355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Евгений Айсберг » Транзистор?.. Это очень просто! » Текст книги (страница 9)
Транзистор?.. Это очень просто!
  • Текст добавлен: 5 мая 2017, 09:30

Текст книги "Транзистор?.. Это очень просто!"


Автор книги: Евгений Айсберг



сообщить о нарушении

Текущая страница: 9 (всего у книги 10 страниц)

Н. – В чем же тогда заключается трудность? Я полагаю, что остается принять для транзисторов те же самые схемы, которые используются для ламп.

Л. – Этого нельзя было бы сделать, не принимая во внимание относительно небольших значений выходного и особенно входного сопротивлений транзисторов.

Н. – А что, разве они создают здесь большие трудности, чем на низких частотах? Я предполагаю, что достаточно применить в цепях связи понижающие трансформаторы с соответствующим коэффициентом, чтобы осуществить согласование сопротивлений, как мы это делали в области низких частот.


Двойная цель

Л. – Ты забываешь, Незнайкин, что при усилении по высокой частоте надо не только усилить слабые сигналы, полученные антенной, но и произвести отбор сигналов, так сказать, отсортировать хорошее зерно от семян сорняков. Иначе говоря, перед каскадами как высокой частоты, так и промежуточной стоят две задачи: усиление и избирательность. Транзисторы принимают на себя задачу усиления…

Н. – …а настроенные контуры, которые образуют связывающие звенья, обеспечивают избирательность.

Л. – Именно это я и хотел тебе сказать. Но возьми каскад, где на входе и на выходе имеется по настроенному контуру (рис. 109).

Рис. 109. Колебательные контуры на входе и выходе каскада высоком частоты на транзисторе.

Контур на входе включен между базой и эмиттером, т. е. параллельно входному сопротивлению, имеющему 200 – 2000 Ом. Это сопротивление шунтирует контур и значительно увеличивает его затухание, из-за чего резонансная характеристика становится более тупой. Менее катастрофически обстоит дело с выходным контуром, включенным параллельно сопротивлению коллектор – эмиттер, имеющему несколько десятков килоом. Но и в этом случае затухание возрастает.

Н. – Как же тогда согласовать сопротивления и избежать при этом чрезмерного шунтирования контуров? Это история о козе и капусте…

Л. – Примирить их удастся путем соответствующего выбора отношения индуктивности к емкости и неполной связью контура с транзисторами, для чего на входе и выходе включают не всю обмотку, а только часть ее витков. Это должно снизить вносимое затухание. И, разумеется, стараются согласовать эти сопротивления путем подбора необходимого соотношения чисел витков в обмотках трансформатора.

Н. – Значит, связь всегда должна устанавливаться с помощью трансформатора.

Л. – Не обязательно. Зачастую применяют простую схему с параллельным колебательным контуром в цепи коллектора. Это своеобразная разновидность резистивно-емкостной связи (рис. 110). Но лучше прибегнуть к помощи автотрансформатора с настроенной обмоткой, которая при помощи отводов соединяется с выходом предшествующего транзистора и со входом следующего (рис. 111 и 112). Максимальную же избирательность и наилучшее воспроизведение звука можно получить, применив трансформатор с настроенной первичной обмоткой (рис. 113) или, еще лучше, с обеими настроенными обмотками (рис. 114, 115). Последнее часто используется в каскадах промежуточной частоты, где такие трансформаторы при правильном выборе связи между обмотками представляют прекрасные полосовые фильтры.

Рис. 110–115. Схемы межкаскадной связи.

110 – схема связи с одиночным колебательным контуром;

111 – схема автотрансформаторной связи со следующим каскадом. Здесь сопротивления согласованы лучше, чем в предыдущей схеме;

112 – схема для уменьшения затухания, вносимого в колебательный контур выходным сопротивлением предыдущего транзистора, последний соединяют лишь с частью витков катушки колебательного контура;

113 – схема трансформаторной связи с колебательным контуром;

114 – схема связи с двумя индуктивно связанными колебательными контурами, образующими полосовой фильтр;

115 – та же схема, что и на рис. 114, но с автотрансформаторным включением обоих транзисторов. Это обеспечивает лучшую избирательность, так как вносимое транзисторами в колебательные контуры затухание уменьшается.

