Текст книги "Военные радиоигры"
Автор книги: Эдуард Борноволоков
Соавторы: Владимир Кривопалов
сообщить о нарушении
Текущая страница: 3 (всего у книги 6 страниц)
Рис. 25. Разметка шасси ламповой мишени.
Детали для ламповой мишени можно использовать любые. Резисторы типа ВС или MKT. Конденсаторы постоянной емкости типа МБГО или КСО. Электролитические конденсаторы ЭМ, ЭТО или К-53 (С5) КЭ и К50-3 в фильтре питания.
Трансформатор Тр1 можно использовать готовый от сетевого вещательного приемника типа «Рекорд» любой марки, кроме первого выпуска, в котором нет силового трансформатора.
Трансформатор можно изготовить и самим. Для этого необходим сердечник, набранный из Ш-образных пластин обычной трансформаторной стали. Ширина средней пластины должна быть 20 мм. Толщина набора 37 мм. Обмотка I, рассчитанная на включение в сеть с напряжением 220 в, должна содержать 1200 витков провода ПЭЛ 0,25. Если трансформатор предназначен для работы от сети с напряжением 127 в, первичная обмотка будет иметь в два раза меньше витков. Если предполагается использовать мишень при том и другом напряжении в сети, следует сделать отвод от 650-го витка. Тогда при напряжении в сети 220 в включается вся обмотка, а при 127 в – только часть ее, содержащая 650 витков. Анодная обмотка II намотана проводом ПЭЛ 0,15 и содержит 1200 витков, накальная обмотка имеет 42 витка, выполненных проводом ПЭЛ 1,0.
После того как будет закончен монтаж ламповой мишени, следует прежде всего убедиться, что все соединения сделаны правильно. Затем, не вставляя лампы в ламповые панели, включите питание и проверьте напряжение на лепестках ламповых панелей. На анодных лепестках должно быть 270–250 в постоянного напряжения, на накальных – 6,5 в. Проверку следует производить тестером типа ТТ-1, Ц-20 и т. п.
Если на лепестках ламповых панелек есть напряжение питания, выключите общим выключателем Вк1 сетевое напряжение, вставьте лампы и снова, включив напряжение, проверьте наличие напряжения на соответствующих электродах лампы.
Измерения нужно производить спустя 2–3 мин после включения питания. Это время необходимо для того, чтобы катоды ламп успели нагреться до рабочей температуры.
Если монтаж сделан правильно, то напряжения питания будут несколько другими. Накальное напряжение понизится немного и будет равно 6,3 в. На анодах лампы Л1 вы заметите резкое уменьшение постоянного напряжения. Оно будет около 100 в. То же самое произойдет на аноде левой половины лампы Л2, где напряжение снизится до 130 в. Полное анодное напряжение (около 270 в) останется только на аноде правой половины лампы Л2.
Объяснить такое изменение напряжения можно очень просто. При включении питания оба триода лампы Л1 и левая половина лампы Л2 открыты. Это означает, что через них течет анодный ток. В анодных цепях стоят большие сопротивления, на которых при прохождении анодного тока создается падение напряжения. Это напряжение вычитается из общего напряжения питания, и на анодах оно становится меньше.
Правая половина лампы Л2 закрыта, анодного тока нет, нет и падения напряжения на резисторе R10, и поэтому все напряжение питания будет на аноде лампы. Небольшое уменьшение напряжения накала объясняется падением напряжения на сопротивлении накальной обмотки.
При нормальных напряжениях питания усилитель налаживания не требует и начинает работать нормально сразу после включения питания. При нечеткой работе спускового устройства прежде всего следует добиться, чтобы правая половина лампы Л2 была закрыта, а левая – открыта. Этого достигают изменением величины сопротивления резистора R9. Как правило, это сопротивление нужно увеличить.
Возможно, потребуется подобрать и величину сопротивления резистора R11, что бывает необходимо, когда используют вместо указанного на схеме электромеханического счетчика реле или счетчик другого типа.
Иногда не удается избавиться от влияния постороннего освещения. В темноте мишень срабатывает хорошо, а при освещении даже неярким светом мишень не реагирует на самые точные попадания. Избежать этого можно, затемнив фоторезистор с помощью круглого тубуса.
