355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Энрике Грасиан » Мир математики. т.3. Простые числа. Долгая дорога к бесконечности » Текст книги (страница 3)
Мир математики. т.3. Простые числа. Долгая дорога к бесконечности
  • Текст добавлен: 7 октября 2016, 02:10

Текст книги "Мир математики. т.3. Простые числа. Долгая дорога к бесконечности"


Автор книги: Энрике Грасиан


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 3 (всего у книги 8 страниц)

Глава 3
Новые парадигмы

В середине XVII в. происходил подъем многих областей науки, которая в то время вышла за пределы традиционных учебных заведений. Тогда уже существовали многие европейские университеты, являвшиеся центрами развития научных знаний, но они не спешили переходить к новым способам познания. Это было серьезной проблемой для тех, кто желал заниматься научными исследованиями вне академических структур, потому что только сотрудники учебных заведений могли получать зарплату за свою работу. Наступил период меценатства, когда богатые дворяне и помещики гордились тем, что поддерживают великих мыслителей. Таким образом их имена оказывались связанными с новыми идеями и открытиями.

Большинство биографов того времени упоминали не только имена великих ученых, но и их покровителей. Однако временами возникали проблемы с общением ученых между собой.

Тогда появились специализированные учреждения для обеспечения научных коммуникаций. Одним из них являлась Французская академия наук, основанная в 1666 г. Людовиком XIV по предложению Жан-Батиста Кольбера, возникшая в монашеской келье парижского монастыря. В этой келье жил отец Мерсенн.


Марен Мерсенн

Мерсенн родился 8 сентября 1588 г. в Уазе (в наши дни это департамент Сарта). О первых годах его жизни известно немного. Мы знаем, что в 1604 г. он поступил в иезуитский коллеж в Ла-Флеш (основанный в 1603 г. Генрихом IV), где учился в течение года. Там он близко сошелся с другим учеником коллежа, Рене Декартом, дружбу с которым пронес через всю жизнь.

В 1609 г. Мерсенн начал изучать теологию в Сорбонне, а через два года, окончив университет, присоединился к францисканскому ордену «минимов».

В 1612 г. он был рукоположен в священники монастыря Благовещения в Париже. С 1614 по 1618 гг. преподавал философию в Неверском монастыре. Затем Мерсенн вернулся в свою келью, где оставался до самой смерти 1 сентября 1648 г. Желая служить науке до конца, Мерсенн написал в завещании, чтобы его тело передали на медицинский факультет для анатомических исследований.

Первые работы Мерсенна носят чисто богословский характер и включают следующие сочинения: «Рассуждения на Книгу Бытия» (1623), «Истина науки против скептиков и пирроников» (1625), «Теологические, физические, моральные и математические вопросы» (1634). Один из его научных трудов, «Всеобщая гармония» (1636), содержит формулу, связывающую длину струны и высоту звука, который она издает при колебании.

Эта формула позволила ему создать музыкальный строй, где каждая октава делится на математически равные интервалы. Тем самым ученый уничтожил пифагорову комму (разницу между суммами квинт и октав в пифагоровом строе) и заложил основы величайшей революции в истории музыки – хроматического, или равномерно темперированного, строя.


Марен Мерсенн (1588–1648).

* * *

МОНАШЕСКИЙ ОРДЕН «МИНИМОВ»

Само название ордена говорит о том, что его члены обязаны придерживаться строгих аскетических практик. Целью ордена было избегать любых доктрин, которые провозглашают излишне строгие убеждения и правила поведения. И действительно, единственное, что члены ордена категорически не принимали, был атеизм. По сути, они посвящали себя молитве, науке и преподаванию и следили за тем, чтобы их религиозные убеждения не мешали их научной и педагогической деятельности. Доказательством этого является горячая поддержка Мерсенном идей Галилея.

* * *

Числа Мерсенна

Величайшей чисто математической работой Мерсенна является трактат «Физико-математические размышления» (1644), в котором появляются знаменитые простые числа, названные его именем. Во введении Мерсенн пишет, что для ряда простых чисел от 2 до 257 число 2Р – 1 тоже является простым, если р имеет одно из следующих значений:

2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257.

Если число 2 возвести в степень, равную последнему числу из этого списка, то получится число, состоящее из 77 цифр. До сих пор остается загадкой, как Мерсенну удалось доказать, что полученное число является простым, имея в своем распоряжении лишь методы вычислений того времени.

