Текст книги "Нейромифология. Что мы действительно знаем о мозге и чего мы не знаем о нем"
Автор книги: Феликс Хаслер
Жанр:
Научпоп
сообщить о нарушении
Текущая страница: 3 (всего у книги 6 страниц)
Однако теперь все должно быть по-другому. Нейромаркетинговая реклама внушает, что нейронауки помогут точно расшифровать «тайную истину», скрытую в мозге субъекта. Например, это можно сделать, когда во время магнитно-резонансной томографии тестируемый потребитель просматривает различные рекламные лозунги или презентации товаров. То, что нейромаркетинговые компании «кормят» целевую аудиторию подобными нереалистичными обещаниями, объясняется лишь фактом, что общество все еще находится под обаянием нейрогламура.
При этом вряд ли сообщается, насколько сильно ограничены и заведомо ненадежны нейронаучные данные для прогнозирования человеческого поведения. Цветные пятна на томограммах мозга вообще не позволяют предсказывать будущий образ действий (покупателя). В связи с методами диагностической визуализации любят говорить об «эффекте рождественской елки». Красочные томограммы впечатляют прежде всего непрофессионалов. По этой причине демонстрация в суде результатов медицинской визуализации запрещена во многих штатах США. Имеются опасения, что присяжные могут подпасть под слишком сильное впечатление от этих пестрых образов. Жертвами «эффекта рождественской елки», похоже, стали даже Intel, MacDonald’s, Givaudan или Unilever. В любом случае, эти компании прибегают к рекламным услугам Neurosense, первой и в настоящее время наиболее признанной нейромаркетинговой компании.
Что еще оставалось под вопросом
Нидерландский философ науки Илья Масо считает, что при исследовании наивысшее значение имеет такой научный подход, который основан на материалистических, механистических и редукционистских предположениях. «В эту сферу стекается большая часть денег, здесь достигаются самые броские результаты, и здесь ожидается увидеть самые умные головы»[104]104
Maso I (2003); цит в.: Van Lommel P (2009) «Endloses Bewusstsein». С. 17.
[Закрыть].
Анализ Масо идеально сочетается с нейронауками, репутация которых в обществе и научном мире прекрасна и по сей день. Кроме того, изучение нашего главного органа воспринимается как особенно важное. Наконец, мы ожидаем решения множества проблем, касающихся всего человечества. От понимания психических расстройств и прогнозирования поведения до эффективного обучения, минимизации негативных сторон полового созревания и счастливой старости. Как надеются многие, нейронауки приведут нас, в конечном счете, в лучший мир.
Хесс и Йокейт в своем эссе «Нейрокапитализм» называют другие важные причины успеха исследований мозга: «Нейронауки имеют принципиальные преимущества из-за их методологического закрепления среди естественных наук, а также благодаря их этической легитимности как медицинской дисциплины. С помощью государственной поддержки и особенно из-за грандиозных инвестиций со стороны фармацевтической промышленности нейронауки также исключительно хорошо обеспечены финансами»[105]105
Hess E, Jokeit H (2009) Eurozine.
[Закрыть].
Фактически в последние годы для исследований мозга были доступны почти бесконечные суммы денег. Даже социологи и экономисты давно уже признали, что шансы на финансирование исследований значительно увеличиваются, если в заявке на исследование появляется «что-то с нейро» – обычно нейровизуализация.
Как это может выглядеть на практике, поясняет в швейцарском журнале Du исследователь культуры и юрист Ханс Буркерт: «…Все больше коллег сообщали, что было крайне сложно получить заказ на исследование, если к работе не привлекался нейроученый или хотя бы не предполагался учет результатов исследований мозга. Так, небезызвестного социолога фактически отправили восвояси с заявкой на исследование депривации молодежи в пригородах Берлина. Комментарий был таков: „Будет ли исследование подкреплено нейронаучно?“ Теперь он научен опытом и проверяет свою работу на предмет того, как часто в нее можно включить „что-то неврологическое“»[106]106
Burkert H (2011) Du Magazin. С. 51.
[Закрыть].
