412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Феликс Зигель » Искусственный спутник Земли » Текст книги (страница 2)
Искусственный спутник Земли
  • Текст добавлен: 26 июня 2025, 12:20

Текст книги "Искусственный спутник Земли"


Автор книги: Феликс Зигель



сообщить о нарушении

Текущая страница: 2 (всего у книги 6 страниц)

Рис. 8. Принцип действия ракеты.

Подчеркиваем, что воздух мешает полету ракеты. Ракета вовсе не «отталкивается газами от воздуха». Она движется только за счет внутренних сил – сил отдачи. Кстати сказать, «отталкиваться газами от воздуха» примерно так же трудно, как «грести жидким веслом».

Полет ракеты есть проявление одного из законов природы – закона сохранения количества движения. Известно, что для характеристики различных механических движений физики употребляют величину, равную произведению массы тела m на его скорость υ. Эта величина и называется количеством движения.

Для взаимодействующих тел, на которые внешние силы не действуют[5], верен закон:

общее (суммарное) количество движения тел системы остается постоянным.

Действие этого закона можно наблюдать повсюду.

Вот, например, в стоящий на биллиарде шар ударяется другой шар. Первый начинает двигаться вперед, а второй остается на месте. Это означает, что количество движения первого шара перешло ко второму, но общее количество движения двух шаров осталось неизменным.

А вот другой пример, более близкий к межпланетным перелетам. Из пушки с массой М вылетает со скоростью υ снаряд, масса которого m. Найдем, с какой скоростью u (вследствие отдачи) откатится при выстреле орудие.

По закону сохранения количества движения, общее количество движения системы «снаряд–пушка» остается постоянным. До выстрела оно равнялось нулю – и пушка и снаряд находились в покое. После выстрела общее, «суммарное», количество движения равно +Мu.

Отсюда следует, что +Mu=0, т. е. искомая скорость .

Знак минус показывает, что скорость отдачи (отката орудия) направлена в сторону, противоположную движения снаряда.

Рассмотренная задача применима в известной степени и к ракетам. Газы, вылетающие из ракеты, уносят с собой некоторое количество движения и поэтому ракета получает такое же количество движения, но направленное в противоположную сторону.

Однако полет ракеты более сложен, чем движение снаряда. Масса последнего остается постоянной, у ракеты же, непрерывно выбрасывающей из себя газы, масса меняется. Это осложняет расчеты, и по приведенной выше формуле вычислить конечную скорость ракеты (т. е. скорость, которую она приобретает, израсходовав все свое топливо) нельзя.

Теория полета ракеты в межпланетном пространстве была разработана К. Э. Циолковским. Им, в частности, выведена формула, которую можно считать основной формулой астронавтики.

Предположим, что первоначальная масса ракеты (вместе с топливом) М0, ее масса без топлива М, скорость вытекания газов из ракеты c, а конечная скорость, которую приобретает ракета, υ. Тогда, как доказал Циолковский, перечисленные величины связаны следующей формулой:

где е есть иррациональное число, приближенно равное 2,718.

Разберемся прежде всего в том, от каких причин зависит конечная скорость ракеты υ и от чего она не зависит.

Формула Циолковского утверждает, что в среде без тяжести конечная скорость ракеты зависит только от отношения первоначальной массы ракеты к конечной ()и от скорости вытекания газов с. Значит, ни размеры ракеты, ни порядок или продолжительность действия ракетного двигателя на конечную скорость ракеты не влияют. По словам Циолковского: «Происходит ли горение равномерно или нет, длится ли оно секунды или тысячелетия – это все равно: даже перерывы ничего не значат».

И огромная ракета, весящая тысячи тонн, и маленькая ракета весом в сотни граммов могут приобрести одинаковые скорости, лишь бы у них было одинаково отношение и обе ракеты работали бы на одинаковом топливе (т. е. если у них скорость с была бы одинакова).

Ракетный двигатель действует и в безвоздушном пространстве, а потому, как уже отмечалось, воздух для полета ракеты не нужен. Однако для того, чтобы ракета стала межпланетным кораблем, ей необходимо развить «скорость отрыва от Земли», равную 11,2 . Тогда, набрав эту скорость, ракета полетит дальше уже без затраты топлива – как брошенный камень или выстреленный снаряд. Следовательно, разогнавшись до нужной скорости, ракета затем бóльшую часть полета совершит «на холостом ходу», с выключенным двигателем. Только таким путем при современных видах топлива и можно достичь небесных тел.