Н. – Это значит, что они пропускают всю полосу модулирующих частот, но очень сильно ослабляют все частоты вне этой полосы.

Л. – Да, Незнайкин. Ты не забыл, что это наилучший способ решить противоречие между высокой избирательностью и верным воспроизведением музыки.


Невидимая опасность

Н. – Я все больше убеждаюсь, что если заводы, выпускающие катушки индуктивности, правильно выполняют свою работу, то я не столкнусь ни с какими трудностями при реализации своих каскадов высокой и промежуточной частоты.

Л. – Я вынужден охладить твой пыл. В транзисторе имеется скрытая опасность, которая может причинить немало неприятностей.

Н. – Ну так что же, я предпочитаю сражаться с открытым забралом. Что же представляет собой эта твоя новая ловушка?

Л. – Это внутренняя емкость между коллектором и базой. Если на входе и на выходе ты имеешь контуры, настроенные на одну частоту, то этой емкости (которая может быть порядка нескольких десятков пикофарад) достаточно, чтобы образовать между контурами связь, превращающую мирный транзистор в генератор высокочастотных колебаний.

Н. – Вспомни, что для предотвращения подобных связей, возникающих из-за емкости между анодом и сеткой в лампах-триодах, между этими электродами устанавливают экранирующую сетку, на которую подается постоянный потенциал, я подозреваю, что так же поступают и в транзисторах.

Л. – В некоторой мере ты прав: так устроены транзисторы p-n-i-p, о которых мы уже говорили. Слой беспримесного полупроводника (i) в определенном смысле играет роль экрана, снижающего емкость база – коллектор. В дрейфовых моделях транзисторов также имеется зона, удаляющая коллектор от базы. А при работе с обычными транзисторами для предотвращения самовозбуждения используют метод, предложенный для высокочастотных схем на лампах еще до изобретения тетродов.

Этот метод заключается в нейтрализации паразитной емкости путем приложения на управляющий электрод напряжений такой же амплитуды, но в противофазе. В ламповых схемах для этого использовался маленький «нейтродинный» конденсатор, который часть усиленного напряжения передавал на сетку в противофазе.

Н. – По-моему, это своего рода обратная связь, и в транзисторных схемах она должна подаваться на базу. Но как в этих условиях выполнить требование о противофазе? Нужно ли включать специальный фазоинверторный каскад?

Л. – К чему такие усложнения? Всегда можно найти точку, где напряжение будет в противофазе по отношению к напряжению на коллекторе. В случае трансформатора с ненастроенной вторичной обмоткой один из выводов этой обмотки и является такой точкой (рис. 116).

Рис. 116. Конденсатор Сн служит для нейтрализации действия внутренней емкости коллектор – база.

Н. – Следовательно, его просто соединяют с базой через конденсатор Сн, емкость которого подобрана так, чтобы напряжения имели ту же амплитуду, что и напряжения, проходящие через емкость коллектор – база. А почему нельзя применять этот же способ с трансформатором, у которого вторичная обмотка тоже настроена? Разве у него на одном из выводов вторичной обмотки не появляется напряжение с фазой, противоположной напряжению на первичной обмотке?

Л. – Увы, нет! После настройки вторичной обмотки напряжение на ее концах сдвинуто по фазе только на четверть периода. Это несколько усложняет дело, и для получения нейтрализующего напряжения приходится применять небольшую вспомогательную обмотку. Однако вместо нее можно сделать у первичной обмотки вывод для соединения с отрицательным полюсом источника питания. Тогда конец первичной обмотки, расположенный по другую сторону от части, соединенной с коллектором, будет иметь напряжение в противофазе с напряжением на коллекторе. И нам остается только сиять это напряжение и приложить его через конденсатор Сн к базе (рис. 117).