То же самое относится к возможности публикации результатов собственных исследований в хорошо дотируемом специальном журнале. С обозревателями научных журналов приставка «нейро-» может творить особые чудеса. Даже если неясно, почему решение того или иного вопроса дополнительно потребовало привлечения результатов магнитно-резонансной томографии или каков смысл визуализационного исследования с теоретико-познавательной точки зрения. Обстоятельство, которое много лет назад могло побудить стэнфордского когнитивного психолога Стивена Косслина задать широко цитируемый сегодня вопрос: «Если нейровизуализация – это ответ, где же тогда вопрос?»[107]107
Kosslyn SM (1999) Philosophical Transactions of the Royal Society B. С. 1283.
[Закрыть]
Глава вторая
Нейродоказательные машины
Критическая оценка методов визуализации
В 1990-е, в «десятилетие мозга», позитронно-эмиссионные томограммы мозга приобрели статус фирменного знака. Они символизируют науку, прогресс, биологическую самость, цифровую визуализацию и техническую силу прогресса, все сразу[108]108
Dumit J (2003) Journal of Medical Humanities. С. 36.
[Закрыть].
Статья Вильгельма Конрада Рентгена «О новом виде лучей» (1895) произвела революцию в медицине. Уже первый анатомический рентгеновский снимок в истории – руки жены Рентгена Анны Берты с обручальным кольцом – не оставлял сомнений: теперь снаружи можно было заглянуть внутрь тела[109]109
При этом мозг, скрытый за толстыми костями черепа, избегал этой участи до 1971 года, когда человек впервые подвергся исследованию методом компьютерной томографии.
[Закрыть].
Еще одним историческим днем для медицинской диагностики стало 28 августа 1980 года. В Абердинском университете физик Джон Маллард впервые выполнил сканирование всего тела человека методом магнитно-резонансной томографии. Первое структурное МРТ-исследование пациента показало, что у несчастного шотландца первичная опухоль в груди и метастазы в костях. Всего через несколько лет после «нулевого сканирования» Малларда структурная магнитно-резонансная томография получила всемирное признание. Хорошо себя зарекомендовав, сегодня МРТ незаменима в медицинской диагностике. Она может спасти жизнь и уже сделал это в тысячах случаев. Однако для многих пациентов магнитно-резонансная томограмма также становится трагической визуализацией смертного приговора.
Результатом анатомического МРТ-обследования является более или менее точное псевдофотографическое изображение того, «что существует на самом деле». С этой точки зрения структурное МРТ-изображение похоже на рентгеновский снимок, правда, при его получении используется другой принцип измерений, а техническая сложность его исполнения намного выше[110]110
МРТ основана на физическом принципе ядерного магнитного резонанса. В сильных магнитных полях протоны (ядра атомов водорода) приходят в состояние возбуждения под действием электромагнитных волн радиочастотного диапазона, что приводит к индукции электрических сигналов в электрической цепи приемника. В зависимости от местоположения и времени эти электрические сигналы фиксируются и пересчитываются в изображения.
[Закрыть]. На рентгеновском снимке видно, где сломана кость, тогда как структурное МРТ-изображение показывает, например, анатомическую локализацию опухоли. Возможности применения МРТ выходят далеко за пределы простой диагностики. В форме «хирургии с МРТ-поддержкой» эта процедура уже несколько лет используется также для контроля оперативных вмешательств.
МРТ – символ культуры и священный объект
Конечно, даже структурное МРТ-исследование может ошибаться. Поэтому метод отнюдь не совершенен. Еще до того, как будет выполнена магнитно-резонансная томография, необходимо принять множество решений, которые повлияют на ее результаты. Например, необходимо указать толщину среза при сканировании. Если она выбрана слишком большой, могут быть пропущены небольшие повреждения или патологические изменения. Однако если толщина среза оказывается слишком маленькой, ухудшается качество томограммы или сканирование длится неоправданно долго. Исследование машиной живого человека влечет за собой сложный перевод его биологической сущности в числа, которые, в свою очередь, преобразуются в изображения. И в конце цепи этих преобразований находится несовершенный человек, обычно радиолог, который дешифрует полученные изображения, оценивает их и ставит диагноз[111]111
Гиподиагностика и гипердиагностика являются классическими ошибками. Большинство профессионалов считают, что компетенция проводящего экспертизу врача играет более важную роль, чем любые технические ограничения сканера или ошибки при визуализации.
[Закрыть]. Как и в любом методе визуализации, в МРТ-изображениях всегда появляются необъяснимые технические артефакты. Для этих пятен неясного происхождения радиологи придумали даже особое название: «неопознанные яркие объекты»[112]112
Англ. unidentified bright objects (UBOs).