Легко показать, что если 2Р – 1 является простым числом, то и р должно быть простым (или, что то же самое, если р не является простым, то и 2Р  – 1 не будет простым). Этот результат, который уже был известен в то время, привел Мерсенна к вопросу: что произойдет, если число р, которое уже является простым, подставить в это выражение? В то время было также известно, что 2Р – 1 является простым числом для значений р = 2, 3, 5, 7, 13, 17 и 19, но не для р = 11.

Прошло 100 лет, прежде чем Эйлеру удалось доказать, что 231 – 1 является простым числом. В 1947 г. был наконец получен полный список: который показывает, что изначальный список Мерсенна содержал два неправильных числа, и в нем не хватало еще трех. Тем не менее эти числа продолжают называть «числами Мерсенна», и в настоящее время они играют важную роль в так называемых «тестах простоты» – алгоритмах, определяющих, является ли число простым.

р = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 и 127,


Мерсенн изучал колебания струн и создал музыкальный строй, где октава делится на равные интервалы.

* * *

ЦЕНТР НАУЧНОЙ МЫСЛИ

Маленькая келья, в которой Мерсенн провел последние 30 лет жизни в монастыре «минимов» рядом с Пале-Рояль, стала средоточием европейской науки. Считалось даже, что сообщить Мерсенну о своем открытии было равносильно распространению публикации по всей Европе.

После его смерти в келье были обнаружены документы, подтверждающие, что Мерсенн поддерживал исследования и вел переписку с 78 респондентами, среди которых были такие известные ученые, как Торричелли, Декарт, Паскаль, Гассенди, Роберваль, Богран и Ферма.

* * *

Пьер де Ферма

Ферма (1601–1665) стал настоящей легендой в мире математики. Его открытия, особенно в области теории чисел, основателем которой он считается, снискали ему славу «князя математиков-любителей». Кроме того, он в совершенстве владел классическими языками, латинским и греческим, и большинством европейских языков, на которых говорили в то время.

Ферма был богат и знатен, что позволило ему в полной мере предаваться своей страсти к числам. Он родился в богатой семье, и его юридическое образование позволило ему получить должность представителя местных властей в Тулузе. Одним из требований к кандидату на этот пост был отказ от всех видов социальной деятельности, с тем чтобы избежать любых подозрений в коррупции. Ферма женился на Луизе де Лонг, дальней родственнице матери, и у них было трое детей. Старший, Клеман-Самуэль, позже издал работы отца, а две дочери Ферма стали монахинями.

Ферма почти никогда не путешествовал, только один раз он был в Париже, где по рекомендации влиятельного французского математика Пьера де Каркави (1600–1684) встретился в монастыре с отцом Мерсенном.

Некоторые люди любят выращивать цветы и тратят много времени на выведение новых сортов из семян, привезенных из дальних стран, или на создание гибридов, которые иногда приносят приятные сюрпризы. Ферма выводил новые сорта чисел.

Однажды утром он словно по мановению волшебной палочки мог открыть новый вид чисел, что для обычных людей казалось магией. В отличие от других математиков, которые скрывали результаты своей работы, Ферма делился ими со всеми, хотя почти никогда не объяснял, как он их получил. Утверждение, что «любое число вида 4n + 1 является суммой двух квадратов», было, например, одним из многих результатов, которые Ферма так и не объяснил, и только Эйлер в 1749 г. доказал этот факт после семи лет напряженной работы. Гаусс как-то сказал, что этот результат был «одним из самых красивых цветков, которые Ферма обнаружил в саду чисел».

Малая теорема Ферма

В 1995 г. имя Ферма попало на первые полосы газет благодаря Эндрю Уайлсу, который доказал одну из самых знаменитых гипотез в истории: если n – целое число, большее 2 (> 2), то не существует целых чисел х, у и z, отличных от 0 и удовлетворяющих уравнению

xn  + yn = zn.

Это гипотеза известна также как «последняя теорема Ферма».

Однако существует и другая, менее известная теорема, называемая «малой теоремой Ферма», которая оказалась особенно актуальной в теории простых чисел. Впервые она была сформулирована в письме, отправленном Ферма 18 октября 1640 г. своему другу, тоже математику-любителю, Бернару Френиклю де Бесси (1605–1675), с которым Ферма делился своими результатами (оба были членами кружка Мерсенна). В письме говорилось: «Каждое простое число эквивалентно степени минус один с любым основанием и показателем, равным данному простому числу минус один… И это утверждение, как правило, справедливо для всех оснований и всех простых чисел. Я бы Вам прислал доказательство, если бы оно не было таким длинным».