На рисунке 9 изображена схема межпланетного корабля по проекту Циолковского. Это – огромная ракета, в передней части которой помещаются пассажиры, приборы, аппараты для дыхания, запасы продовольствия. Остальная часть ракеты занята топливными баками и ракетным двигателем.

Рис. 9. Схема космической ракеты Циолковского.

Циолковский предлагал использовать в качестве топлива жидкие вещества, занимающие сравнительно небольшой объем. В его проекте жидкий углеводород, игравший роль горючего, соединялся с окислителем – жидким кислородом. Возникающая при сжигании смеси двух веществ раскаленная газовая струя вытекает с большой скоростью из сопла ракеты и создает тем самым нужную реактивную тягу.

Ракета Циолковского – управляемый космический корабль. Регулируя скорость вытекания газов, можно изменять скорость полета ракеты. Если же в струе выходящих газов установить плоские рули из графита, то отражение этими рулями газовой струи приведет к изменению направления полета ракеты.

Таково устройство ракеты Циолковского. Способен ли, однако, такой космический корабль развить нужную скорость? Артиллерийский снаряд не может лететь быстрее, чем расширяются газы в стволе орудия. Иначе ведет себя ракета.

Теоретически говоря, ее скорость может быть сколь угодно большой. Увеличивая неограниченно отношение и принимая скорость с постоянной, мы можем сделать скорость υ любой. Так, например, считая с равной 4 , мы, при отношении =100, получим, по формуле Циолковского, υ примерно равным 8,5 , а увеличив отношение до 10 000, найдем, что υ возросло до 36,8 .

Практически же дело обстоит сложнее. В приведенных примерах вес ракеты без топлива составляет 0,01 или даже 0,0001 долю ее веса с топливом. Это означает, что полезному грузу, в частности пассажирам, в таком космическом корабле будет отведена лишь ничтожная его часть.

Если вспомнить, что в цистерне с керосином ее содержимое всего только в 13 раз тяжелее тары и даже в пчелиной ячейке тонкая восковая оболочка в 60 раз легче меда, то нереальность приведенных примеров становится очевидной.

В современных ракетных двигателях скорости истечения газовых струй достигают 2500 метров в секунду. Если принять, что с=2500 , то для достижения «скорости отрыва» необходимо, чтобы отношение для космического корабля было равным 90, т. е. чтобы на долю пассажиров пришлась всего 1/90 часть веса ракеты. Ясно, что и такой корабль неосуществим.

Есть ли выход из этих затруднений, достижимы ли вообще космические скорости?

Одно из возможных решений – увеличение скорости вытекания газов из ракеты (с). Для этого необходимо увеличить теплотворную способность топлива, его калорийность, т. е. количество теплоты, выделяющееся при сгорании 1 кг топлива.

В настоящее время в реактивных двигателях в качестве горючего употребляются почти исключительно углеводороды и спирты, а в качестве окислителя используется кислород воздуха. Однако скорости истечения в таких двигателях еще сравнительно невелики. Так, например, в двигателях реактивных самолетов, работающих на бензине, скорость истечения продуктов горения не превышает 700–800 . Даже если в качестве окислителя применять жидкий кислород, то и тогда скорость истечения не превысит 2500 . Это – рекорд, который пока достигнут в данном вопросе.

В недалеком будущем удастся, по-видимому, использовать более калорийные топлива и тем самым получить большие скорости истечения.

Очень калорийным горючим является жидкий водород. При сжигании в кислороде он может обеспечить скорость истечения до 3,75 . К сожалению, водород обладает большим недостатком – его удельный вес очень мал. Так как жидкий водород в 15 раз легче воды, то для размещения этого топлива на космическом корабле потребуются огромные топливные баки, что сильно утяжелит ракету и, следовательно, затруднит ее полет. Вот почему жидкий водород вряд ли будет использован при межпланетных перелетах.

Гораздо выгоднее в этом отношении некоторые химические соединения водорода. Многого можно ожидать от металлических горючих, например, порошков алюминия, магния и других. При соединении с кислородом они выделяют весьма большие количества теплоты.

Есть окислитель еще более активный, чем даже сам кислород, – это фтор, химический элемент из так называемой группы галогенов. Любопытно, что фтор легко окисляет все вещества, включая кислород!