[Закрыть].
Несмотря на некоторые недостатки, структурная МРТ обладает аурой высокоприоритетной диагностической процедуры, лучшей, более объективной и современной, нежели другие диагностические исследования. Следуя этой логике, наличие сканеров для проведения МРТ называется важным показателем качества медицинского обслуживания в исследованиях уровня его развития в разных странах[113]113
Joyce K (2008) «Magnetic Appeal». С. 22.
[Закрыть].
Американский социолог Келли Джойс уже рассматривает МРТ как «символ культуры – священный объект, вокруг которого вращаются вопросы о личном здоровье, идентичности и многих жизненных дилеммах»[114]114
Там же. С. 7.
[Закрыть]. Даже Далай-лама в одной из своих речей приводил метод МРТ в качестве примера высоких технических достижений нашего времени[115]115
Цит. в: Там же. С. 24.
[Закрыть].
Несколько лет назад великолепная репутация МРТ вдохновила американские клиники предлагать сканирование всего тела здоровым и не имеющим никаких симптомов болезней (но платежеспособным) потенциальным клиентам. Эта коммерциализированная форма здравоохранения также рекламируется на радио и телевидении. Завуалированный посыл рекламы: все, что требуется для обнаружения раннего заболевания, – это проведение МРТ тела[116]116
Ср. также: Joyce K (2005) Social Studies of Science. С. 456.
[Закрыть]. Стратегия частнохозяйственной продажи снимков тела для профилактики заболеваний также является ярким примером современной тенденции рассматривать пациентов как потребителей медицинских услуг.
Поп-арт как фактор влияния
Развитие МРТ и его внедрение в качестве новой медицинской диагностической процедуры в значительной степени также связано с веяниями времени. Так, первые МРТ-изображения в начале 1980-х годов еще были цветными. Даже пестрыми. По словам медицинского социолога Келли Джойс, в этом обстоятельстве повинен поп-арт того времени – Энди Уорхол и Рой Лихтенштейн были в Америке тех лет настоящими иконами. Однако по настоянию профессиональных радиологов, которые ранее имели дело только с рентгеновскими изображениями и компьютерными томограммами и не привыкли к такой пестроте, снимки вскоре были переориентированы на шкалу серого, используемую и сегодня. Такова была уступка «черно-белой культуре зрительного восприятия» радиологов. Кроме того, общепринятый первоначально термин «ядерная магнитно-резонансная томография» вскоре стал восприниматься слишком неоднозначно. «Ядерный» в США 1980-х годов ассоциировался с гонкой ядерных вооружений, ядерной аварией на АЭС «Три-Майл-Айленд» и радиацией, которая может выйти из-под контроля в любое время. Только из-за этого термин утратил слово «ядерный» и сегодня употребляется в сокращенном виде как «магнитно-резонансная томография»[117]117
Предложение поступило от американского радиолога Александра Маргулиса и быстро было поддержано во всем мире.
[Закрыть].
В начале 1990-х годов произошли новые решающие изменения в технологиях. Метод анатомической визуализации структурной МРТ развился до функциональной МРТ (фМРТ). Снимки, получаемые разными методами, выглядят очень похожими, но по сути они совершенно разные. Так как функциональные характеристики мозга могут оцениваться только опосредованно. На практике это достигается путем измерения зависимых от времени локальных изменений кровотока и потребления кислорода.
20-й день рождения фМРТ – хороший повод для его исторической оценки. Раннему пионеру функциональной визуализации в свое время, вероятно, даже не снилось, что феномен, который он наблюдал, 120 лет спустя станет нейрофизиологической основой для всей нейроиндустрии[118]118
Ср.: Legrenzi P, Umiltа C (2011) «Neuromania». С. 12–14.
[Закрыть]. Итальянский физиолог Анджело Моссо в 1870 году изучал перепады артериального давления в мозговых артериях. Через сделанные нейрохирургическим методом отверстия в черепе Моссо мог наблюдать у пациентов пульсацию кровеносных сосудов головного мозга. У одного из пациентов, крестьянина Бертино, туринский врач обнаружил усиление пульсации в полдень во время звона церковных колоколов. При этом кровяное давление и пульс, измеренные на руке пациента, не изменились. Затем Бертино сообщил, что церковные колокола напомнили ему о наступлении времени для молитвы. Из чего Моссо сделал вывод, что воспоминание о молитве вызвало изменения в кровотоке мозга Бертино. Именно такое соотнесение изменений церебрального кровотока с умственными процессами является основным принципом современной фМРТ[119]119
Поскольку наблюдавшийся умственный процесс был связан с религиозным ритуалом, Анджело Моссо можно также назвать (невольным) пионером нейротеологии.
