355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Флорентий Рабиза » Техника твоими руками » Текст книги (страница 4)
Техника твоими руками
  • Текст добавлен: 27 мая 2017, 11:00

Текст книги "Техника твоими руками"


Автор книги: Флорентий Рабиза



сообщить о нарушении

Текущая страница: 4 (всего у книги 8 страниц)

ЕЩЕ ОДНА ВРЕДНАЯ И ПОЛЕЗНАЯ СИЛА

При рассматривании трения и колебательных движений мы видели, что одно и то же явление может и причинять огромный вред и приносить большую пользу. Вот почему необходимо хорошо изучить эти явления и уметь правильно их использовать.

Сейчас мы поговорим еще об одной силе, и вредной и полезной, – о так называемой центробежной силе. Если привязать к веревке какой-нибудь небольшой груз, например гайку, и начать ее вращать, то гайка натянет веревку и будет описывать правильную окружность. Чем быстрее вращается гайка, тем сильнее будет натягиваться веревка. Гайка как бы стремится улететь по прямой линии, перпендикулярной к веревке, но веревка ее не пускает и заставляет все время описывать окружность. Сила, которая натягивает веревку, называется центробежной.

Опыт можно разнообразить. Налейте в маленькое ведерко воду до краев и, сначала осторожно раскачав его взад и вперед, начинайте быстро вращать вокруг своего плеча. Вода, прижатая центробежной силой ко дну ведерка, не будет выливаться даже тогда, когда ведерко находится кверху дном.

Нельзя пренебрегать центробежной силой при конструировании машин.

Сколько бывало случаев, когда огромные маховики при быстром вращении разрывались на части. Куски металла разлетались под влиянием центробежной силы в разные стороны, разрушая все на своем пути. А происходило это только потому, что инженеры или были неопытны, или забывали о прочности. При расчетах не учитывали возникновения центробежной силы, которая, как известно, зависит от скорости вращения. Чем больше скорость вращения, тем больше и сила, которая стремится в данном случае разорвать маховик.

Прежде чем перейти к опытам с центробежной силой, сделайте несложный прибор. Возьмите тяжелый диск с отверстием посередине (можно его сделать из конфорки от плиты, зажатой между фанерными кружками), проденьте в отверстие сложенную вдвое веревку, завязав ее узлом, чтобы диск висел, опираясь на этот узел. Верхние концы веревки привяжите к какой-нибудь перекладине. Затем вставьте вверху между веревками круглую палочку и вращайте диск в одну сторону – веревки скрутятся. Если теперь вы отпустите диск и будете с силой нажимать на вставленную между веревками палочку, то диск придет в быстрое вращение.

Проделайте следующие опыты, основанные на действии центробежной силы.

Подвесьте под диском на небольшой веревке не очень тяжелое кольцо. При быстром вращении диска кольцо, также вращаясь, займет горизонтальное положение и ось вращения будет проходить через его центр. Кольцо как бы само выбрало себе незримую свободную ось и «удобно» расположилось вокруг нее. Для успешного проведения этого опыта надо подыскать подходящее по размеру и массе кольцо и подобрать подходящую скорость его вращения.

Затем вместо кольца подвесьте к диску какой-нибудь продолговатый предмет, например отвертку. Отвертка, вращаясь, расположится горизонтально.

Укрепите на диске бумажный круг и, приведя диск в не очень быстрое вращение, капните около его центра каплю чернил.

Капля нарисует на поверхности диска кривую полоску – результат сложного движения капли по кругу вместе с диском и движения от центра к краю вследствие действия центробежной силы.

Центробежная сила широко применяется в промышленности. Например, ее используют при литье труб. Если длинную цилиндрическую форму быстро вращать вокруг ее продольной оси и одновременно лить в нее расплавленный металл, то он под действием центробежной силы равномерно распределится по стенке формы. Металл застынет, и труба готова.

Издавна для регулирования скорости паровых машин пользовались центробежными регуляторами.

Центробежная сила применяется в различных центрифугах – аппаратах с быстро вращающимся цилиндром– для отделения тяжелых частиц жидкости от легких. Например, молочный сепаратор отделяет сливки от молока. Центрифуги высушивают белье. Вода, как более тяжелая по удельному весу, чем ткань белья, при быстром вращении центрифуги отжимается к стенкам и через отверстия в них выходит наружу. Центрифуги применяются для очистки сахара при его производстве. Всех применений центробежной силы и не перечтешь.