Фтор очень ядовит – в этом одно из препятствий к его использованию в межпланетных кораблях. И все-таки надо полагать, что фтористые соединения, в частности фтористый кислород, будут использованы как окислители. Найдет себе применение и озон, по своим окислительным свойствам также превосходящий кислород.

Подсчеты показывают, что применение наилучших из возможных химических топлив способно удвоить существующие скорости истечения, доведя их до 4–4,5 . Таков предел возможностей химического топлива.

Будем считать, что с=4,5 . Тогда по формуле Циолковского легко получить, что для скорости отрыва отношение должно быть близко к 12. Как видите, выигрыш получился значительный, хотя конструктивные затруднения по существу сохранились.

В дальнейшем мы рассмотрим некоторые принципиально новые возможности решения проблемы, например, использование атомной энергии для реактивных двигателей, а сейчас остановимся на одном замечательном изобретении Циолковского, которое позволяет иным путем приблизиться к космическим скоростям.

Речь пойдет о так называемых составных ракетах.

Когда в прошлом полярные исследователи стремились достичь полюса, они применяли метод, несколько напоминающий идею составных ракет. В путь отправлялась большая группа путешественников, везущая с собой значительные запасы продовольствия. На определенных расстояниях друг от друга организовывались склады с таким количеством продовольствия, которое было необходимо для обратного возвращения. С каждой стоянки часть экспедиции возвращалась назад и лишь оставшаяся в конце концов небольшая группа исследователей штурмовала полюс. Так, например, были организованы антарктические экспедиции Амундсена и Роберта Скотта.

Представим себе теперь составную ракету Циолковского, состоящую из двух или нескольких звеньев, т. е. ракет, как бы вложенных друг в друга (рис. 10).

Рис. 10. Составная трехступенчатая ракета.

Рассмотрим, как летит двухступенчатая ракета.

При взлете с Земли действует только первая, «земная» ракета. Когда ее топливо израсходуется, земная ракета автоматически отделяется от второй «космической» ракеты, двигатель которой как раз в этот момент и начинает свою работу. «Земная» ракета спускается на Землю, а «космическая» продолжает полет, набирая нужную скорость.

Нетрудно сообразить, что составная ракета может достичь значительно бóльших скоростей, чем обычная. В самом деле, конечная скорость ракеты по формуле Циолковского зависит от отношения масс [6]. Представим себе две ракеты – одну обычную, «простую», а другую – составную. Пусть корпус первой из них весит 500 кГ и внутри ее находится 1500 кГ топлива. Это значит, что для простой ракеты отношение равно 2000:500=4.

Допустим, что составная ракета состоит из двух одинаковых ракет весом до 250 кГ каждая. Будем считать, что в каждой из ракет содержится 750 кГ топлива.

Таким образом, общий вес составной ракеты и общее количество заключенного в ней топлива таково же, что и у простой ракеты.

Найдем теперь отношение для составной ракеты. Ее первоначальный вес 2000 кГ, но зато конечный вес равен весу только второй «космической» ракеты, так как «земная» ракета после израсходования топлива не будет принимать участия в дальнейшем полете. Следовательно, для составной ракеты отношение равно 2000:250 = 8, т. е. вдвое больше, чем у простой ракеты.

Рис. 11. Взлет двухступенчатой ракеты.

Наш расчет не вполне точен, и более строгие вычисления, учитывающие ряд обстоятельств, в частности притяжение Земли, приводят к несколько меньшим результатам. Несмотря на это, выгода составных ракет очевидна. При межпланетных перелетах они найдут себе широкое применение.

Можно представить себе составную ракету, состоящую не из двух, а из большего числа звеньев. Проекты подобных «ракетных поездов» были рассмотрены Циолковским. Не следует думать, что с увеличением числа звеньев конечная скорость последней, «космической», ракеты быстро возрастает. Наоборот, по расчетам Циолковского этот рост происходит так медленно, что применение составных ракет из большого числа звеньев во многих случаях невыгодно. Конструировать такие ракетные поезда трудно, а выигрыш в скорости получается незначительным. Наиболее выгодными оказываются двух и трехступенчатые ракеты.

Увеличение скорости истечения газов и применение составных ракет – таковы два возможных пути к достижению космических скоростей. Что же практически сделано в этом вопросе, какие скорости уже достигнуты в наши дни?