[Закрыть].
Что мы видим, когда смотрим на снимок мозга?
Основная предпосылка фМРТ состоит в том, что мозг активен именно там, где более активно происходит кровообращение и, соответственно, где поглощается больше кислорода. Вскоре после активации нейронных сетей усиление кровотока вызывает приток богатого кислородом гемоглобина. В то же время концентрация гемоглобина, не содержащего кислород (дезоксигемоглобина), в этом месте снижается.
Именно эти изменения фиксируются с помощью стандартной процедуры фМРТ, так называемой технологии BOLD[120]120
Англ. blood-oxygen-level-dependent, т. е. фМРТ, зависимой от уровня кислорода в крови. – Прим. перев.
[Закрыть]-фМРТ. Знаменитые цветные пятна, BOLD-сигналы, создаются на компьютере с помощью математических расчетов после проведения фМРТ. Таким образом, они представляют собой не что иное, как образно интерпретированные в виде графических изображений статистические сведения об изменениях кровотока и потребления кислорода в мозге. Для фМРТ особенно подходит общий термин «процесс визуализации», так как это словосочетание подчеркивает, что подобная визуализационная технология связана не просто с фиксацией изображения, но с производственным процессом.
Почти не встречающее возражений предположение, что фМРТ отображает истинную нейронную активность[121]121
«Нейронная активность» означает, что в определенном месте мозга в нейронах изменяется частота электрических разрядов (потенциалов действия).
[Закрыть], пусть и опосредованно, через механизм BOLD-сигналов, совсем не так достоверно, как кажется. Хотя благодаря прямому физиологическому исследованию мозга животных было выявлено, что нейронная активность обычно связана с увеличением потребления кислорода[122]122
Logothetis NK, Pauls J et al. (2001) Nature; Mayhew JEW (2003) Science.
[Закрыть], в исследовании, проведенном в Лаборатории нейрососудистой визуализации Калифорнийского университета в Сан-Диего, было также показано, что нейронная активность иногда приводит к сужению, а не к расширению кровеносных сосудов[123]123
Devor A, Hillman EM et al. (2008) Journal of Neuroscience.
[Закрыть]. И, следовательно, к снижению, а не к усилению кровотока. Это, разумеется, является полной противоположностью стандартной интерпретации, согласно которой оценивают все данные фМРТ. Поэтому историк науки Фернандо Видаль и философ Франсиско Ортега совершенно справедливо спрашивают: «Что же мы видим, когда смотрим на снимок мозга?»[124]124
Ortega F, Vidal F (2007) Revista Eletronica de Comunicaçao, Informaçao e Inovaçao em Saude. С. 257.
[Закрыть]
Видеть значит верить
Так как структурные и функциональные МРТ-изображения очень похожи, большинство неспециалистов, а также многие профессионалы не из цеха нейровизуализации, не поняли, что теперь томограммы больше не передают то, «что существует на самом деле», как это было в случае с рентгеновскими снимками. Видеть значит верить – для человека, по природе склонного к иконофилии, красочные томографические изображения автоматически обретают соблазнительную силу истинного образа.
Но на самом деле все обстоит совершенно иначе. Нейровизуализационные изображения – это не просто нечеткие фотографии работающего мозга низкого разрешения, а результат множества технологических процессов. До получения итогового образа необходимо принять длинный ряд технических решений. От обработки исходных данных со сканера до окончательных статистических расчетов. Целая «цепь заключений», как было сказано в одной из переводных статей журнала Nature Neuroscience[125]125
Editorial in Nature Neuroscience (2000) «A debate over fMRI data sharing». С. 845.
[Закрыть].
При этом слепо верить этой «цепи заключений» обычно не стоит: «…в итоговой [научной] публикации обычно содержится сильно редуцированная часть оригинальных данных, отфильтрованная в результате серии преобразований и оценок, часто довольно своеобразных. Не существует единого мнения о „правильном“ способе проведения этих исследований; каждое из них имеет свои сильные и слабые стороны, кроме того, постоянно разрабатываются новые методы»[126]126
Там же.