Можно несколько повысить чувствительность мишени, установив в тубусе двояковыпуклую линзу. Расстояние от линзы до фоторезистора зависит от фокусного расстояния линзы. Это расстояние легко найти.
Зажгите настольную лампу и направьте свет от нее через линзу на чистый лист бумаги. Изменяйте расстояние между линзой и бумагой до тех пор, пока на листе бумаги не появится четкое изображение нити накала лампочки или рисунка абажура. Это расстояние и будет фокусным. Фоторезистор нужно поместить на таком же расстоянии от линзы, которую очень удобно закрепить в тубусе.
Изготовив электронный пистолет или винтовку и мишень, попробуйте организовать стрелковые соревнования на первенство класса и школы. Стоит только показать в действии совершенно новое электронное оружие, как появится очень много желающих попробовать свои силы в этом увлекательном деле. А многие из тех, кто хоть раз попадет в мишень, захотят изготовить свой электронный тир.
Экономьте электроэнергию!
В любом походе, особенно военизированном, необходим карманный фонарь. С его помощью можно ночью найти тропинку, рассмотреть карту, подать сигнал тревоги или сообщить важные сведения на расстоянии в несколько километров. А при устройстве ночлега, когда свет от костра уже померк, в палатке темно, и, как назло, куда-то запропастились самые необходимые вещи, и рюкзак должен быть уложен с вечера, без карманного фонаря вам не обойтись.
Всем хорош ваш фонарик, но есть у него один существенный недостаток. Энергия, запасенная в электрической батарейке, расходуется фонарем очень расточительно. Почти 95 % электроэнергии батарейки переходит в тепло, и только 5 % ее превращается в свет.
Повысить к.п.д. карманного фонаря, казалось бы, нельзя. Но попробуем призвать на помощь радиоэлектронику.
Прежде чем это сделать, вспомним, что часто, стремясь сэкономить расход электроэнергии от батареи, мы включаем электрический фонарь на короткое время, периодически нажимая на кнопку выключателя. Яркие, особенно в темноте, вспышки света ослепляют и не позволяют в промежутках между ними хорошо видеть окружающие предметы.
Если включать и выключать фонарь очень часто, то устает рука и обгорают контакты выключателя. Нажимать на кнопку очень часто – раз десять в секунду – мы просто не сможем.
Вот тут-то и потребуется электронный переключатель, способный переключать фонарь и 10 и 20 раз в секунду. Вспышки света, каждая очень короткая, сливаются в одну, и мы даже не замечаем, что фонарь периодически гаснет и зажигается.
Нагретая нить лампочки не успевает остыть и потерять яркость даже за одну десятую долю секунды. Таким образом, если 10 раз в секунду включать и выключать лампочку карманного фонаря, свет от него будет идти непрерывно (так нам будет казаться), а лампочка будет включена не все время. Отсюда становится понятным, что и энергии батарейки хватит на большее время. Срок службы каждой батарейки можно увеличить раза в два-три, а то и больше, если использовать электронный переключатель.
На рисунке 26 изображена принципиальная схема переключателя для карманного фонаря.
Рис. 26. Принципиальная схема электронного переключателя для карманного фонаря.
Здесь использована широко распространенная в радиотехнических устройствах схема мультивибратора. Мультивибратор – это генератор электрических колебаний. В отличие от других генераторов он генерирует колебания не одной, а множества частот. Отсюда он и получил свое название: multum – много, vibro – колеблю. Из этих латинских слов получилось слово «мультивибратор».
Если электрические колебания, создаваемые мультивибратором, представить в виде графиков, мы получим картину, изображенную на рисунке 27.
Рис. 27. Графическое изображение работы мультивибратора.
Каждая из генерируемых частот называется гармоникой. Напряжение первой гармоники, как правило, имеет наибольшую величину. От мультивибратора получают суммарные колебания, показанные на самой нижней кривой. Эти колебания напоминают букву «П», и поэтому их называют П-образными.
Если внимательно посмотреть на схему мультивибратора, то можно заметить, что это два обычных усилителя низкой частоты, выходы которых подключены на входы.