В заключение проделайте опыт, иллюстрирующий принцип работы молочного сепаратора. Возьмите бутылку из бесцветного стекла и налейте в нее до половины воды. Привяжите к горлышку две веревки, расположив их по обе его стороны.

Закрутите веревки, вращая бутылку вокруг ее вертикальной оси. Всыпьте в горлышко щепотку измельченной пробки.

Когда бутылка начнет вращаться на раскручивающихся веревках (а для быстроты вращения можно давить палочкой сверху на место скрутки), мы увидим следующую картину: кусочки пробки собрались в центре поверхности воды. Вода, как более тяжелая, чем пробка, отжимается центробежной силой к стенкам бутылки, а пробка остается посередине.

ВОЛЧОК В ТЕХНИКЕ

В технике широко применяются маховики.

Когда мы имеем дело с паровой машиной или двигателем внутреннего сгорания, маховик совершенно необходим. Возвратно-поступательное движение поршня нужно превратить в равномерное вращение вала. Это делает маховик. Когда его вращают, он запасает (аккумулирует) энергию, а когда сила, вращающая маховик, перестает действовать, он отдает запасенную энергию. Таким образом, маховик сглаживает все толчки, и машина работает равномерно.

Для турбин маховик не нужен – сама турбина является маховиком.

Кинетическая энергия, энергия движения маховика бывает очень большой, она зависит от его размеров и скорости вращения. Даже такой небольшой, легкий, ажурный маховик, как колесо перевернутого велосипеда, если оно сильно раскручено, обладает большой кинетической энергией, и его трудно остановить сразу. Но каждый маховик является еще и волчком. А волчок – это очень интересный прибор, и о нем стоит поговорить подробнее. Вращающийся волчок обладает удивительной устойчивостью.

Проделайте такой опыт. Выньте из вилки велосипеда переднее колесо вместе с осью. Держите ось за концы и попросите кого-нибудь сильно раскрутить колесо. Попробуйте теперь повернуть ось в сторону. Колесо вместе с осью будет сопротивляться вашему намерению изменить направление его оси.

Сделайте волчок из картонного, деревянного или жестяного кружка и спички в качестве оси. Запустите его на столе и наблюдайте за его поведением. Почему волчок не падает? Здесь проявляется закон инерции вращающегося тела. Если бы отсутствовало трение о воздух и стол, то поставленный прямо волчок вращался бы вечно. Когда же волчок вращается наклонно, на него действует, кроме силы трения о стол и трения о воздух, также и сила земного тяготения, которая стремится его опрокинуть.

Ось волчка в результате этого совершает конусообразные движения.

Устойчивость волчка широко используется в технике. Например, гирокомпас, основанный на принципе волчка, гораздо надежнее магнитного, зависящего от окружающих его стальных предметов.

Проделайте опыт, который покажет, как ось вращающегося волчка стремится сохранить свое направление.

Возьмите картонный или жестяной кружок диаметром 15–20 сантиметров, пробейте в его центре маленькое отверстие и проденьте в него шпагат. Завяжите на продетом конце узелок. Другой конец закрепите так, чтобы можно было качать кружок на шпагате, как маятник. Если раскачать его, то кружок будет болтаться как попало.

А теперь проделайте следующее: прежде чем качнуть маятник, раскрутите кружок вокруг бечевки, используя ее как ось вращения. Теперь при качании маятника с вращающимся вокруг своей оси кружком вы увидите совсем другую картину. Кружок будет перемещаться в пространстве, сохраняя постоянный угол наклона к горизонту. Его незримая ось вращения все время сохраняет постоянство своего направления, хотя сам шпагат и изменяет свое положение по отношению к кружку.

Еще один опыт наглядно показывает, как быстрое вращение какого-нибудь тела вокруг своей оси позволяет этому телу сохранять устойчивость в полете. Кто из вас не бросал камешки, чтобы они по нескольку раз отскакивали от воды. Эту игру называют «блинчики». Когда вы берете в руку плоский, желательно округленной формы, камешек и бросаете его наклонно к поверхности пруда или реки, чтобы он несколько раз отскочил от воды, то во время броска указательным пальцем вы ему сообщаете вращение, сами не подозревая об этом.