[Закрыть]. Один лишь выбор уровня статистической значимости требует достижения сложного баланса между возможными ложнопозитивными и ложнонегативными результатами.
В Nature Neuroscience также указывалось, что «трудно создавать научные статьи, описывающие (и, самое главное, объясняющие) сложные закономерности активации мозга. Поэтому часто наблюдается тенденция к консервативным ограничениям, что позволяет сократить количество фактов активации и представить более простой результат»[127]127
Там же. С. 846.
[Закрыть].
Однако сложности нейровизуализационных исследований начинаются задолго до того, как будут проведены измерения. Главная проблема заключается в разработке содержательного общего проекта исследования с надежными экспериментальными параметрами и соответствующими контрольными условиями. «Нынешняя проблема визуализации состоит в том, что бесконечно сложно выполнять правильные исследования, тогда как получить изображения очень легко», – делает вывод пионер нейровизуализации Стивен Петерсон[128]128
Miller G (2008) Science. С. 1412.
[Закрыть].
Вне зависимости от всех оговорок, видеть значит верить. Психологи Дэвид Маккейб и Алан Кастел изучили, как испытуемые оценивают достоверность фиктивных результатов нейронаучных исследований, когда им показывают или не показывают изображения мозга[129]129
McCabe DP, Castel AD (2008) Cognition.
[Закрыть]. Во время трех различных экспериментов, в которых сфабрикованные данные когнитивной науки были представлены просто в виде текста, в виде текста и диаграммы и в виде текста и изображений мозговой активности, тестируемые студенты всегда считали «научно наиболее убедительными» тексты, сопровождаемые изображениями. Маккейб и Кастел заключили, что «часть очарования – и правдоподобия – исследования с применением метода визуализации заключается в убедительности самих изображений мозга»[130]130
Там же. С. 343.
[Закрыть]. Мозговые сканеры – это доказательные машины. Для историка науки Хагнера – также и в том смысле, что они «сводят до сих пор плохо понятные причинные связи к поверхностному рассмотрению»[131]131
Hagner M (2006) «Der Geist bei der Arbeit». С. 14.
[Закрыть].
Арифметика любви
С другой стороны, в общественном восприятии сканеры для проведения МРТ имеют репутацию настоящей «машины объективности»[132]132
Slaby J (2011) «Objektivitätsmaschine – der MRT-Scanner als magisches Objekt». Доклад на конференции «Сила вещей» в Берлинском университете им. Гумбольта, 30.9.
[Закрыть]. Внушительные, футуристические, почти магические высокотехнологичные объекты, которые обнажают скрытое нутро человека. При этом существует множество веских причин скептически относиться к претендующим на объективность фМРТ-изображениям. Чтобы обосновать это, сделаем обзор множества проблемных областей функциональной магнитно-резонансной томографии.
Во-первых: обычно в качестве итога функциональных нейровизуализационных исследований мы получаем разностные изображения. То, что мы видим, является результатом процесса субтракции. Процедура подчиняется простой и, прежде всего, очевидной логике. Чтобы иметь возможность засвидетельствовать определенную работу мозга, испытуемый в сканере подвергается двум опытам. Измеряется изменение местного потребления кислорода крови в интересующих экспериментальных условиях (условиях испытания), а также в контрольных условиях. В поисках, скажем, участка мозга, отвечающего за романтическую любовь, влюбленным показывают фотографии их любимого партнера, а также фотографии друзей того же возраста и пола, к которым у них нет «истинной, глубокой и сумасшедшей» привязанности[133]133
Bartels A, Zeki S (2000) NeuroReport.
[Закрыть].
Затем МРТ-изображение, выполненное в контрольных условиях, просто субтрактируют (вычитают) из снимка, который сделан при созерцании испытуемым предмета его страсти. Так надеются устранить с изображения все неспецифические активности мозга, которые не имеют отношения к влюбленности[134]134
Одна только обработка визуальных стимулов вызывает, например, сильную активность в зоне зрительных путей и зрительной коры.