При перемещении по земной поверхности скорости движения, естественно, не могут быть очень большими – этому мешают сложность рельефа, отсутствие приемлемых дорог и другие препятствия. Для больших скоростей нужны большие просторы и, если возможно, отсутствие среды, сопротивляющейся движению. Вот почему наибольшие скорости движения достигнуты в авиации и эти скорости будут превзойдены при межпланетных перелетах.

История авиации за последние полвека есть история борьбы за скорость, высоту и продолжительность полета.

В начале века, когда самолеты напоминали летающие этажерки, полет на сотни метров считался мировым рекордом. В 1906 году максимальная скорость самолета лишь слегка превышала 40 , и хороший велогонщик мог обогнать самолет. Взлет на высоту в сотню метров казался настолько головокружительным, что о нем сообщалось во всех крупнейших газетах мира.

Впрочем, авиация развивалась очень быстро. Уже через шесть лет, в 1912 году рекордная скорость самолетов возросла до 174 , а к 1921 году достигла 330 . С усовершенствованием самолетов увеличивались не только скорость, но и высота и дальность полетов. Если первые из самолетов не рисковали взлетать выше 100 метров, то уже в 1920 году самолет поднял человека на высоту 4 километра. В этом же году рекордная дальность полета составляла уже около 2000 км.

В борьбе за увеличение скорости авиаконструкторы натолкнулись на серьезное препятствие. Чем больше скорость самолета, тем мощнее должен быть и его двигатель. Но более мощные двигатели оказываются и более тяжелыми, так что на подъем самого такого двигателя потребуется дополнительная энергия. Вот почему обычный поршневой авиационный двигатель не позволяет намного увеличить скорость самолета. У него есть определенный предел, «потолок», который был уже достигнут в предвоенные годы.

К этому времени (1940 год) рекордная скорость самолета возросла до 755 , а максимальная дальность полета составила четверть длины окружности земного экватора, т. е. 10 000 км. Был достигнут и «потолок» высоты – 17 километров над уровнем моря. Стало очевидным, что «выжать» из поршневых двигателей существенно лучшие результаты не удастся.

Новый этап в борьбе человека за скорость наступил тогда, когда на самолетах были установлены новые, реактивные двигатели. Исполнились пророческие слова К. Э. Циолковского, писавшего, что «за эрой аэропланов винтовых должна следовать эра аэропланов реактивных».

Реактивные двигатели принципиально отличаются от поршневых двигателей внутреннего сгорания. Полезная мощность реактивного двигателя оказывается прямо пропорциональной скорости полета. Следовательно, реактивные двигатели есть двигатели больших скоростей. Применять их в наземном транспорте невыгодно – при малых скоростях передвижения они развивают незначительную мощность, но потребляют при этом большое количество топлива. Зато в авиации и при межпланетных перелетах их значение исключительно велико.

Первые полеты советских реактивных самолетов были осуществлены в 1940–1942 годах. Уже к 1950 году скорость полета серийных реактивных самолетов возросла до 1100 , т. е. вплотную подошла к скорости звука.

Движение в воздухе со сверхзвуковой скоростью осложняется рядом новых физических явлений. Впереди летящего самолета возникает сгущение воздуха, представляющее так называемую ударную воздушную волну. На преодоление этого «звукового барьера» были направлены усилия ученых и инженеров различных стран. И здесь природа отступила перед человеком. «Звуковой барьер» был преодолен. В наши дни реактивные самолеты летают гораздо быстрее звука.

Рис. 12. Современный сверхскоростной реактивный самолет.

В декабре 1953 года американский реактивный самолет, летевший на высоте 21 км, развил скорость 2615 , что почти в два с половиной раза превышает скорость звука на той же высоте!

Несколько раньше другой американский летчик в специальном ракетном самолете сумел подняться до высоты 25,4 километра. Таков «потолок» высоты, достигнутый человеком в наши дни.

Приведенные данные относятся к 1953 году. Надо полагать, что с той поры реактивная авиация достигла новых успехов, сообщения о которых будут в свое время опубликованы.

Двигатели современных реактивных самолетов бывают двух основных типов – воздушно-реактивные (ВРД) и жидкостно-ракетные (ЖРД). Первые из них используют кислород атмосферы и потому для полета за ее пределами непригодны. Что же касается жидкостно-ракетных двигателей, то они мало чем отличаются с принципиальной стороны от двигателей будущих космических кораблей.