Рис. 117. Вариант схемы нейтрализации, применяемый в усилителях с полосовыми фильтрами.

Н. – А всегда ли нужно прибегать к нейтрализации в каскадах высокой и промежуточной частоты?

Л. – Нет. Часто затухания, вызванного малым сопротивлением транзисторов, достаточно, чтобы устранить всякую возможность самовозбуждения. А при транзисторах структуры p-n-i-p и дрейфовых транзисторах нейтрализация, как правило, не нужна вообще. Впрочем, заметь, Незнайкин, что я не изображал на схемах, чтобы сделать их более наглядными, никаких устройств температурной стабилизации (обратная связь с помощью резистора в цепи эмиттера), которые тоже применяются в каскадах высокой и промежуточной частоты.


Автоматическая регулировка усиления

Н. – Можно ли в транзисторных схемах сделать автоматическую регулировку усиления (АРУ), зависящую от величины принимаемых сигналов? Я хочу сказать – такую регулировку, которая бы служила не только для сглаживания замирания сигнала, но и для устранения любых колебаний принимаемого сигнала, как, например, при проезде автомобиля с приемником под металлическим мостом.

Л. – АРУ в транзисторных схемах строится по тем же принципам, что и в ламповых схемах. Ты знаешь, что усиление транзистора зависит от его крутизны, которая в свою очередь изменяется от тока эмиттера. Следовательно, изменяя смещение базы, можно изменять усиление. Если используется, как это обычно бывает, транзистор структуры р-n-р, то ток эмиттера, а следовательно, и усиление можно уменьшить, сделав базу менее отрицательной.

Н. – А, я догадался, для этой цели используют напряжение, снимаемое после детектирования и усредненное с помощью сопротивления, развязанного емкостью.

Л. – Правильно, однако и здесь следует иметь в виду, что управление транзистором требует не напряжения, а мощности. Поэтому часто приходится снимать регулирующее напряжение после усиления постоянной составляющей полученного от детектора сигнала. Позднее ты увидишь, что в этом нет ничего сложного.

Н. – А пока я вижу (рис. 118), что каскады высокой и промежуточной частоты управляются довольно простой системой АРУ.

Рис. 118. Усилительный каскад высокой или промежуточной частоты, управляемый системой автоматической регулировки усиления (АРУ).

Напряжение, которое должно иметь положительную полярность при увеличении уровня сигнала, поступает на базу через резистор R4. Другой резистор R2, соединенный с отрицательным полюсом источника питания, вместе с образует делитель напряжения. Таким образом, средний потенциал базы будет изменяться: он будет тем отрицательнее, чем слабее сигнал; это повлечет за собой увеличение усиления. При больших уровнях сигнала, наоборот, потенциал базы будет менее отрицательным, что приведет к снижению усиления. Итак, все будет прекрасно!


Непредвиденная трудность


Л. – Я еще раз вынужден омрачить твою радость. Не забывай, что в транзисторе все взаимосвязано и что каждое изменение одной из величин резко изменяет все другие. В данном случае входная и выходная емкости изменяются одновременно и в том же направлении, что и величина тока эмиттера.

Н. – Значит, регулирующее напряжение своими изменениями вызывает еще и расстройку колебательных контуров, включенных на выходе и входе транзистора?

Л. – Ну, да, Незнайкин, но этим, однако, не ограничиваются неприятности, так входное и выходное сопротивления также изменяются в зависимости от тока эмиттера, но в противоположном направлении.

Н. – А это важно? Ведь увеличение этих сопротивлений лишь меньше будет шунтировать контуры на входе и выходе. И приемник станет более избирательным…

Л. – … и поэтому он хуже будет воспроизводить звук, так как полоса пропускания станет более узкой и мы лишимся высоких звуков при приеме сильных сигналов.