Усиленное напряжение случайных колебаний подается снова на вход усилителя, усиливается еще больше и снова поступает с выхода на вход и т. д. Так будет продолжаться до тех пор, пока не наступит устойчивый режим генерирования и наш усилитель превратится в генератор. В данном случае это будет мультивибратор.
Частота и форма колебаний, развиваемых мультивибратором, зависят от емкости конденсаторов С2 и С3 и сопротивлений резисторов R2, R3 и R4. Если емкость конденсаторов С2 и С3 будет одинаковой, а сумма сопротивлений R2 + R3 будет равна сопротивлению R4, положительные и отрицательные полуволны генерируехмых колебаний будут одинаковы. Такой мультивибратор называют симметричным. На нижней кривой в этом случае расстояния между точками 1–2 и 2–3 будут равны. Если емкости конденсаторов будут неравны, симметрия положительных и отрицательных полуволн нарушится и мультивибратор станет несимметричным.
Как же работает такой электронный переключатель?
При замыкании контактов выключателя Вк1 на мультивибратор подается напряжение питания, и он начинает генерировать П-образные импульсы. Емкости конденсаторов С2 и С3 неодинаковы, и положительные импульсы будут по длительности не равны отрицательным. Нагрузкой одного из транзисторов мультивибратора служит обмотка реле, которое отрегулировано с преобладанием: при отсутствии тока в транзисторе и обмотке реле якорь будет находиться у одного из контактов. Это произойдет тогда, когда транзистор Т2 закрыт. При прохождении импульса через этот транзистор и обмотку реле якорь перебросится к противоположному контакту. После того как транзистор закроется, якорь вернется в прежнее положение.
В то время, когда якорь реле находится, допустим, у правого контакта, конденсатор С4 зарядится почти до напряжения батареи. Цепь заряда – минусовый вывод батареи, замкнутые контакты Вк1, резистор R7, минусовая обкладка конденсатора С4, плюсовая обкладка этого же конденсатора и второй полюс батареи. Резистор R7 служит для того, чтобы немного ограничить начальный ток заряда и предотвратить искрение при переключении контактов.
Как только якорь реле перебросится в левое по схеме положение и замкнет левый контакт Л, конденсатор начнет разряжаться на электрическую лампочку Л1. Запаса энергии, которую накопил конденсатор, достаточно, чтобы лампочка вспыхнула. Реле перебрасывает якорь с частотой генератора, переключая лампочку фонаря при указанных на схеме деталях примерно 10 раз в секунду. Причем время горения лампочки будет в несколько раз меньше, чем паузы, во время которых происходит зарядка конденсатора С4. Энергия батареи расходуется очень экономно.
Включать такой фонарь без электронного переключателя нельзя, так как для четкой работы необходимо напряжение батареи порядка 9 в, а лампочку нужно взять на напряжение 2,5–3,5 в. Частоту вспышек можно уменьшить с помощью переменного резистора R3, сделав видимым мигание лампочки.
Конструктивно электронный переключатель может быть выполнен по-разному в зависимости от типа используемого фонаря. Детали переключателя лучше взять малогабаритные, тогда он легко поместится в корпусе фонаря. Можно собрать его и в отдельной упаковке – небольшой пластмассовой или металлической коробочке, которую конструктивно объединить с фонарем.
Налаживание переключателя сводится к подбору величин емкостей конденсаторов С2 и С3. В качестве реле использовано электромеханическое реле типа РЭС-10, паспорт PC 4 524 308.
Транзисторы используются любые низкочастотные. Батареи питания в данной конструкции фонаря – аккумуляторы 7Д-0,1. Можно применить батарею «Крона» или две КБС, включенные последовательно. В этом случае фонарь получится громоздким, зато одного комплекта питания хватит на весь поход.
Конденсаторы С1, С2 и С4 могут быть типа К-50, ЭМ и ЭТО, резисторы – типа MЛT или УЛМ. Диод Д1, служащий для уменьшения экстратоков при резком переключении тока в обмотках реле, можно взять типа Д7 с любым буквенным индексом или Д226.
Электродный переключатель можно собрать по схеме, приведенной на рисунке 28.