На рисунке 13 изображена схема простейшего прямоточного ВРД. Он представляет собой металлическую трубу, сужающуюся на концах. Когда самолет с таким двигателем летит в атмосфере, воздух попадает в двигатель через переднее отверстие трубы. В поступивший воздух впрыскивается через форсунки топливо, которое сгорает, соединяясь с кислородом воздуха. Образовавшаяся струя раскаленных газов вырывается через заднее отверстие двигателя. Разница в скоростях втекающего холодного воздуха и выходящих горячих газов создает реактивную тягу, которая и приводит в движение самолет.

Рис. 13. Схема действия прямоточного реактивного двигателя.

Таков же принцип устройства и так называемых турбореактивных двигателей, широко применяемых в современных реактивных самолетах. В этих двигателях для большей тяги воздух предварительно сжимается с помощью турбокомпрессора, а затем все происходит так же, как и в прямоточных двигателях.

Рис. 14. Турбореактивный двигатель.

Как уже отмечалось, ВРД нуждаются в кислороде воздуха и потому для полета в безвоздушном пространстве они непригодны. К их числу надо отнести также реактивные двигатели, работающие на порохе. Простейшим примером подобного двигателя служит обычная фейерверочная ракета. Грозным сородичем праздничных ракет являются реактивные снаряды минометов «Катюша».

Иное дело – ракетные двигатели на жидком топливе (ЖРД). Именно такой двигатель и предлагал Циолковский для межпланетной ракеты.

В двух баках, изолированных друг от друга, находятся составляющие элементы топлива – горючее и окислитель. Горючим могут быть какие-нибудь углеводородные соединения, например, бензин или керосин, окислителем – жидкий кислород.

С помощью насосов обе жидкости подаются в камеру сгорания. Здесь происходит их воспламенение, и образующиеся раскаленные газы создают необходимую тягу.

ЖРД не зависят от окружающей среды. Они могут работать и в воздухе и в безвоздушном пространстве. Регулируя подачу топлива в камеру сгорания, можно управлять скоростью полета. В этом положительные качества ЖРД.

Недостатком ЖРД является малая продолжительность их действия. Развивая огромную мощность, они могут работать не больше 4–5 минут. Вот почему ЖРД устанавливаются на истребителях-перехватчиках, которым необходимо развивать большие скорости и стремительно подниматься на значительные высоты. В качестве горючего чаще всего употребляют керосин, бензин, а также спирт и анилин. Окислителями в первом случае служит азотная кислота, во втором – жидкий кислород.

И все-таки, несмотря на некоторые недостатки, ближайшее будущее принадлежит жидкостно-ракетным двигателям.

Именно с их помощью достигнуты наибольшие скорости и высота полетов.

Летчик, взлетевший на высоту 25 км, пользовался самолетом с ЖРД. Его полет отчасти напоминал межпланетное путешествие. На высоте 25 км воздух настолько разрежен, что кабину самолета пришлось сделать герметически закупоренной, похожей на кабину межпланетного корабля. В окна кабины летчик наблюдал непривычную картину – на темном с фиолетовым оттенком небе ослепительно ярко сияло Солнце и можно было заметить ярчайшие из звезд.

Чем выше и быстрее летают самолеты, тем больше их внешний вид напоминает облик космических кораблей (рис. 15). Еще большее сходство с ракетой Циолковского имеют стратосферные ракеты, которые во вторую мировую войну немцы использовали для бомбардировки Лондона и которые теперь служат научным целям – изучению верхних слоев атмосферы.

Рис. 15. Чем быстрее и выше летают самолеты, тем больше их внешний вид походит на облик будущих космических ракет.

Принцип устройства стратосферной ракеты нам уже знаком (рис. 16). Ракета имеет жидкостно-ракетный двигатель, а в головной своей части вместо взрывчатки она несет полезный груз – различную научно-исследовательскую аппаратуру.

Рис. 16. Устройство стратосферной ракеты:

1) двигатель; 2) баки с топливом; 3) приборы.

Размеры ракеты весьма внушительны – при длине 14 метров и диаметре 170 сантиметров она имеет вес около 13 тонн. Двигатель работает на обычном 75-градусном винном спирте, который, сгорая с жидким кислородом, образует раскаленную газовую струю.

