Текст книги "Инфодинамика, Обобщённая энтропия и негэнтропия"
Автор книги: Э Лийв
Жанр:
Философия
сообщить о нарушении
Текущая страница: 7 (всего у книги 15 страниц)
11. Технология и организационная структура в системах работают по регламенту или по уставу. В реальных системах, особенно, если в них участвуют люди, наблюдается много отклонений (например, технические неисправности, непра-вильное распределение обязанностей между людьми). Между людьми могут возникать разного рода конфликты, недо-разумения, обиды, передачи неверной информации. Все эти факторы должны быть учтены при рассчётах коэффициента рассеяния информации.
12. Пространство состояния модели должно обеспечить эффективное изучение поведения реальной динамической сис-темы. Фазовое пространство модели должно содержать мини-мальное количество координат измерения (порядок системы), необходимого для однозначного описания превращений сис-темы. Если в модели системы фазовых координат (порядка) меньше требуемого, то это может вообще сделать невоз-можным однозначное описание процессов превращений сис-темы (фазового портрета). Отсутствие требуемой размерности в модели существенно уменшает её ОНГ, гомоморфность и возможность её использования.
Этап IV. Введение необходимых поправок и уточнений в условные вероятности и в коэффициенты увеличения ОЭ (К и k). Принципы определения k приведены раньше (гл. 4 и 12). Колебания Zи находятся в пределах 0 ё 1,0. Колебания K, k – в пределах 1 ё ?.
1. Для выяснения интеракции действия факторов необ-ходимо найти условные вероятности при воздействии от-дельно одного и другого фактора и при их одновременном воздействии. Если разности между одновременном и суммой раздельно проведенных действий нет, то можно рассмат-ривать их воздействие отдельно. Если есть отличия в пока-зателях, то необходимо ввести поправки на совместное влияние факторов.
2. Так как вероятностные отклонения существуют во всех системах, то в ряде случаев могут быть найдены только приближённо функциональные зависимости между вели-чинами факторов и статистическими параметрами критерия цели. Если такие зависимости обнаруживаются, то веро-ятность достижения цели можно уточнять методами функ-ционального анализа.
3. Часто на практике необходимо создавать модель реальной системы, о которой известно ряд отрывистых фак-тов или экспериментальных данных. Однако, их недостаточно для определения статистических параметров функциони-рования системы. Кроме того, о системе имеются пре-рывистые априорные данные, например, по аналогии с дру-гими системами, по действию законов природы или эко-номики, мнение экспертов и др. Задача заключается в приме-нении полученных новых априорных (теоретических) и апостериорных (экспериментальных) данных для уточнения статистических моделей данной системы. Для решения задачи могут быть применены метод экспертных систем и метод Байеса. Этими вопросами занимается теория статистических решений (статистические игры). В общем случае существует некоторое множество возможных состояний системы, которое образует пространство выбора оптимальных вариантов. Из прошлого опыта или из теоретических предположений можно ориентировочно прогнозировать, как часто система принимает то или иное состояние, т.е. бывает известно априорное рас-пределение вероятностей. ОНГ модели системы может быть существенно увеличена путём проведения экспериментальных работ. В принципе экспериментальным путём можно полу-чить достаточно полную информацию о состоянии системы и составить достоверную, гомоморфную модель. Однако, пос-тановка эксперимента всегда связана с затратой средств и времени, потери от которых могут оказаться значительнее того выигрыша, который могут дать результаты экс-перимента.
4. Особого внимания требует выяснение конфликтных ситуаций внутри системы, а также между системой и на-ружной средой. В случае конфликта возникают элементы с противоположными интересами, когда выигрыш одного свя-зано с проигрышом другого. Однако, далеко не всегда конфликт кончается с общим нулевым результатом (т.е. выигрывает сильный и в такой же мере проигрывает другой). Обычно интересы конфликтующих сторон не совпадают с общими интересами системы. Для расчётов влияния конф-ликтов на целевые критерии и их вероятности применяются методы теории игр, для усовершенствования которых не-обходимо учесть также изменение ОНГ.
5. В будущем широкие возможности для уточнения вероятностей открывает метод экспертных систем. Исходя из метода "чёрного ящика" можно в модель ввести много нефор-мализованной информации и уточнять статистические пара-метры. В большинстве случаев знания закодированы в виде серии экспериментально обоснованных эвристических правил, эвристик. Такие правила сужают поле поиска решений, помо-гают находить наиболее вероятные пути достижения цели.
Этап V. Многие системы построены так, что допус-кают для решения поставленных целей сравнение или сопос-тавление многих альтернативных вариантов структуры или путей проведения операций. В таких случаях необходимо более широкое применение методов системного анализа, выяс-нение экономической или другой эффективности, доходов и затрат при осуществлении всех вариантов. Такой анализ требуется, например, во всех работах проектирования техно-логии или прогнозирования развития систем.