Рис. 28. Принципиальная схема электронного переключателя 3,7 в.
Это тоже несимметричный мультивибратор, который переключает контакты реле. В связи с тем, что здесь переключается непосредственно батарея, а не накопительный конденсатор, и напряжение батареи питания всего 3,7 в, а не 9 в, реле не будет четко срабатывать от прямоугольных импульсов, поступающих от мультивибратора. Их нужно усилить. Для этой цели в схеме установлен еще один транзистор – Т3. Он работает усилителем мощности. Реле здесь использовано такое же, как и в предыдущей схеме.
Некоторые реле этого типа при установке в переключатель работают не очень четко. Ток, даже усиленный транзистором Т3, оказывается мал. В этом случае надо отогнуть контактные пружины реле и тем самым ослабить давление пружин на якорь реле.
Назначение остальных деталей в переключателе точно такое же, как и в предыдущем. Транзисторы могут быть любыми низкочастотными из серии МП40—МП42, резисторы типа MЛT 0,25 или УЛМ. Переменный резистор – типа СПО или любой другой.
Конструкция переключателя тоже произвольная и зависит от размеров корпуса карманного фонаря.
Для примера на рисунке 29 показано размещение деталей на небольшой плате из любого изоляционного материала (текстолит, оргстекло) толщиной 0,5–1,5 мм.
Рис. 29. Фонарь с батареей 3,7 в.
Размеры платы рассчитаны на фонарь в прямоугольном металлическом корпусе. Поместить ее с деталями в корпус фонаря довольно трудно. Прежде всего необходимо удалить пружинящие контакты, к которым присоединяется батарея. На передней стенке фонаря надо просверлить отверстие для ручки переменного резистора. Резистор укрепляют на передней стенке гайкой. Корпус фонаря в том месте, куда вставляется монтажная плата, нужно оклеить тонким картоном или гетинаксом, чтобы монтажные соединения платы не замкнулись между собой через металлические стенки футляра.
Собрав схему переключателя (первого или второго), не вставляйте ее в корпус фонаря и не включайте питание. Сначала тщательно проверьте правильность соединений. Не перепутаны ли детали при монтаже, не замкнуты ли между собой монтажные провода, не затекло ли при пайке олово, которое может образовать ненужные и даже опасные соединения в монтажной схеме. Только убедившись, что все сделано точно в соответствии с принципиальной схемой, включайте батарейку. Реле начнет работать сразу же, если все соединения правильны.
Меняя величину сопротивления переменного резистора, вы заметите, что изменяется и частота вспышек. Окончательную регулировку частоты вспышек нужно производить в темноте. Вращайте ручку регулятора до тех пор, пока частота вспышек станет малозаметной. В этом положении следует оставить переменный резистор, так как фонарь будет потреблять наименьшее количество энергии от батареи, а светит так, как будто лампочка горит непрерывно.
Рис. 30. Фонарь с батареей 9 в.
На рисунке 30 показано размещение деталей электронного переключателя в круглом корпусе карманного фонаря.
Радиокомпас и шагомер
Компас – необходимая принадлежность любого похода. Мы знаем, как ходить по азимуту, как пользоваться картой и ориентироваться по солнцу и звездам.
Но представьте себе, что компас разбит в жарком бою с «противником», а тяжелые серые тучи не дают возможности хоть на минуту увидеть солнце или звезды. Да еще если мы блуждаем по лесу, где нет заметных ориентиров, а все деревья похожи одно на другое. Такой случай может быть не только в военизированном походе, но и во время самого обычного будничного похода за грибами. Есть еще одно средство для определения нужного нам направления – радиоволны.
Во всем мире работают тысячи вещательных и служебных радиостанций. Радиоволны несут на своих гребнях веселую музыку, различные сообщения и служебные телеграммы. Радиоволны распространяются вдоль земной поверхности, уходят в космос и затухают в толще Земли. В любое время суток, включив приемник, мы можем услышать десятки вещательных радиостанций. Может быть, правда, такой случай, когда ни одна радиоволна не проникнет в место приема. Это бывает на Дальнем Севере или Юге, близ полюсов Земли, во время магнитных бурь и ионосферных возмущений.