Теперь уже летит не просто камешек, а волчок.

Он не кувыркается, летит строго по заданному направлению. И когда он своей плоскостью ударяется о воду, то подскакивает, летит дальше, опять ударяется и снова подскакивает, и так далее, пока не исчерпается запас энергии, который вы сообщили ему своей рукой.

Свойство оси вращающегося волчка сохранять постоянство своего направления широко используется в так называемых автопилотах, применяемых в авиации. Летчик устанавливает определенный режим полета, и автопилот, основной частью которого является вращающийся волчок, строго следит за выполнением этого режима. Малейшие отклонения от курса он сейчас же устраняет с помощью рулей.

ПОЧЕМУ КРЫШИ ИНОГДА ЛЕТАЮТ

Для того чтобы закончить рассказ о явлениях природы, которые порой причиняют большие неприятности, но, будучи хорошо изучены, применяются на пользу человеку, расскажем еще об одном явлении.

Ветер подхватывает сухие листья и несет их высоко над землей. А когда бывает сильная буря, ветер даже срывает крыши с домов и поднимает в воздух такие предметы, которые никогда для летания не предназначались.

Неприятности бывают и на воде. Многие из вас слышали или читали о жалобах речных лоцманов на коварные мели, которые почему-то так и «притягивают» к себе пароходы. Происходит это даже в тихую погоду, когда река течет спокойно.

И движение струй воздуха, и движение струй воды имеют много общего.

Физик Даниил Бернулли, член Петербургской академии наук, вывел знаменитое уравнение, из которого видно, что если скорость потока жидкости или газа на каком-либо участке возрастает, то на этом участке давление уменьшается, если сравнивать его с давлением окружающей среды.

Мы проделаем серию опытов и убедимся, что это так. Нам станет понятно, почему крыша «подсосалась» к мчащимся с огромной скоростью струям воздуха и почему корабль вдруг «потянуло» на мель.

Возьмите две бумажные полоски, поместите их на расстоянии 1–2 сантиметров друг от друга и подуйте между ними. Полоски бумаги сблизятся.

Подуйте в трубку с загнутым кверху концом. Легкий шарик будет «танцевать» над кончиком трубки.

Возьмите пульверизатор и дуйте в его короткую трубку. Вода или одеколон поднимутся по вертикальной трубке вверх и в виде мелких брызг разлетятся веером.

И, наконец, сделайте небольшой прибор, состоящий из картонного кружка с отверстием посередине и прикрепленной к нему воском трубки.

Подуйте в трубку. Бумажка, приложенная к картонному кружку, не только не отскочит, но, наоборот, прижмется к нему еще сильнее.

Во всех этих опытах в струе давление по сравнению с окружающим воздухом понижалось. А наружное давление сближало бумажные полоски, удерживало шарик на воздушной струе, поднимало воду или одеколон в пульверизаторе, прижимало бумажку к картонному диску.

Уравнение Бернулли объясняет и полет самолета. Если плохо укрепленная крыша дома может подняться в воздух, когда над ней мчится мощный воздушный поток, то вполне естественно было заставить крылья самолета перемещаться по отношению к неподвижному воздуху. При этом возникает сила, которая поднимает и крылья и корпус самолета с пассажирами и грузом.

А теперь рассмотрим, почему мель «притягивает» пароход на реке. В течении, которое проходит между пароходом и мелью, давление понижено, и поэтому наружное давление, действуя на пароход, направляет его на мель.

ДЛЯ ИЗМЕРЕНИЙ, ИССЛЕДОВАНИЙ, ПРОВЕРКИ

При заводах, фабриках, в научно-исследовательских институтах всегда есть лаборатории. В них тщательно изучают и проверяют продукцию, которую выпускает или собирается выпускать предприятие. Например, на электроламповом заводе проверяют, как долго может гореть лампочка, как она переносит сотрясения, перегрузки тока, сколько она потребляет электрической энергии. Все это нужно знать, чтобы выпускать лампочки еще лучшего качества.