[Закрыть]. Расчет для корректировки активности делают следующим образом: (влюбленный + все остальное) – (не влюбленный + все остальное) = влюбленный. В представленном здесь примере изучения влюбленности расчеты руководителя исследований Андреаса Бартельса и Семира Зеки дают следующий результат: влюбленный = = активация передней части поясной извилины и срединной части островковой доли коры головного мозга, а также путамена и хвостатого ядра. Кроме того, деактивация задней части поясной извилины и миндалин, а также правых лобной, теменной и височной долей коры головного мозга.
Логично, что через несколько лет Семир Зеки, видный нейроученый из лондонской Лаборатории нейробиологии Wellcome, посвятил себя темной стороне человеческих эмоций. В рамках исследования «Нейронные корреляты ненависти» испытуемым, находившимся в сканере, теперь уже нужно было не любить от всего сердца, а искренне ненавидеть[135]135
Zeki S, Romaya JP (2008) Public Library of Science One.
[Закрыть]. Для этого были подобраны люди, которые «демонстрируют сильную ненависть к тому или иному индивидууму». При этом объектами ненависти всегда являлись бывший сексуальный партнер или коллега по работе. Таким образом был обеспечен надежный натуралистический подход к исследованию. Степень враждебности получила количественную психометрическую оценку по «шкале страстной ненависти».
Аналогично опыту с романтическими чувствами, испытуемые приносили с собой фотографии ненавистных им людей. Затем эти фотографии демонстрировали им в сканере, чередуя с нейтральными лицами. Опять же, изображение мозга, реагирующего на нейтральные изображения, вычли из снимка мозга ненавидящего.
Итак, по словам Зеки и его коллеги Джона Пола Ромайи, мозг ненавидит так: активируются средняя лобная извилина, путамен, премоторная зона, островковая доля и прецентральная извилина правого полушария, тогда как верхняя лобная извилина правого полушария, напротив, не активна. Авторы заключают: «Исследование показывает, что активация мозга ненавидящего человека происходит по определенной схеме»[136]136
Там же.
[Закрыть].
Особенно внимательный читатель сможет заметить, что активация островковой доли и путамена уже отмечалась выше при описании влюбленных испытуемых. Хотя авторы исследования ненависти в обсуждении этого примечательного обстоятельства благоразумно отделываются общими словами («текущее состояние знаний не позволяет сделать точную интерпретацию»), онлайн-выпуск журнала Deutsche Arzteblatt предлагает даже биологическое объяснение: «Дружба и вражда активируют путамен правого полушария. Эту область исследователи мозга связывают с подготовкой тела к движениям. В случае чувства любви движения могут быть связаны с желанием приблизиться к любимому человеку или защитить его. Ненависть способна стать причиной агрессивных действий или противодействия противнику. Второй центр, который активируют оба чувства, – это островковая доля. Ее Зеки считает ответственной за стресс, связанный как с чувством ненависти, так и с романтической любовью (в форме ревности)»[137]137
Meyer R (2008) Deutsches Arzteblatt.
[Закрыть]. Не существует результатов фМРТ, которые нельзя было бы объяснить с помощью богатого воображения и, в еще больше степени, с помощью смелого упрощения.
Морское сравнение
Помимо базовых редукционистских оговорок разностный метод связан также с технической проблемой доступной точности измерения. Поскольку мозг постоянно активен[138]138
Осознание того, что мозг очень активен, даже если «ничего не делает», привело на рубеже веков к старту очень важных сегодня «исследований состояния покоя». С помощью фМРТ и компьютерного моделирования изучается сеть пассивного режима работы мозга, активная, если человек не взаимодействует с внешним миром, а просто спокойно предается своим мыслям. Изучение «состояния покоя» стало одной из центральных тем современных исследований мозга.
[Закрыть], уже «фоновый шум», вычитаемый при субтракции контрольных данных, оказывается в большинстве случаев намного существеннее, чем предполагаемый специфический результат, например, при принятии решения нравственного характера. Исследования показали, что при решении когнитивной задачи затраты энергии мозгом увеличиваются по сравнению с основным состоянием менее чем на 5 %[139]139
Raichle ME (2010) Scientific American.
[Закрыть].