Но обычно, особенно в средних широтах, радиоволны близко расположенных радиостанций обнаружить не представляет труда даже простейшим самодельным приемником. Оказывается, можно не только обнаружить радиоволны, то есть услышать передачу местной радиостанции, но и определить направление, с которого они приходят, и узнать, в каком направлении от нас находится радиостанция. А раз мы знаем, в каком направлении находится радиостанция, то уже не заблудимся и сможем определить нужное направление.
Между прочим, так же определяют курс кораблей и самолетов. Радиомаяки специальной навигационной службы посылают свои сигналы, и штурман корабля или самолета без труда может определить направление на радиомаяк. Мы не будем пользоваться подобным радиомаяком потому, что не всегда сможем его услышать и отличить от других радиостанций. Для целей ориентировки и выбора нужного направления лучше использовать радиовещательную станцию, хорошо слышимую в данной местности.
Чтобы не ошибиться при определении направления, нужно до выхода в поход точно узнать направление на радиостанцию, иными словами, узнать, в какой стороне света от нас находится эта радиостанция и расписание ее работы. Последнее надо знать потому, что местные радиостанции работают не круглосуточно, а со значительными перерывами.
Расписание работы радиостанции можно узнать в местной дирекции радиовещания Министерства связи СССР или же прослушав работу радиостанции в течение одного дня на любом вещательном приемнике. Зная направление на радиостанцию, часы ее работы и имея самый простейший приемник с ферритовой или рамочной антенной, можно смело отправляться в незнакомые места, не имея компаса и карты.
Ферритовая или рамочная антенна позволит определить направление на радиостанцию: такие антенны обладают направленным действием.
Тот, кто пользовался малогабаритным транзисторным приемником с внутренней магнитной (ферритовой) антенной, наверное, заметил, что сила приема зависит от того, как повернуть приемник, а вместе с ним и антенну, находящуюся внутри корпуса приемника, по отношению к направлению на принимаемую радиостанцию.
Магнитная антенна состоит из цилиндрического или плоского стержня длиной 10–30 см из особого материала – феррита, на который намотана проволочная катушка входного контура приемника (рис. 31).
Рис. 31. Магнитная (ферритовая) антенна.
Рамочная антенна представляет собой проволочную, чаще квадратную, рамку со стороной 15–25 см. Рамка содержит 10–30 витков тонкого изолированного провода (рис. 32).
Рис. 32. Рамочная антенна (А – к антенне, З – к заземлению).
Направленные свойства таких антенн поясняются рисунками 33 и 34.
Рис. 33. Направленность ферритовой антенны.
Рис. 34. Направленность рамочной антенны.
Задача наша состоит в том, чтобы из пункта А попасть в пункт Б (рис. 35).
Рис. 35. Определение направления с помощью вещательной станции и приемника с ферритовой антенной.
Условия передвижения сложные. У нас нет ни карты, ни компаса, по солнцу ориентироваться нельзя. Есть только обычный транзисторный вещательный приемник со встроенной ферритовой антенной, работающий на средних и длинных волнах.
Не выходя из пункта А, выбираем одну из хорошо слышимых радиостанций, убедившись предварительно, что она работает без перерывов в течение времени, достаточного для перехода в пункт Б. Направление на пункт Б нам известно. На листе бумаги отмечаем направление на этот пункт произвольной прямой АБ. Не меняя положения листа, определяем направление на вещательную станцию и отмечаем угол а между направлением на радиостанцию PC и направлением на пункт Б. Если считать, что радиостанция находится от нас на расстоянии большем, чем 10 расстояний от А до Б, то можно сказать, что в точке Б угол между направлением БА и направлением на радиостанцию будет равен этому же углу в точке А и любой другой точке на прямой АБ. Тогда при движении по прямой АБ мы можем проверить правильность нашего маршрута, измеряя с помощью приемника угол а через каждые 500—1000 м. Ошибка в измерениях будет тем меньше, чем точнее определен угол а и чем дальше от нас находится вещательная станция.