Н. – Я понял твой метод, Любознайкин, который состоит в том, чтобы создавать себе трудности, а затем устранять их как бы по мановению волшебной палочки. Так будь любезен и взмахни своей волшебной палочкой.

Л. – По правде говоря, тебе следует удовлетвориться компромиссом, так как нелегко устранить все недостатки, которые я тебе указал. Для этой цели можно усилить действие регулятора, воздействуя одновременно на затухание настроенного контура, с тем чтобы повысить это затухание, когда сигналы становятся более сильными. Вот очень ловко придуманная схема, позволяющая это сделать (рис. 119). Ты найдешь здесь тот же способ управления усилением при помощи постоянной составляющей напряжения детектированных сигналов, которое прикладывается к базе транзистора. Но, кроме того, ты неожиданно для себя обнаружишь в схеме необычайный диод Д, включенный между выводом одного из входных контуров и резистором развязки R5 в цепи коллектора. Попробуй проанализировать его значение.

Рис. 119. Схема усиленной АРУ с диодом Д, вносящим переменное затухание в первый колебательный контур.

Н. – Хорошо. Допустим, что принимаемые сигналы становятся сильнее. Напряжение, поступающее через резистор R1 на базу второго транзистора, будет делать базу менее отрицательной, и ток эмиттера этого транзистора уменьшится. Ток коллектора также уменьшится. Значит, уменьшится падение напряжения, создаваемое этим током на резисторе R5. Это приведет к тому, что точка А станет более отрицательной и пропускаемый диодом Д ток увеличится, потому что прикладываемое к диоду в прямом направлении напряжение возрастет. Вот и все…

Л. – Нет, это не все. Потому что цепь, в которую входит диод, как ты видишь, шунтирует наш первый настроенный контур. Тот факт, что ток в этой цепи увеличивается, означает, что ее сопротивление уменьшается. Следовательно, эта цепь вносит в первый колебательный контур затухание, увеличивающееся при приеме сильных сигналов.

Н. – Я понял в чем дело! Для сильных сигналов, когда внутренние сопротивления транзисторов повышаются, ты искусственно ввел здесь сопротивление, которое уменьшается. И, таким образом, мы одним изменением компенсируем другое. Кроме того, возросшие потери в контуре снижают усиление, что усиливает действие АРУ.

Л. – Незнайкин, мне кажется, что скоро ты будешь обучать меня теории транзисторов…

Беседа тринадцатая

ОТ ВЫСОКОЙ К ПРОМЕЖУТОЧНОЙ, А ЗАТЕМ К НИЗКОЙ ЧАСТОТЕ

Теперь Незнайкин знает, как транзисторы могут усиливать сигналы высокой, промежуточной и низкой частоты. Но он еще находится в неведении, как осуществляется переход от одной частоты к другой. Поэтому Любознайкин открывает ему здесь тайны преобразования частоты и детектирования. Попутно он рассмотрит некоторые схемы генераторов на транзисторах.

Содержание: Диодное детектирование. Практические схемы. Детектирование с помощью транзистора. Регенеративный детектор. Схемы генераторов. Преобразование частоты с отдельным гетеродином и при помощи одного транзистора.


Последние белые пятна

Незнайкин. – В эпоху, когда на карте Луны для нас больше нет секретов и белых пятен, я помимо своей воли думаю о тех картах, на которых белые пятна «неизведанных земель» были отрадой наших дедов и предоставляли полную свободу воображению Жюля Верна.

Любознайкин. – Я прекрасно вижу, к чему ты клонишь. В цепочке каскадов; составляющей радиоприемник, для тебя осталось два белых пятна: преобразование частоты и детектирование. Мы восполним этот пробел довольно легко, тем более что здесь ни одна западня не поджидает нас и ты практически знаешь, как осуществляется детектирование с помощью диода.