Последняя теорема Ферма была доказана в 1995 г. английским математиком Эндрю Уайлсом. Два года спустя он опубликовал предварительное доказательство, где, однако, была ошибка, которую он впоследствии смог исправить.

Ферма снова опускает доказательство, оправдывая это тем, что оно слишком длинное, как и в случае с его более знаменитой последней теоремой. Большинство историков считают, что, скорее всего, великий математик не имел доказательства этих и многих других высказанных им утверждений. Во всяком случае, Ферма считал себя математиком-любителем и мог позволить себе некоторую свободу.

Формулировка теоремы в письме, посланном Френиклю де Бесси, звучит довольно загадочно и неясно, поэтому мы приведем ее в современной терминологии.

Два числа называются взаимно простыми, если они не имеют общих делителей.

Например, 8 и 27 взаимно просты, так как не имеют общих делителей: 8 = 23 и 27 = 33 С другой стороны, 12 и 15 не являются взаимно простыми, так как у них есть общий делитель 3: 12 = 3 х 4, 15 = 3 х 5.

Таким образом, теорема утверждает, что для простого числа р и числа а, взаимно простого с р, разность (ар  – а) делится на р.

Например, возьмем простое число 3 и число 8, которое не делится на 3. Тогда число 83 – 8 = 512 – 8 = 504 делится на 3. И действительно, 504/3 = 168.

Можно сказать, что малая теорема Ферма – малая, да удалая (название «малая» впервые использовал в 1913 г. немецкий математик Курт Гензель), так как она наиболее часто используется в «тестах простоты», определяющих, является ли некое большое число простым.

Даже сам Ферма, скорее всего, пользовался ей для разложения больших простых чисел на множители. Известно, например, что ему удалось представить число 100 895 598169 в виде простых множителей 898 423 и 112 303 в ответ на вопрос Мерсенна, который хотел знать, является ли исходное число простым. Однако неясно, как Ферма мог работать с такими большими числами.

Теорема была впервые доказана Эйлером в 1736 г. У Лейбница было похожее доказательство, но он его не опубликовал. Гаусс также привел еще одно доказательство в своей знаменитой книге «Арифметические исследования», опубликованной в 1801 г. Эйлер позже нашел еще два доказательства. Самым простым является первое доказательство Эйлера, которое можно понять, имея лишь элементарные знания математики (см. Приложение).

* * *

КИТАЙСКАЯ ГИПОТЕЗА

Некоторые документальные источники подтверждают, что еще за две тысячи лет до Ферма математики из Поднебесной сформулировали так называемую «китайскую гипотезу», похожую на малую теорему Ферма. Эта гипотеза утверждает, что число р является простым числом тогда и только тогда, когда 2Р – 2 делится на р. Китайская гипотеза, таким образом, является частным случаем малой теоремы Ферма. Однако обратное утверждение, что если это условие выполняется, то р будет простым, – неверно, поэтому в целом китайская гипотеза ошибочна.

* * *

Напомним, что малая теорема Ферма позволяет установить, является ли число простым, без нахождения его делителей. Покажем это на простом примере.

Пусть р = 9 и а = 2, тогда 29 – 2 = 510. Эта разность не делится на 9, и мы заключаем, что 9 не является простым числом, что и так очевидно. Польза этого простого метода заключается в том, что его можно применять для очень больших чисел.

Нужно отметить, что малая теорема Ферма содержит необходимое, но не достаточное условие: если р – простое число, то условие выполняется, но выполнение условия не означает, что р будет простым. Например, если взять р = 4 и а = 5, то 54 – 5 = 620 делится на 4, но 4 = 2 х 2 является составным числом.

Числа Ферма

«Числами Ферма» называются натуральные числа вида:


Они обозначаются буквой F (по имени Ферма) с соответствующим индексом (n), так что F0  обозначает первое число Ферма, F1 – второе и так далее. Посчитаем значения первых пяти чисел Ферма, учитывая, что любое число в степени 0 равно 1:

2 = 1; 21 = 2; 22 = 4; 23 = 8.

Подставляя в формулу, получим:


Ферма предположил, что все числа, полученные таким способом, являются простыми. Первые пять чисел – 3, 5, 17, 257 и 65537 – действительно простые.

Но при n = 5 получается число:


Ферма не смог определить, является ли это число простым. Но Эйлеру в 1732 г. удалось представить это число в виде произведения двух множителей:

4294967297 = 641 х 6700417.