При измерениях угла а во время следования по маршруту нужно учитывать влияние местных предметов на распространение радиоволн. Нельзя, например, производить такие измерения в низинах, под телеграфными и электрическими проводами, около массивных железобетонных сооружений, где картина распространения радиоволн сильно меняется и мы можем допустить большую ошибку.
Следует учитывать и еще одно важное обстоятельство. Рамочная и ферритовая антенны двунаправленные. Это означает, что максимальная громкость будет наблюдаться тогда, когда любая из сторон рамки будет направлена в сторону радиостанции. То же самое будет и с ферритовой антенной – наибольшая громкость приема наблюдается в двух положениях ферритового стержня.
На рисунках 36, 37 показаны так называемые диаграммы направленности – графики, поясняющие направленное действие антенн.
Рис. 36. Диаграмма направленности ферритовой антенны.
Рис. 37. Диаграмма направленности рамочной антенны.
По своей форме диаграмма напоминает цифру 8.
Для того чтобы избавиться от этого неприятного явления, существует очень простой способ. На вход приемника вместе с ферритовой антенной включают штыревую. Штыревая антенна, как говорит само ее название, представляет собой штырь длиной 1,0–1,5 м. Для сложных приемников, способных принимать большое число радиостанций, штыревая антенна может быть даже короче. Изготовить штыревую антенну можно из латунного или медного прутка диаметром 4–5 мм. Можно использовать и телескопические антенны от карманных приемников или один «ус» от комнатной телевизионной антенны.
Диаграмма направленности штыревой антенны представляет собой окружность. Это означает, что на штыревую антенну прием происходит одинаково со всех направлений. Если на вход приемника включить сразу две антенны, входные сигналы, получаемые с этих антенн, будут складываться, сложатся и диаграммы направленности, и мы получим новую диаграмму, которая показана на рисунке 38.
Рис. 38. Сложение диаграмм направленности рамки и штыря.
Эта фигура давным-давно кому-то напомнила очертания сердца, и поэтому ее назвали кардиоидой (от латинского слова «кардиа» – «сердце»). Такая диаграмма направленности значительно удобнее, чем восьмерка, так как мы уже не спутаем направление, откуда приходят радиоволны, потому что наибольшая громкость будет только при одном положении ферритовой или рамочной антенны. С противоположной стороны мы почти ничего слышать не будем. Удобство сочетания двух антенн состоит еще и в том, что мы можем легко избавиться от всех мешающих радиостанций, расположенных в противоположном от «рабочей» радиостанции направлении.
Можно дать еще один совет тем, кто будет пользоваться комбинацией из двух антенн. Дело в том, что, пользуясь двумя антеннами, определить точно направление на радиостанцию по наибольшей громкости довольно трудно. Это происходит потому, что достаточная громкость приема будет и в том случае, если мы повернем антенну на некоторый угол от точного направления на радиостанцию. У кардиоиды максимум выражен неярко. Но ведь нам все равно, как определять направление: на радиостанцию или от радиостанции, важно, чтобы мы смогли ориентироваться на местности. Поэтому значительно удобнее поворачивать приемник так, чтобы станцию не слышать вовсе или слышать с наименьшей возможной громкостью. Это происходит оттого, что минимум слышимости при пользовании антеннами, дающими кардиоидную диаграмму направленности, выражен более резко, чем максимум. Мы не слышим (или слышим слабо) принимаемую радиостанцию только при одном, строго определенном положении ферритовой антенны (рамки) по отношению к направлению на принимаемую радиостанцию. Правильность выбранного направления проверяется в этом случае по принципу: станция не слышна – направление правильное. Такой способ дает значительно более точные результаты выбора направления. Хочется только предостеречь невнимательных от того, чтобы они не определяли направление неработающим приемником: с его помощью нельзя услышать ни одной радиостанции.
Как определять направление по максимуму и минимуму сигналов принимаемой радиостанции, поясняет рисунок 39.
Рис. 39. Определение направления по кардиоидной диаграмме (ША – штыревая антенна, МА – магнитная антенна).
Если при изготовлении такого «радиокомпаса» у вас возникнет вопрос, какая антенна лучше – ферритовая или рамочная, то советуем отдать предпочтение рамочной. У нее диаграмма направленности острее и минимум и максимум приема выражены значительно резче.