Интересно отметить, что хотя топливо весит 9 тонн, т. е. составляет почти ¾ общего веса ракеты, оно полностью израсходуется за какие-нибудь 70 секунд. Остальное время ракета летит за счет накопленной энергии, подчиняясь лишь действию двух сил – притяжению Земли и сопротивлению воздуха.

Стремительно поднимаясь на высоту в сотни километров, стратосферные ракеты развивают скорости, значительно превышающие звуковую. Мощность двигателя подобных ракет близка к 600 000 л. с., т. е. к мощности Днепрогеса!

Опубликованы сообщения о взлете обычных ракет до высоты 400 километров над уровнем моря, а радиоуправляемых ракет даже до высот в 500 километров, причем скорость полета некоторых из них равнялась 6880 , т. е. около двух километров в секунду!

Вот рекорд высоты и скорости полета, достигнутый человеком. Пятьсот километров над Землей – это, практически говоря, уже безвоздушное мировое пространство.

Небо там совершенно черно и усыпано множеством звезд, хотя среди звезд ослепительно ярко сияет Солнце. Удивительная картина – звездный день или солнечная ночь, трудно даже подобрать для нее подходящее название!

Кругом царит полное безмолвие, так как уже выше 120 километров над Землей воздух становится настолько разреженным, что звуковые волны распространяться в нем не могут.

Таковы те области, в которые уже проникли аппараты, созданные руками человека. Человечество вышло на порог своего «дома», чтобы в недалеком будущем отправиться в прогулку по другим «домам».

Достигнутые успехи велики, но еще большие трудности ожидают первых межпланетных путешественников.

Рассматривая формулу Циолковского, мы отмечали некоторые из них. Сознаемся, что реальные трудности были нами тогда сильно преуменьшены. В самом деле, наши расчеты не учитывали силу тяжести. С учетом же притяжения Земли, движение ракеты будет определяться другой формулой, также выведенной Циолковским. Вот она:

где g – ускорение силы тяжести (9,8 ), принимаемое за постоянное на всем пути полета, а а – собственное ускорение ракеты.

Для взлета ракеты с Земли необходимо, чтобы развиваемое ею ускорение а было больше g. Если а меньше g, ракета будет лежать на Земле, сколько бы не работал ее двигатель. При равенстве этих величин (a=g) ракета повиснет над Землей, не поднимаясь и не снижаясь. И только когда а станет больше g, ракета отправится в полет.

Совершенно очевидно, что для полета ракеты в сфере притяжения Земли или другого небесного тела потребуется бóльший расход топлива, чем при полете в среде без тяжести. К этому надо прибавить еще затрату топлива на преодоление сопротивления атмосферы. Необходимо заметить, что расчеты, связанные с вылетом ракеты из атмосферы, очень сложны и формулы Циолковского дают лишь самую общую, приближенную картину полета ракеты.

По верному замечанию Паскаля «никто не странствовал бы по свету, если бы не надеялся когда-нибудь рассказать другим о том, что видел». Разумеется, и межпланетные путешественники не пойдут на заведомую гибель, а захотят снова очутиться на Земле. А это значит, потребуются новые расходы топлива для посадки на Луну, для отлета с ее поверхности, для торможения при спуске на Землю, а также некоторый резерв для «непредвиденных расходов».

Каждый расход топлива придает ракете некоторую скорость. Так вот, если учесть все эти расходы, если считать, что уже достигнута наибольшая скорость истечения газов с (4 ), то и тогда минимальная скорость, с которой ракета должна отправиться с Земли на Луну, равна не 11,2, а 27–30 ! В этом случае для космического корабля отношение масс будет равно 1000. Результат грустный – построить ракету, в которой полезный груз занимал бы всего 0,001 долю ее веса, очевидно, невозможно. Снова тупик и… снова есть выход!

Если лобовая атака Луны неосуществима, то штурм нашего спутника можно организовать иначе. Прежде чем отправиться на Луну, человечество должно создать вокруг Земли ее искусственные спутники. На спутниках необходимо сосредоточить запасы топлива для космических кораблей. Тогда лунная ракета, взлетев с Земли, причалит к одному из спутников. Ее экипаж пополнит опустевшие топливные баки, а затем ракета отправиться в дальнейший путь на Луну.

Такова идея внеземных топливных баз, выдвинутая К. Э. Циолковским. Она указывает реальный путь к достижению небесных тел. Искусственные спутники Земли явятся тем трамплином, с помощью которого человек станет гражданином Вселенной.