Тем самым Эйлер показал, что гипотезы Ферма могут быть ложными. Нечто подобное произошло впервые. И хотя гипотеза оказалась ошибочной, числа Ферма продолжают играть важную роль – не только потому, что благодаря им возникли новые идеи и гипотезы, но и потому, что они оказались полезными для выявления простых чисел.

В настоящее время известно, что только первые пять чисел Ферма являются простыми. Но это вовсе не означает, что других простых чисел Ферма не существует: на самом деле их может быть бесконечное множество. Разложение на множители было проделано лишь для чисел Ферма с индексом до n = 11. Представление числа в виде произведения простых множителей является нелегкой задачей. Как мы позже покажем, эта трудность лежит в основе одного из самых популярных методов шифрования, используемых сегодня.


Леонард Эйлер

Не существует ни одной области классической математики, будь то дифференциальное и интегральное исчисление, дифференциальные уравнения, аналитическая и дифференциальная геометрия, теория чисел или теория рядов, в которой бы не появлялось имя швейцарского математика и физика Леонарда Эйлера (1707–1783). Он был одним из самых плодовитых математиков своего времени. После его смерти в Санкт-Петербурге его сочинения продолжают вызывать восхищение и регулярно переиздаются Санкт-Петербургской Академией наук. Швейцарская академия наук планирует опубликовать полное собрание его работ, которое составит около 90 томов.



Банкнота 10 швейцарских франков 1997 г. выпуска с портретом Эйлера и изображениями гидравлической турбины, солнечной системы и света, проходящего через линзу. Все это иллюстрирует вклад Эйлера в математику.

Эйлер всегда проявлял особый интерес к простым числам. Он составил таблицу всех простых чисел от 1 до 100 000 и нашел формулы, которые позволяли ему получать невероятные количества таких чисел. Одной из наиболее интересных является следующая формула:

х2 + х + q,

которая генерирует простые числа для любых значений х, больших 0 и меньших q – 2.

Эйлер нашел все такие простые числа для = 2, 3, 5, 7, 11 и 17. В то время математика была экспериментальной, ее целью было получение практических результатов, поэтому строгие доказательства часто отсутствовали. Однако в отличие от Ферма Эйлер не скрывал своей работы. Если у него было доказательство, он публиковал его, а если факт приводился без доказательства, значит, оно не было найдено.

Работы Эйлера привели к важным изменениям в мире математики, вызвав медленный, но неумолимый сдвиг научной мысли. Среди многочисленных достижений Эйлера есть три, которые оказали решающее влияние на дальнейшие исследования в теории простых чисел: понятия функции, бесконечных сумм и мнимых величин.

Позже мы еще вернемся к ним.

Функции

Эйлер заложил основы того, что в последующие века будет называться математическим анализом. Именно он ввел обозначение функции, f(х), которое используется и в настоящее время. Функция работает как устройство, которое преобразует числа в другие числа в соответствии с установленным правилом. (Мы имеем в виду действительные функции действительного переменного.) Например, если правило гласит, что к каждому числу нужно прибавить определенное число, например, 3, то функция записывается следующим образом:

f(х) = x + 3.

Теперь функцию можно применить к любым значениям переменной:

f(1) = 1 + 3 = 4;

f(2) = 2 + 3 = 5;

f(24) = 24 + 3 = 27;

f(0,32) = 0,32 + 3 = 3,32.

Действительные функции действительного переменного ставят в соответствие каждому действительному числу другое действительное число. Например, функция f(x) = + 1 каждое значение х увеличивает в два раза и прибавляет единицу. Составим таблицу значений этой функции:


Эта таблица позволяет построить график функции по вышеуказанным координатам точек:


Это очень простой график, он представляет из себя прямую линию, построить которую можно всего по двум точкам. С другой стороны, функция вида f(х) = х2 будет иметь следующую таблицу значений:


И график этой функции уже не так легко построить:


Фактически, чем больше у нас точек, тем более точный график можно построить, но если выражение функции не является линейным, то есть если переменная х возводится в степень, большую единицы, графиком функции является кривая линия.

В некоторых случаях эта кривая известна, а в других она оказывается очень непредсказуемой и ее нельзя построить вручную. Одним из величайших достижений Эйлера является представление сложных функций в простых терминах.

Бесконечные суммы

Еще Эйлер для обозначения суммы, или «суммирования», ввел специальный символ, который используется и в современной математике. Это знак Σ – заглавная буква «сигма» греческого алфавита, а также первая буква слова «сумма».