Когда повар варит суп, он пробует, достаточно ли в нем соли, хорош ли суп на вкус, не надо ли в него еще чего-либо положить.

Нечто подобное происходит и при варке стали. На предприятиях, где варят сталь, существуют так называемые экспресс-лаборатории, которые по взятым пробам быстро определяют, правилен ли состав стали, не надо ли в нее добавить, пока не поздно, те вещества, которые делают ее тверже или, наоборот, мягче, в зависимости от будущего назначения.

Заводские лаборатории следят за тем, чтобы устранить все недостатки, какие могут быть обнаружены в производимых вещах.

Мы познакомимся с приборами, которые служат для различных измерений, необходимых в процессе производства. Познакомимся также и с некоторыми приборами, нужными для изучения уже готовых изделий.

Конечно, познакомиться сразу со всем, что есть на производстве, невозможно, поэтому рассмотрим только некоторые приборы, сделаем их модели и уясним принцип их работы.

Измерение размеров

Когда рабочий обрабатывает какую-нибудь деталь, ему обязательно надо ее измерять; если это круглая деталь, то, кроме других размеров, нужно знать диаметр. Ведь деталь должна точно соответствовать чертежу.

Есть несколько способов измерения круглых деталей в зависимости от их размеров. Мы рассмотрим только некоторые приборы. Они могут пригодиться вам при изготовлении моделей и в проведении опытов.

Для измерения больших диаметров существует прибор, называемый кронциркулем. Кронциркули применяют разных размеров в зависимости от измеряемых деталей. Это металлический циркуль с кривыми ножками. Его легко сделать из толстой 2—3-миллиметровой проволоки. Надо изогнуть два куска проволоки и заострить концы. Другие концы, которые должны быть соединены вместе, нужно с помощью плоскогубцев и тисков навернуть на толстый гвоздь. Затем надо обрезать ножовкой или напильником лишнюю часть гвоздя и расклепать его оставшуюся часть. Обе половинки должны туго раздвигаться, а острые концы находиться друг против друга. В сжатом состоянии концы кронциркуля должны соприкасаться. Измерив деталь кронциркулем и приложив его к линейке, легко узнать результат.

Сравнительно небольшие детали измеряются штангенциркулем. У него ножки прямые и расположены параллельно, прямо на металлической линейке. Одна ножка закреплена неподвижно на конце, а другая передвигается вдоль линейки и сразу показывает размер измеряемой детали.

Для измерения очень тонких деталей, имеющих доли миллиметра, применяют микрометр – винт с круговой шкалой. Изготовить его довольно сложно. Если вам понадобится измерить диаметр тонкой проволоки, то сделать это нужно так. Намотайте проволоку на круглый карандаш плотно – виток к витку. Затем измерьте расстояние между первым витком и последним, разделите эту величину на число витков, и вы получите диаметр проволоки. Чем больше будет витков и чем плотнее намотана проволока, тем точнее будет результат измерения.

Измерение веса

Лабораторные весы отличаются высокой точностью. Это коромысловые весы: на одну чашечку кладется гиря, на другую – взвешиваемый предмет. Сделать самим такие весы нетрудно, нужно только позаботиться о том, чтобы коромысло опиралось на какое-нибудь острие, например острую грань треугольной призмочки, выточенной напильником из кусочка стали. Гирьки надо сделать из кусочков жести, обрезая их ножницами и подгоняя вес по эталону, то есть настоящей гирьке, взятой как образец.

Измерение температуры

Температуру обычно измеряют термометром, который наверняка есть и у вас дома. До изучения физики вы уже знали, что при нагревании ртуть расширяется и показывает измеряемую температуру. Термометр хорошо выполняет свои обязанности, когда измеряется температура воздуха, воды, тела.

А что делать, если нужно измерить температуру в тысячу градусов? Обыкновенный, стеклянный термометр для этого не годится – он расплавится.

Для измерения высоких температур применяют специальные термометры. Существуют, например, термопары. Они основаны на следующем принципе. Если взять две пластинки из разнородных металлов, например медную и железную, концы их спаять, то при нагреве этого спая и охлаждении свободных концов по пластинкам потечет электрический ток. Чем выше температура нагрева спая, тем большей величины идет ток. На шкале прибора, измеряющего ток, проходящий по пластинкам, нанесены деления в градусах. Термопара может измерять очень высокую температуру.