Н. – Правда, некогда мы с тобой уже разбирали, как диод выпрямляет высокочастотный сигнал, после чего односторонние полупериоды, усредненные емкостью, создают на сопротивлении нагрузки низкочастотное напряжение.


Детектирование – выпрямление

Л. – Так вот схема (рис. 120), в которой для тебя нет ничего неизвестного.

Рис. 120. Схема диодного детектора с трансформаторной связью с последним колебательным контуром промежуточной частоты.

Точечный диод Д выпрямляет ток, поступающий с последнего трансформатора промежуточной частоты, и создает на выводах резистора R напряжение, высокочастотная пульсация которого сглаживается конденсатором С1, причем выявляется составляющая низкой частоты. Перемещая подвижной контакт потенциометра R, можно снимать для дальнейшего усиления большую или меньшую часть этого напряжения, регулируя таким образом громкость. Электролитический конденсатор С2передает низкочастотный сигнал на базу транзистора первого каскада усиления низкой частоты, одновременно изолируя цепь базы от схемы детектора по постоянному току.

Н. – Для чего поставлен здесь резистор R2?

Л. – Для предотвращения чрезмерного снижения сопротивления нагрузки диода из-за шунтирующего входного сопротивления транзистора. При этом уменьшается затухание, вносимое схемой детектора в последний колебательный контур промежуточной частоты, и повышается эффективность работы детектора при малых сигналах. Этому также способствует небольшое смещение диода в прямом направлении, создаваемое при помощи резистора R4, который присоединяется к отрицательному полюсу батареи и выводит рабочую точку диода на участок характеристики с наибольшей кривизной. Соответствующее этой точке «пороговое» напряжение точечных диодов составляет примерно 0,25 В (рис. 121).

Рис. 121. Зависимость тока диода от приложенного к нему напряжения. Следует обратить внимание на худшую чувствительность точечного диода к малым напряжениям (заметный ток появляется только при напряжении порядка 0,25 В).

Н. – Я вижу, что ты от этого же детектора получаешь напряжение для АРУ.

Л. – Да, но я не уверен, что напряжения, получаемого на нагрузке детектора, всегда достаточно для успешной работы АРУ. Однако, прежде чем говорить об усиленной АРУ, я хочу предложить тебе разобраться самому в действии одной более «изысканной» схемы диодного детектора. Вот посмотри (рис. 122).

Рис. 122. Схема детектора, создающего напряжение АРУ на отдельном резисторе R5. Пульсации выпрямленного диодом тока сглаживаются конденсатором С5.

Н. – Я этого не боюсь. От предыдущей схемы она отличается цепочкой C3R7C4 – настоящим небольшим фильтром, пропускающим низкие частоты, предназначенным для устранения всяких следов промежуточной частоты в напряжении, поступающем на усилитель низкой частоты. Кроме того, ты создаешь регулирующее напряжение для системы АРУ на особом резисторе R5, заблокированном конденсатором С5. Чтобы этот конденсатор не шунтировал цепи низкочастотного сигнала, ты соединил точку А с диодом через резистор R6. Кроме того, при помощи резистора R6, присоединенного к отрицательному полюсу источника питания, ты подаешь на базы регулируемых транзисторов начальное смещение. Одним словом, здесь цепи низкой частоты лучше отделены от цепей АРУ. Но я хотел бы знать, как ты осуществляешь усиленную АРУ.

Л. – Очень просто, путем детектирования с помощью транзистора (рис. 123), точнее говоря, с помощью эмиттерного р-n перехода, который также представляет собой диод. Его пороговое напряжение значительно меньше, чем у точечных диодов, так что небольшого отрицательного смещения, порядка 0,1 В, создаваемого делителем напряжения достаточно, чтобы сделать возможным детектирование сигналов с малой амплитудой. Запомни получше, что это смещение не должно превышать 0,1 В; без этого условия транзистор вместо детектирования начнет усиливать колебания промежуточной частоты, что нам совершенно не нужно… Открываясь же только при отрицательных полупериодах входного напряжения, транзистор будет создавать в цели коллектора лишь токи, соответствующие этим полупериодам.