«Движение вокруг Земли ряда снарядов, – писал Циолковский, – со всеми приспособлениями для существования разумных существ, может служить базой для дальнейшего распространения человечества».

Если даже в будущем атомные реактивные двигатели будут давать скорости истечения, значительно превышающие современные, и космические корабли сумеют перелетать с Земли на Луну без промежуточных остановок, искусственные спутники сохранят свое значение космических научных лабораторий.

Создание искусственных спутников Земли есть неизбежный шаг на пути овладения мировым пространством.

Первые искусственные спутники Земли

В начале августа 1955 года в Копенгагене состоялся Международный конгресс астронавтов. На конгрессе обсуждались проекты искусственных спутников Земли, а также перспективы дальнейших работ в области астронавтики.

По единодушному мнению участников конгресса, успехи современной реактивной техники настолько велики, что запуск первых искусственных спутников Земли может быть осуществлен в 1957–1958 годах.

Как известно, с 1 июля 1957 года по 31 декабря 1958 года будет организован так называемый Международный геофизический год, во время которого ученые разных стран проведут исследования магнитного поля Земли, полярных сияний, строения земной коры, землетрясений и других явлений, изучаемых геофизикой[7]. Таким образом, по решению Копенгагенского конгресса астронавтов, обширные исследования физики Земли будут дополнены созданием первых ее спутников.

Каково же устройство этих спутников, как мыслится их запуск и, наконец, какую пользу они принесут человечеству?

Первые искусственные спутники Земли будут несколько напоминать снаряд ньютоновой пушки. Во-первых, предполагается сделать их небольшими, так как чем меньше масса тела, тем легче его превратить в спутник Земли. По одним из существующих проектов первые спутники не превзойдут по размерам баскетбольный мяч. В других проектах они мыслятся несколько бóльшими.

Во-вторых, первые спутники Земли, в отличие от снаряда жюльверновской «колумбиады», не понесут в себе пассажиров, если только под последними не понимать разнообразные научные приборы.

Самый простой спутник – это металлический шар поперечником в несколько десятков сантиметров. Чтобы такой шар превратить в спутника Земли, необходимо, во-первых, поднять его в верхние, разреженные слои атмосферы и, во-вторых, сообщить ему соответствующую «круговую» горизонтальную скорость. Обе задачи может выполнить двухступенчатая ракета, похожая на современные (рис. 17).

Рис. 17. Простейший искусственный спутник Земли.

Первая ее ступень состоит из топливных баков и ракетного двигателя. После исчерпания всех запасов топлива первая ступень автоматически отделяется от остальной части ракеты и возвращается обратно на Землю В момент отделения первой ступени начинает действовать вторая ступень.

Ее устройство несколько сложнее. Кроме топливных баков и двигателя, в головной части ракеты помещается спутник, под которым находится некоторое количество взрывчатых веществ. В нужный момент с помощью автоматического устройства происходит взрыв, который выбрасывает спутник на круговую орбиту. Такова принципиальная сторона одного из наиболее простых проектов. Однако несмотря на всю свою простоту, описанный спутник может принести немалую пользу науке.

Представим себе, что такой спутник получил круговую скорость на высоте 200 км. Нетрудно подсчитать (см. стр. 10), что в этом случае он будет обладать линейной скоростью 7791 и периодом обращения около полутора часов. Следует заметить, что в момент выброса спутника из ракеты очень важно, чтобы спутник приобрел не только нужную круговую скорость, но и вполне определенное направление движения. Дело в том, что далеко не всякая круговая орбита будет устойчивой. Можно доказать, что спутник приобретет устойчивое движение только в такой плоскости, которая проходит через центр Земли. В противном случае, если, например, спутник начнет обращаться в плоскости какой-нибудь параллели, то либо орбита спутника сместится в одну из «устойчивых» плоскостей, либо спутник упадет на Землю.

На высоте 200 км над Землей плотность воздуха в миллионы раз меньше, чем у поверхности Земли. Это значит, что спутник, получив первоначальную скорость, будет затем двигаться, почти не встречая сопротивления атмосферы. Следовательно, спутник, обращающийся вокруг Земли на высоте 200 км, совершит достаточно большое число оборотов вокруг земного шара. Очень важно выяснить характер этого движения. Рассмотрим причины, которые на него влияют.


    Ваша оценка произведения:

Популярные книги за неделю