Этап VI. Составление материальных, энергетических и негэнтропийных балансов между отдельными элементами системы. Оптимизация структуры и функции элементов в модели системы. Выяснение существенных факторов в модели и отсеивание несущественных по основным критериям.
Этап VII. Введение времени как одного фактора в модель системы. Моделирование развития системы во вре-мени. Прогноз результатов развития или деструктивных яв-лений. Составление проектов направленного развития. Оценка эффективности своевременного получения новой ин-формации. Мероприятия против рассеяния, старения и обес-ценивания информации, против дезинформации и шума.
Этап VIII. Повторение в несколько раз цикла модели-рования, оптимизации и cравнения альтернативных вариантов с постепенным уточнением критериев, ограничений и пара-метров модели. Осуществляется конкретизация и детализация характеристик элементов. Достигается приближение модели к реальному объекту.
Этап IX. Применение модели в практической работе, например при проектировании, планировании, проверке и разработке гипотез, теории, концепции, при составлении биз-неспланов. При принятии решения в условиях неполной информации (неопределённости), не учитывая всех законов природы и экономики, неизбежной платой является возмож-ность принятия ошибочных решений. Одной из важных проблем руководства: принимать ли решение на основе той информации, что уже известно, или предварительно раз-работать и реализовать программу сбора дополнительной ин-формации, которая, конечно, требует дополнительных затрат. В качестве примера обработки информации можно привести процесс проектирования объекта строительства, где моделиро-вание и оптимизацию проводят по вышеуказанной общей схеме с использованием исходных данных, целей заказчика и данных инфобазы.
Наиболее сложными методами инфообработки являются творчество, сознание, новые мысли, использование понятий, знаний, идей, гипотез, научных теорий, эмоций, концепций и др. По этим принципам разрабатываются и системы ис-кусственного интеллекта. Эти методы способны обработать и обобщить неформализованные потоки многомерной информа-ции. Они развивают дальше общие принципы обработки информации, т.е. сопоставление альтернативных вариантов, составление моделей, выяснение оптимальных вариантов, прогноз развития в будущем. Сознание имеет способность уже в первой стадии – мысленно, оценить вероятность дос-тижения цели и ценность получаемого результата (косвенно оценить его ОЭ и ОНГ). Наиболее эффективными методами обработки информации обладает мозг человека, которому стараются подражать составители эвристических компьютер-ных программ. Для решения задачи нахождения в огромном поисковом поле оптимальных вариантов сначала используют имеющуюся в наличии информацию. Результаты могут на-вести на мысль о том, какое из возможных решений следует проверить первым. На основе этого исключают из проверки целые классы явно негодных решений или определяют, какие нужно выполнить тесты для отделения возможных решений от неэффективных и т.д.
Чем больше и быстрее система способна обрабатывать информацию, тем больше она и может принимать её, тем самым быстрее увеличивается её ОНГ. Предпосылкой уве-личению ОНГ является наличие в системе или в окружающей среде возможности роста не меньшего количества разно-образия (ОЭ).
8. ОБЩИЕ ПРИНЦИПЫ И ЗАКОНОМЕРНОСТИ
ИНФОПЕРЕДАЧИ
В предыдущих главах обсуждалось наличие во всех системах связанной информации – ОНГ и её способность селектировать и обрабатывать поступающую в систему ин-формацию. Однако остались неясными механизм, условия, движущие силы и причины передачи информации между системами [ 7, 53 ]. Поскольку мы исходим из общих прин-ципов эквивалентности ОНГ, энергии и вещества, то можно предположить, что действие закономерностей передачи энер-гии и вещества наблюдается также в области передачи ОНГ. Можно предполагать, что для процессов передачи информа-ции существуют закономерности, ограничения, движущие силы, градации по качеству, аналогичные процессам пере-дачи энергии. Вопросами передачи энергии занимается термо-динамика. Исследование общих процессов передачи и пре-образования информации является более сложным, так как намного труднее определить качество и количество много-мерной информации. Этими вопросами занимается новая научная дисциплина – инфодинамика.
По выводам классической термодинамики во всех изо-лированных системах происходит увеличение энтропии, т.е. уменьшение ОНГ. Если считать универсум изолированной системой, то энтропия её когда-то приблизится к бесконеч-ности и наступит тепловая смерть. К счастью, наш универсум не является изолированной системой, точнее в основе уни-версума имеются огромные запасы ОНГ, которые в опре-делённых условиях могут уплотняться и принимать вид ве-щества или энергии. Такие запасы ОНГ скрываются в полях гравитации, электромагнетизма или ядерных взаимодейст-вий. В близкой нам части универсума действительно пре-валирует общая тенденция увеличения ОЭ и рассеяния ОНГ. Это не значит, что такие же процессы протекают во всех дру-гих частях универсума. Даже на нашей планете протекают многочисленные антиэнтропийные процессы в биосфере и в обществе. В литературе выражено предположение, что в мире существуют кроме законов термодинамики ещё законы, кото-рые регулируют процессы увеличения в системах ОНГ, про-цессы концентрации связанной информации. Выяснение зако-нов и условий их действия только начинается. Это является основной задачей инфодинамики.