Рис. 123. Схема детектора с транзистором, одновременно усиливающим напряжение АРУ.

Н. – Но это в точности повторяет детектирование на изгибе анодной характеристики электронной лампы! И я прекрасно вижу, что произойдет дальше. Наши односторонние импульсы коллекторного тока создадут на нагрузочном сопротивлении транзистора усиленное напряжение низкой частоты, которое после отфильтровивания цепочкой C1R4C2 высокочастотной составляющей подается на усилитель низкой частоты. Между выходом фильтра и входом усилителя низкой частоты ты поставил потенциометр для ручной регулировки громкости.

Л. – Правильно! Кроме того, ты можешь отметить наличие резистора R6, который вместе с резистором R5 образует делитель выходного напряжения детектора. С этого делителя через резистор R7 снимается регулирующее напряжение на базы транзисторов, управляемых цепью АРУ.


Противоположность обратной связи

Н. – Как я вижу, это регулирующее напряжение действительно усиливается. И если мы говорим о детектировании, то я хотел бы спросить тебя, можно ли осуществить с помощью транзистора регенеративный детектор, – то самое устройство, которое всегда меня восхищало своей чрезвычайно высокой чувствительностью.

Л. – Конечно, да. Для этого достаточно подать во входную цепь часть усиленной энергии из выходной цепи детектора. Само собой разумеется, нужно, чтобы…

Н. – …напряжение обратной связи находилось в фазе с входным напряжением. В противном случае мы создадим отрицательную обратную связь и вместо повышения усиления снизим его.

Л. – Необходимо соблюдать и еще одно условие: связь между входной и выходной цепями не должна превышать определенной нормы, иначе…

Н. – …наш регенераторный детектор превратится в генератор высокой частоты, и его звучание создаст интерференционные свисты в расположенных поблизости приемниках.

Л. – Это происходит тогда, когда из выходной, цепи во входную подается энергии больше, чем поглощается входной цепью. Ты знаешь, Незнайкин, что генератор высокой частоты не всегда является причиной разногласий с соседями. В надлежащем исполнении именно такой генератор позволяет осуществлять преобразование частоты в супергетеродином приемнике.

Н. – Я в восторге от того, что ты занялся последним «белым пятном» на моей географической карте. Предполагаю, что характерная для транзисторов гибкость позволит сделать большое количество различных схем гетеродинов.

Л. – И ты не ошибаешься. Действительно, колебательный контур можно включить либо в цепь коллектора, либо в цепь эмиттер – база, заземлить можно или эмиттер, или базу, подавая напряжение обратной связи соответственно на базу или на эмиттер. Наконец, можно сделать гетеродин только с одной катушкой, которая одновременно будет входить в колебательный контур и служить для создания обратной связи.

Н. – Если позволишь, то я попытаюсь составить одну простую схему гетеродина (рис. 124). Я включу настраивающийся контур в цепь коллектора; катушка L1 этого контура связана с катушкой L2, сигнал с которой через конденсатор С2 подается на базу транзистора, а смещение базы обеспечивается резистором R. Будет ли моя схема генерировать?

Рис. 124. Схема генератора с колебательным контуром в цепи коллектора и с катушкой обратной связи в цепи базы.

Л. – Вне всякого сомнения, если ты правильно сориентируешь направление витков катушек.

Н. – Как, не прибегая к практической проверке, установить, выполнено ли это условие?