Образно говоря, разностный метод похож на определение веса капитана путем взвешивания яхты с капитаном, а затем яхты без капитана. Нейробиолог Герхард Рот в передаче «Баварского радио» ссылается на еще одну фундаментальную трудность, а именно на техническую необходимость статистического усреднения большого количества замеров: «Это осложняется тем фактом, что получаемые изображения обычно являются артефактами. А именно усредненными изображениями мозга, который много раз измерялся, или даже результатами многократных измерений множества мозгов, позволяющими нам видеть какие-то отличия… Эти артефакты очень интересны, но их нужно интерпретировать крайне осторожно. И интерпретация зачастую очень сложна»[140]140
Schramm M (2011) IQ-Wissenschaft und Forschung, Bayerischer Rundfunk, 13.4.
[Закрыть].
Кроме того, схемы мозговой активности сильно варьируются от субъекта к субъекту. В случае одинаковых испытаний в одном и том же сканере при постоянных экспериментальных условиях индивидуальные результаты могут выглядеть совершенно по-разному. Как это часто бывает при изучении сложных биологических систем, одна лишь природная вариативность приводит к значительным различиям между результатами исследования отдельных испытуемых.
Эти естественные различия затем проявляются в статистических расчетах как значительные отклонения или же как наложения в данных. Поэтому обычно на уровне отдельного человека полученный результат фМРТ невозможно связать с определенными условиями эксперимента или с конкретным диагнозом.
Статистически значимые различия обнаруживаются только при интраиндивидуальном (один и тот же человек сканируется дважды, один раз в состоянии покоя и один раз – при выполнении когнитивной задачи) или при групповом сравнении (когда сравниваются усредненные схемы мозговой активности целых групп). Так, например, можно увидеть, что при просмотре изображений алкогольных напитков мозг алкоголиков в среднем реагирует иначе, чем мозг неалкоголиков. (Что, конечно, совсем не удивительно.) При рассмотрении только одного частного результата измерения соотнести его с чем-либо, как правило, невозможно.
Как в первые дни фотографии
Мало внимания обычно уделяется также тому, что временное разрешение функциональных методов МРТ на один или два порядка отстает от возможности зафиксировать фактически происходящие нейронные процессы. «Гемодинамический ответ», который измеряется как признак реальной активности мозга, требует для собственного формирования в лучшем случае несколько сотен миллисекунд. Однако результаты электроэнцефалографии показывают, что активность коры головного мозга меняется в течение нескольких миллисекунд, например, под воздействием визуального стимула. То, что фиксирует фМРТ, – это накопленные во времени и совмещенные изображения всего, что происходило в мозге в пределах нескольких секунд.
Сравнение с начальным периодом фотографии неизбежно. Около 1840 года время экспозиции, требовавшееся для получения дагерротипа, составляло примерно 20 минут. Поэтому первоначально можно было фотографировать только неподвижные объекты – скажем, собор Парижской Богоматери. Хотя во время съемок около храма проходили десятки гуляющих, на готовом изображении не было ни одного человека. Только бледный и расплывчатый собор. Вполне возможно, что МРТ ожидает такой же быстрый технический прогресс, который выпал на долю фотографии. Совсем недавно физики и нейроученые из Беркли и Оксфорда продемонстрировали техническое усовершенствование, которое позволяет сканировать в семь раз быстрее[141]141
Feinberg DA, Moeller S et al. (2010) Public Library of Science One.
[Закрыть]. Предполагается, что полное 3D-сканирование мозга можно будет делать всего за четыреста миллисекунд. В настоящее время типичное время сканирования варьируется от двух до трех секунд.
Тем не менее проблема далекого от действительности результата, в лучшем случае, может быть решена лишь частично. И это меньше связано с техническими особенностями МРТ, чем с непрямым принципом измерения. И, таким образом, с биологией мозга, которому все равно требуется непрактично долгое время, чтобы отреагировать на изменение активности нейронов изменением кровотока и потребления кислорода.
Дипломатичная критика
Недооцененным источником ошибок является также привязка анатомических зон к сигналам, получаемыми при фМРТ. Проблемы вызывают небольшие органы, например миндалины. Особенно при получении фМРТ-изображений на сканерах с напряженностью магнитного поля менее 5 Тесла. Немецкие и швейцарские ученые исследовали вопрос, насколько велик фактический локализационный коэффициент совпадений в случае миндалин.
Грубо говоря: есть ли на красочных фМРТ-изображениях миндалины, если они на них обозначены? Путем сравнения с атласами мозга с клеточным разрешением Тонио Балл и его коллеги рассчитали вероятность правильной идентификации миндалин в 114 исследованиях, в которых сообщалось об активации или деактивации этих областей мозга[142]142
Ball T, Derix J et al. (2009) Journal of Neuroscience Methods.