Выражение суммирования записывается следующим образом:

Σi=5j=1i,

где есть переменная, в данном случае i, и индексы, показывающие, как эта переменная изменяется. В данном примере i изменяется от 1 до 5. Таким образом:

Σi=5j=1i = 1 + 2 + 3 + 4 + 5;

Σi=3j=1(n + 1) = (1 + 1) + (2 + 1) + (3 + 1);

Σi=4j=1 n2 = 12 + 22 + 32 + 42.

Обычно запись выражения упрощают, указывая в качестве верхнего индекса лишь последнее значение переменной:

Σ5j=1 i = 1 + 2 + 3 + 4 + 5.

Это означает, что i меняется от 1 до 5.

Если верхний предел не является числом, то используется символ бесконечности, означающий, что сумма бесконечна. Например:


Хотя это может показаться странным, но существуют бесконечные суммы, результат которых является конечным числом. Ряды, имеющие такую сумму, называются сходящимися. Например, ряд


имеет конечную сумму, приблизительно равную 2. Так как члены ряда становятся все меньше и меньше, в какой-то момент каждый следующий член будет настолько мал, что его добавление ничего не изменит, и итоговая сумма будет конечным числом. Безусловно, это не совсем точное объяснение. Можно предположить, что ряд типа


также имеет конечную сумму, но это не так. Данный ряд, которым особенно интересовался Эйлер, называется гармоническим. Эйлер использовал его, чтобы получить еще одно доказательство бесконечности множества простых чисел.

* * *

БАЗЕЛЬСКАЯ ЗАДАЧА

БратьяЯкоб (1654–1705) и Иоганн (1667–1748) Бернулли занимались изучением гармонических рядов. Особенно активно они работали в период между 1689 и 1704 гг. Именно они доказали, что некоторые ряды расходятся. Воодушевленные результатами, они взялись за ряд обратных квадратов:



Якоб показал, что ряд сходится, и ему даже удалось доказать, что сумма ряда меньше или равна двум, но он не смог найти точное значение. Он так увлекся этой проблемой, что сказал: «Велика будет наша благодарность, если кто-нибудь найдет и сообщит нам о том, что до сих пор избегало нашего внимания». Эта проблема известна как «базельская задача», потому что Якоб заведовал кафедрой математики в университете швейцарского города Базеля, и именно там он произнес свои знаменитые слова.

Многие великие математики, в том числе Менголи и Лейбниц, не смогли решить эту задачу, не говоря уже о совместных усилиях братьев Бернулли. И лишь спустя 30 лет решение было найдено «волшебником» Эйлером. Результат был действительно впечатляющим:



Эйлер писал об этом результате так:

«…Я сейчас обнаружил вопреки всем ожиданиям элегантное выражение для суммы ряда 1 + 1/4 + 1/9 + 1/16 + …, которое имеет отношение к квадратуре круга… Я обнаружил, что сумма этого ряда, умноженная на 6, равна квадрату длины окружности, диаметр которой – единица».

К сожалению, Якоб умер к тому времени, когда Эйлер опубликовал свои результаты. «Эх, если бы мой брат был жив!» – воскликнул Иоганн.

«Волшебником» Эйлера называли из-за совершенно магических методов, которые он использовал в доказательствах. На самом деле доказать этот результат совсем не сложно, но такой подход требует некоторых знаний высшей математики и показывает смелость Эйлера, который рассмотрел этот ряд в качестве полиномиальной функции, а затем связал его с разложением в ряд функции синуса. Отсюда и появилось число π, которое является одним из нулей синуса.


Иоганн Бернулли был учителем Эйлера и одним из лучших математиков своего времени.

* * *

Гармонический ряд расходится, и это означает, что сумма его членов бесконечна, но расходится он чрезвычайно медленно по сравнению с рядом вида


Работая с гармоническим рядом, Эйлер вывел функцию, вошедшую в историю как одна из важнейших функций математики: «дзета-функция Эйлера», которая в настоящее время несколько несправедливо называется «дзета-функцией Римана».

Для ее обозначения Эйлер использовал греческую букву ζ (дзета):


Если взять х = 1, то мы получим уже известный нам гармонический ряд причем мы знаем, что его сумма бесконечна. Однако Эйлер предполагал, что при х = 2 сумма ряда


не будет бесконечной, так как здесь содержатся только некоторые члены гармонического ряда, а именно дроби с квадратами. Но найти сумму этого ряда было практически невозможно, используя знания того времени. Тем не менее Эйлеру удалось блестяще доказать следующее равенство:


Эйлер сделал это открытие в возрасте 28 лет, хотя ему понадобилось еще шесть лет, чтобы отшлифовать доказательство. Неожиданное появление в выражении для суммы ряда числа π, которое встречается в формулах площади круга и длины окружности, вызвало удивление всего математического сообщества того времени. С помощью этого результата Эйлер смог решить одну из самых интригующих проблем того времени, так называемую «базельскую задачу».