Л. – Вспомни схему индуктивной трехточки, транзисторный вариант которой я для тебя приготовил (рис. 125). Как ты видишь, на пути от коллектора к базе ток протекает по виткам катушки всегда в одном направлении. Примени это правило к изображенной тобой схеме (рис. 124). Если в катушке L1ток, идя от коллектора к отрицательному полюсу, протекает по виткам в направлении движения часовой стрелки, то сделай так, чтобы в катушке L2 по пути от отрицательного полюса к базе ток протекал по виткам в этом же направлении.

Рис. 125. Генератор можно собрать и с одной катушкой, если сделать от нее отвод. На рисунке изображена схема такого генератора, называемая «индуктивной трехточкой».

Н. – А если заземлена база и мы подаем напряжение обратной связи на эмиттер, то, несомненно, следует изменить направление витков катушек.

Л. – Разумеется. Если обратиться к схеме на рис. 126 с колебательным контуром L1C1 в цепи эмиттера, то катушка связи L2, включенная в цепь коллектора, должна ориентироваться в обратную сторону по сравнению с катушкой L1.

Рис. 126. Наиболее распространенная схема генератора с настраиваемым контуром в цепи эмиттера. Колебательный контур индуктивно связан с коллекторной цепью транзистора при помощи катушки обратной связи.


Триоды под всеми соусами

Н. – Мне кажется, что я мог бы нарисовать добрый десяток схем различных генераторов. Но ведь ты говоришь мне о них только для того, чтобы перейти к вопросу преобразования частоты. Я зашел в тупик. Как сделать гетеродин-преобразователь на транзисторах, которые представляют собой всего лишь полупроводниковые триоды? Нет ли возможности сделать полупроводниковые гексоды, гептоды и октоды?

Л. – До сих пор таких приборов не сделали. Может быть и можно сделать полупроводниковые приборы с двумя управляющими электродами, воздействуя на ток одновременно потенциалом базы и электрическим полем другого электрода, которое отклоняло бы электроны с прямого пути… Но пока можно прекрасно обойтись нашими триодами. Разве первые супергетеродины не были сделаны в ту пору, когда была известна лишь лампа с тремя электродами?

Н. – Скорее рассказывай, как с помощью только одного транзистора ты и создашь колебания, и наложишь их на поступающие из антенны колебания высокой частоты, и осуществишь детектирование, выделяя в результате всего этого составляющую промежуточной частоты?

Л. – Очень просто, Незнайкин! Возьми генератор, схема которого изображена на рис. 126, включи в точке В контур, настроенный на частоту антенны, включи затем в точке Л первичную обмотку трансформатора промежуточной частоты, и ты получишь схему, показанную на рис. 127. Если контур C2L2гетеродина настроен на частоту, отличающуюся от частоты принимаемых сигналов на величину промежуточной частоты, то преобразование частоты осуществляется без каких бы то ни было трудностей.

Рис. 127. Схема преобразователя частоты, полученная непосредственно из схемы генератора, показанной на рис. 126.

Н. – Действительно, ты вводишь в цепь базы сигнал, возбуждаешь собственные колебания между эмиттером и коллектором и, конечно, пользуешься нелинейностью характеристики транзистора, на который подается соответствующее смещение, чтобы детектировать биения. Такой метод эксплуатации бедного транзистора, нагрузка его таким обилием разнообразных функций, мне кажется, возвращает нас к худшим временам рабства.

Л. – Транзистор от этого не чувствует себя намного хуже. Но если ты хочешь четко разграничить функции гетеродина и смесителя, что бывает вполне целесообразно на коротких волнах, то можешь прибегнуть к помощи отдельного гетеродина (рис. 128).

Рис. 128. Схема преобразователя частоты с отдельным гетеродином.

Н. – Я нахожу это весьма симпатичным. И я с радостью отмечаю, что для меня на карте чудесной страны транзисторов нет больше белых пятен.

Беседа четырнадцатая

ВАГОНЫ И ПОЕЗДА

Этой последней беседой заканчивается путешествие наших друзей по чудесной стране транзисторов. Последняя встреча позволит Любознайкину и Незнайкину применить приобретенные знания для объяснения полной схемы радиоприемника на транзисторах. Основываясь на известных уже понятиях, наши друзья обсуждают прекрасные перспективы будущего, открывающиеся перед транзисторами.