[Закрыть]. Результат оказался скромным. Из привязанных к миндалинам 339 BOLD-сигналов едва ли половина исходила от них с вероятностью более 80 %. Вероятность соответствия миндалинам 12 % «их» сигналов вообще была оценена как нулевая. В реальности за эти сигналы были приняты сигналы от гиппокампов. В остальных случаях коэффициент вероятности совпадений находился где-то между этими результатами.
Работа Балла и его коллег также стала образцом дипломатии. Все изученные исследования ученые распределили по авторам, а анатомическое расположение предполагавшихся миндалин представили в виде набора MNI-координат[143]143
Система координат в соответствии с атласом мозга Монреальского неврологического института.
[Закрыть]. Было бы несложно выполнить таблицу и в ее колонках указать вычисленные вероятности правильного соотнесения сигналов с миндалинами для каждого исследования. Однако от такой формы решили воздержаться, очевидно, чтобы не компрометировать некоторых коллег.
Большинство фМРТ-исследований внушают, что можно визуализировать конкретные мозговые процессы, которые лежат в основе конкретного опыта восприятия. Но есть ли на самом деле какие-то специфические нейронные корреляты зависти, любви, морали или ревности, отделимые от другой работы мозга? Возможна ли в действительности фМРТ-фиксация лжи? Или мы наблюдаем только глобальные, неспецифические схемы мозговой активности, которые были бы одинаковыми или очень похожими во множестве разных опытов или в разных экспериментальных ситуациях? Если вы исследуете мозг и вас неожиданно спрашивают, где в нем происходит то или иное умственное действие, просто ответьте: в передней части поясной извилины коры головного мозга. Так вы с большой вероятностью ответите правильно. Недаром передняя часть поясной извилины считается особенно «неразборчивой областью мозга».
Вот несколько примеров. Активация этой области мозга обнаруживается не только среди недавно влюбленных и американских избирателей, которые видят изображения Хиллари Клинтон, но также когда китайско-английские билингвы при словообразовании отказываются от одного из языков[144]144
Guo T, Liu H et al. (2011) Neuroimage.
[Закрыть], когда женщинам приходится выбирать между потенциальными сексуальными партнерами[145]145
Rupp HA, James TW et al. (2008) Neuroscience Letters.
[Закрыть], когда голодный получает шоколадный молочный коктейль[146]146
Gearhardt AN, Yokum S et al. (2011) Archives of General Psychiatry.
[Закрыть], когда мужчины вспоминают о собственной смертности[147]147
Quirin M, Loktyushin A et al. (2011) Social Cognitive and Affective Neuroscience.
[Закрыть], когда вегетарианцам показывают иллюстрации жестокого обращения с животными[148]148
Filippi M, Riccitelli G et al. (2010) Public Library of Science One.
[Закрыть], когда оптимисты представляют позитивные события[149]149
Sharot T, Riccardi AM et al. (2007) Nature.
[Закрыть] или когда человека щекочут в МРТ-сканере[150]150
Blakemore SJ, Wolpert D et al. (2000) Neuroreport.
[Закрыть]. Можно было бы долго продолжать этот список. Общераспространенным является предположение, что передняя часть поясной извилины отвечает за связь между эмоциями и познанием[151]151
Allman JM, Hakeem A et al. (2001) Annals of the New York Academy of Sciences.
[Закрыть]. Это имеет смысл и способно объяснить, почему она заведомо активна, что бы мы ни измеряли. В то же время обнаружение активации этой зоны при МРТ становится теоретико-познавательной тривиальностью. Ведь какое человеческое действие не сопровождается эмоциями и познанием?
Лосось сомнений
На конференции организации Human Brain Mapping в Сан-Франциско в 2009 году одна научная работа молодых психологов недолговременно и развлекла, и разозлила публику. В стендовом докладе на тему «Построение модели и анализ» Крейг Беннетт, Майкл Миллер и Джордж Уолфорд представили своим коллегам – исследователям мозга поучительную работу. Ее название: «Нейронные корреляты межвидового восприятия мертвого атлантического лосося: аргумент в пользу поправки на множественные сравнения»[152]152
Bennett CM, Miller MB et al. (2009) NeuroImage.
[Закрыть].