Экспериментируя с дзета-функцией, Эйлер получил ряд результатов. Например, он уже знал, что при х, меньших или равных 1, сумма ряда бесконечна, и что, следовательно, ряд сходится только при х, больших 1.

* * *

ЭЙЛЕР И МИР ЗВУКОВ

Эйлер догадался использовать мнимую переменную в так называемой экспоненциальной функции f (х) = 2х. Он был поражен, обнаружив, что график этой функции содержит волнообразные линии, которые встречаются при попытках изобразить музыкальные ноты. В зависимости от значений, принимаемых этими мнимыми числами, волны соответствовали более высоким или более низким нотам.

Несколько лет спустя французский математик Жан Батист Жозеф Фурье (1768–1830) разработал метод анализа периодических функций, основанный на результате Эйлера, который связал аналитические методы и мир звуков.

* * *

Эйлер попытался связать простые числа с функциями. Он знал, что по основной теореме арифметики любое натуральное число может быть единственным способом выражено в виде произведения простых чисел. Это означало, что знаменатель каждой из дробей в разложении дзета-функции может быть записан в виде произведения простых чисел. Например, запишем дзета-функцию для х = 2:


и возьмем дробь 1/360. Разложим ее знаменатель, 360, на простые множители:

360 = 23 х З2 х 5, так что


Возведем обе части в квадрат:


Проделав это с каждым из знаменателей дзета-функции, Эйлер получил выражение


которое содержит только простые числа. В левой части этого выражения стоит бесконечная сумма, а в правой – произведение, также состоящее из бесконечного множества чисел. Это выражение, названное «эйлеровым произведением», является краеугольным камнем, на котором в последующие века строилось здание аналитической теории чисел. Оно стало отправной точкой, с которой Риман начал наводить порядок в хаотическом царстве простых чисел, о чем подробнее мы расскажем в шестой главе.


Гипотеза Гольдбаха

Прусский математик Кристиан Гольдбах (1690–1764) часто переписывался с Эйлером. 18 ноября 1752 г. Гольдбах послал ему письмо, содержащее следующее утверждение: «Любое четное число, большее 2, можно представить в виде суммы двух простых чисел». Выражение «сумма двух простых чисел» включало в себя и случаи, когда простое число повторяется. Например,

4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 3 + 7

12 = 5 + 7

14 = 3 +11.

16 декабря того же года Эйлер прислал ответ, где сообщал, что проверил гипотезу до числа 1000, а в другом письме от 3 апреля 1753 г. он написал, что проверил результат до числа 2500. В настоящее время с помощью компьютеров гипотеза проверена для всех четных чисел до двух триллионов. Однако в общем виде гипотеза еще не доказана. По мнению специалистов, она является одной из самых сложных проблем за всю историю математики.


Чен Цзинжунь (1933–1996), один из самых выдающихся математиков XX в., получил в 1966 г. лучший результат в деле доказательства гипотезы Гольдбаха. Он доказал, что любое достаточно большое четное число можно представить в виде суммы простого числа и полупростого (произведения двух простых чисел). Этот факт засвидетельствован на почтовой марке Китайской Народной Республики, выпущенной в 1999 г. в честь Чена.

* * *

ДЯДЯ ПЕТРОС И ПРОБЛЕМА ГОЛЬДБАХА

Так называется знаменитый роман Апостолоса Доксиадиса, в котором главный герой, бывший математик, просит своего племянника решить математическую задачку. Племянник соглашается на предложенное дядей условие: отказаться от изучения математики в университете, если ему не удастся решить задачу за время отпуска. Потратив все лето на безрезультатные попытки, племянник сдается и переходит на юридический факультет. Задачей была именно гипотеза Гольдбаха. В 2000 г., рекламируя этот роман, английский издатель Тони Фабер предложил вознаграждение в миллион долларов тому, кто сможет доказать гипотезу до апреля 2002 г. Как и следовало ожидать, приз никому не достался.


Обложка некоторых изданий книги Апостолоса Доксиадиса с изображением раковины наутилуса, представляющей из себя логарифмическую спираль.


    Ваша оценка произведения:

Популярные книги за неделю