Содержание: Полная схема приемника. Ферритовая антенна. Разнообразные применения транзисторов. Преобразователь постоянного тока. Будущее транзисторов.


Развлечения для взрослых, покой для детей

Незнайкин. – Не удивляйся, Любознайкин, тому, что я играю игрушечным электрическим поездом. Он предназначен для моего маленького племянника, и я проверяю исправность телеуправления и стрелок.

Любознайкин. – Да, именно это говорят отцы, дарящие своим сыновьям электрический поезд, потому что они не осмеливаются признать, как это забавляет их самих… Но ты испортишь своего племянника. Какое разнообразие вагонов! Пассажирские вагоны всех классов, спальные, вагон-ресторан, вагоны-холодильники, цистерны, платформы; к чему бы это?..

Н. – Это позволяет получать бесконечное количество различных железнодорожных составов.

Л. – Точно так же изученные нами схемы различных каскадов на транзисторах позволяют составлять бесчисленное множество разных радиоприемников. Невозможно рассмотреть их все. Но если ты хочешь, мы в качестве примера разберем одну полную схему, состоящую из вагонов… я хотел сказать, из следующих каскадов: преобразователя частоты, как на рис. 127; двух каскадов усиления промежуточной частоты, как на рис. 116, но с отводами в первичной обмотке, чтобы уменьшить затухание, вносимое в контур предшествующим транзистором; детектора, как на рис. 120; двух каскадов низкой частоты на резисторах, как на рис. 91; оконечного двухтактного каскада, как на рис. 102.

Прошу тебя внимательно рассмотреть эту схему (рис. 129, а, б), по которой с некоторыми отличиями в деталях собрано большинство портативных радиоприемников, нарушавших твой покой на пляже. Видишь ли ты в ней что-нибудь, что могло бы тебя заинтересовать?

Рис. 129. Типовая схема портативного радиоприемника на транзисторах, составленная из рассмотренных ранее каскадов. На схеме не указаны номиналы резисторов и конденсаторов, так как они зависят от типов применяемых транзисторов.


Миниатюрная антенна


Н. – Меня заинтриговало то, чего я не вижу, а именно – антенны.

Л. – B радиоприемнике ее нет. Входная катушка L1 намотана на длинный ферритовый стержень, концентрирующий энергию электромагнитных волн и выполняющий функции антенны.

Н. – Очевидно, диаметр такой катушки должен быть значительным, чтобы подобно рамочной антенне собирать достаточную энергию?

Л. – Нет, так как феррит представляет собой магнитную керамику с высокой проницаемостью, он как бы вдыхает в себя все находящиеся поблизости магнитные поля, благодаря чему небольшая катушка, диаметр которой не превышает сантиметра, может иметь такую же восприимчивость, как большая рамочная антенна. Феррит обладает также эффектом направленности, что заставляет соответствующим образом ориентировать портативные приемники и повышает их избирательность, ибо снижает влияние помех, поступающих с других направлений. Обрати внимание, Незнайкин, на то, что вместо одной катушки (а также и вместо катушек гетеродина L2 и L3) обычно устанавливают несколько катушек с переключателем, причем каждая из катушек соответствует определенному диапазону волн. Поэтому мы имеем две катушки в приемниках, рассчитанных на прием длинных и средних волн. А если необходимо принимать и короткие волны, то добавляют третью катушку, соединенную с небольшой штыревой антенной, потому что прием, коротких волн на ферритовую антенну не дает хороших результатов. Есть ли для тебя еще какие-либо неясные моменты?


Все ясно

Н. – Ей богу нет. Я вижу, что смещение всех баз достигается с помощью делителей напряжения.


    Ваша оценка произведения:

Популярные книги за неделю