она же скорость, необходимая, чтобы покинуть его навсегда: v=2gr).

На первый взгляд кажется, что это величина второстепенная, недостойная таблицы. Но ведь это же уровень полного разрушения планеты. Земля вся рассыплется, если частицы ее приобретут скорость 11,2 км/с. Итак, скорость убегания – это числовая характеристика прочности планеты, а кроме того, еще и характеристика энергии связи, выделившейся при создании такого небесного тела, аналогичная тем семи тысячам калорий, которые выделяются при сгорании углерода в кислороде Итак, дается таблица соотношения массы с энергией связи.

Почему, хотя светимость величина очень капризная, в астрономии предпочитают таблицы масса – светимость? Да потому, что светимость можно наблюдать и измерять. Массу же приходится высчитывать, а для гравитации – знать еще и размеры звезды или галактики, что тоже не поддается прямому измерению.

И вот, когда небесные тела легли на таблицу, оказалось, что у всех планет, звезд, у всех галактик энергия массы могла бы обеспечить энергию поля тяготения. Хватает с лихвой: для земного тяготения нужны всего лишь миллиардные доли массы, для звезд и галактик – миллионные. Только черные дыры использовали бы сто процентов.

Но к разговору о черных дырах мы еще вернемся чуть позже. Пока констатируем: собственная масса способна питать тяготение любого небесного тела.

4. Звездные оболочки. С помощью зигзагообразного графика МГ вроде бы получили мы ответ на заданный вопрос: масса небесных тел может быть источником энергии их тяготения. Но график оказался таким характерным, что сама форма его вызывает новые вопросы. Например, почему все планеты и звезды выстроились по прямой линии?

Тут все ясно. Косые линии графика – это линии равной плотности. Плотность планет и звезд примерно одинакова, она близка к выбранной нами единице – плотности атомов. Природа, оказывается, очень капризна насчет плотности – для твердых и жидких тел признает только три (для газообразных–то возможна любая): ядерную – примерно 1014–1016, атомную – 10°-101 и еще, кроме того, галактическую – 10–24–10–20. Другие запрещены.

С атомной плотностью неясности нет: атомные ядра окружены электронными оболочками, отрицательно заряженными, друг друга отталкивающими. Оболочка упирается в оболочку, ажурное атомное тело несжимаемо. И только когда оболочки эти обрываются или лопаются, возникают тела чудовищно–плотные, необыкновенно–плотные, фантастически–плотные – так называемые белые карлики, звезды размером с Землю. Плотность их 104–106, на полпути между атомной и ядерной.

С атомной плотностью все понятно, но непонятно с галактической. Почему не сжимаются звездные скопления, состоящие из разрозненных, притягивающих друг друга звезд?

Высказывалось предположение, что вращение удерживает их от падения в центр. Планеты же не падают на Солнце, бегая по своим орбитам. Но шаровые звездные скопления не вращаются. И не вращаются эллиптические галактики, среди них рекордно массивные.

Предложена хитрая модель качелей: каждая звезда падает в центр, проскакивает его, набирая скорость, вылетает на поверхность, затем падает назад. Но центр галактик не пустой. Там находится плазменный сгусток, ласково именуемый «ядрышком». И на пути к нему – громадные газовые облака; они затормозили бы движение падающих звезд.

А может быть, и у звезд, как у атомов, есть оболочки, неведомые, невидимые и непроницаемые. Упираясь друг в друга, они не позволяют звездам сталкиваться, не позволяют галактике сжиматься. И лишь когда сверхгравитация продавливает оболочки, когда они срываются, подобно атомным при сверхвысоком давлении в недрах Земли или Солнца, тогда звезды падают на звезды, возникают тела сверхкритической массы, может произойти космический взрыв.

Никогда никто не писал о звездных оболочках. Но вот доводы в их пользу: ядра галактик вращаются как твердые тела, эллиптические галактики и шаровые скопления не вращаются вовсе. Гравитация должна бы сдавить их, но нет, звезды там не сближаются. Плотность звездных скоплений не выше 10–20. Галактики как бы тверды. Почему? Оболочки упираются друг в друга?


    Ваша оценка произведения:

Популярные книги за неделю