Но бывают такие температуры, когда и термопара не выдержит, может расплавиться, несмотря на защитный кожух из тугоплавких материалов. Тогда применяют оптический пирометр – термометр для измерения температуры раскаленных тел. Чтобы понять, как он работает, проделайте такой опыт.

Возьмите лист белой бумаги и на его середине сделайте масляное пятно: потрите бумагу пальцем, смазанным маслом. Если этот листок осветить сзади свечой, вы увидите на темном фоне светлое пятно. Если же вы поставите свечу перед листком, то увидите на светлом фоне темное пятно. Однако можно осветить листок сзади и спереди так, что никакого пятна не будет видно – листок будет казаться совершенно чистым.

Теперь представьте себе, что вы смотрите на раскаленную металлическую балку через трубку, в которую вставлена маленькая электрическая лампочка.

Специальное устройство (небольшой реостат) позволяет регулировать накал лампочки. Вы увидите на фоне раскаленной балки яркий волосок лампочки.

Если накал лампочки уменьшить, то волосок, хотя он и светится, будет выделяться темным силуэтом на фоне раскаленного металла.

Изменяя степень накала волоска лампочки, можно добиться, что он не будет виден. Это будет соответствовать такому положению, когда фон и волосок светятся одинаково. А каждой определенной температуре нагретого тела соответствует и определенная яркость свечения. Чем сильнее нагрет металл, тем ярче он светится.

Если мы знаем температуру нити лампочки при разной степени ее накала, то легко можем узнать и температуру фона. Для этого нужно так отрегулировать накал нити, чтобы она перестала быть видимой, то есть слилась с раскаленным фоном. Это значит, что раскаленный металл имеет ту же температуру, что и нить. Число градусов определяется по шкале, совмещенной с устройством регулировки накала лампочки.

Измерение давления

Давление жидкостей и газов измеряется манометрами. Они бывают жидкостные и механические.

Чтобы сделать модель жидкостного манометра, возьмите небольшую стеклянную трубку и, осторожно нагревая ее среднюю часть над пламенем свечи, медленно согните в виде латинской буквы U. При этом одна сторона должна получиться немного длиннее другой.

Затем укрепите трубку на вертикальной дощечке при помощи жестяных скобок. Налейте в нее подкрашенной воды и на короткое колено наденьте резиновую трубку. Вдоль длинного колена на дощечке нанесите произвольные деления. В настоящих манометрах деления соответствуют килограммам, приходящимся на поверхность в 1 кв. сантиметр. Давление в 1 килограмм на 1 кв. сантиметр соответствует 1 атмосфере.

Модель манометра готова. Если вы подуете в резиновую трубку (но не очень сильно), то увидите, что в другом колене вода поднимается. Чем больше давление воздуха, тем выше поднимается вода.

Модель механического манометра можно изготовить из небольшой воронки. Натяните на воронку (желательно стеклянную или пластмассовую) тонкую резину от старой волейбольной камеры, резиновой перчатки или воздушного шарика и укрепите ее на подставке. На суженную часть воронки наденьте длинную резиновую трубку с маленькой грушей, укрепленной на конце. Место соединения груши и трубки нужно обмотать изоляционной лентой, чтобы не проходил воздух.

Над резиновой перепонкой укрепите на тонкой оси рычаг с шариком на коротком конце. Шарик должен перетягивать свой конец и касаться середины натянутой резины. Другой, длинный конец рычага сделайте в виде стрелки. Он должен передвигаться вдоль дугообразной шкалы с делениями. Деления тоже будут произвольные. Когда манометр никакого давления не показывает, стрелка должна стоять на нуле.

Если вы нажмете на грушу, давление воздуха в ней возрастет, резиновая перепонка приподнимется, и стрелка пойдет по шкале вниз. Когда вы освободите грушу, стрелка вернется на свое прежнее место – к нулю.

Этот манометр в дальнейшем нам еще понадобится: мы из него сделаем пневматическое реле.


    Ваша оценка произведения:

Популярные книги за неделю