Все живые организмы на земле, в том числе и человек, получают и увеличивают свою исходную ОНГ и энергию от солнца. Солнце само работает против увеличения ОЭ земли тем, что посылает непрерывно энергию в строго опреде-лённых пределах частоты и интенсивности (ОНГ). Меха-низмы антиэнтропийных процессов в космосе, особенно прев-ращения гравитационных сил, требуют более подробного изу-чения. Живые организмы на земле используют солнечную энергию для увеличения своей ОНГ и для непрерывной борь-бы с ОЭ. В то же время увеличивается ОЭ окружающей среды.
Но живые организмы не единственные системы, которые ведут "борьбу" с ОЭ. Пассивно сопротивляются увеличению ОЭ все системы в универсуме, в том числе неживые. Любые участки вещества, поля или волн, атомы или их ядра, имеют структуру, тем самым обладают ОНГ, которая в опре-делённых условиях своей инерцией противодействует раз-рушению и увеличению ОЭ, общему стремлению к бес-порядку, хаосу, неопределённости.
В общем: все системы в универсуме сопротивляются, соответственно их силе и возможностям, тенденциям уве-личения ОЭ.
Возникает вопрос о происхождении ОНГ в системах. ОНГ возникла путём непрерывного развития систем от микромира до самых высоких уровней – разума и общества. Крайне важно сформулировать и использовать общие законо-мерности развития ОНГ, её "борьбы" с ОЭ во всех системах универсума.
Движущими силами всех процессов в мире являются четыре известные силы (в скобках вызываемые ими про-цессы): гравитационные (информационные, ОНГ), электро-магнитные (энергообмен), сильное и слабое взаимодействие (структурообразование вещества на микроуровне). В наи-более тонкой микроструктуре – ниже шкалы Планка 10-35 м, эти силы объединяются в объединённое поле, которое носит разные названия: вакуум, квантовое поле, суперполе, супер-симметрическая супергравитация. Поскольку в этой сверх-микрообласти (меньше 10-35 м) предполагается отсутствие свойств пространства, времени и причинности, то системы имеют нам пока малоизвестные формы. Можно предполагать, что гравитационные силы (в объединении с другими) дейст-вуют и там, следовательно существует и ОНГ. Нет сомнения в том, что это поле вибрирует, т.е. его свойства флуктуируют, колеблются по случайным закономерностям вокруг средних. Свидетельством этого является появление виртуальных частиц (например электронов или квантов света) в абсолютном ва-кууме. В местах максимальной флуктуации плотность поля превышает пределы возникновения кванта (вещества, энер-гии) и возникают исходные образования – кванты вещества и энергии. Кванты уже имеют некоторые признаки системы, они могут избирательно взаимодействовать со средой. Во первых они имеют минимальное гравитационное поле, т.е. спо-собность притягивать к себе дополнительные элементы поля и ОНГ. Кванты энергии не являются только энергией вообще, которая характеризуется только количеством. Квант – это элементарная система, которая имеет свои характерные приз-наки, функции, несмотря на то, что пока неизвестны его сос-тавные элементы. В общем, каждый квант содержит не толь-ко энергию и массу, но и ОНГ, он стремится сохранить свою целостность, т.е. борется с ростом ОЭ.
Схематически можно возникновение элементарных и принцип действия более сложных систем изобразить сле-дующим образом:
Энергия Ї Информация Ї Система функцио-нирует по прин-ципу минимальФункции ?????R ?????? Структура ОНГ ного роста ОЭ. Энергия и инфор-мация принима
ж г Уплотнение объединён-ного поля д е ются избиратель-но по критериям повышения ОНГ и устойчивости системы. Флуктуации Ї ОЭ
Уже элементарная система может, в благоприятных ус-ловиях, дифференцированно поглощать энергию, информа-цию и эквивалентную с ними вещество и использовать их для повышения своей ОНГ. Вместе с ростом ОНГ повышаются и притягивающие силы и возможности комбинации системы с другими системами. Дальше следовало развитие иерархии систем от квантов к кваркам, атомам, молекулам, неоргани-ческим, дальше живым веществам, организмам, человеку и обществу. При этом резко усложняются, дифференцируются все функции и элементы структуры системы, появляются до-полнительные органы и механизмы управления, получения и обработки информации. Однако, вышеприведенная универ-сальная схема функционирования остаётся неизменной для всех систем универсума, так же как и для самого универсума. Для всех систем универсума (в том числе для мысленных моделей) обязательными свойствами являются структура, функции, флуктуация и обмен со внешней средой. Флукту-ацией обусловлены сдвиги равновесия на микроуровне, которые при длительных действиях оказывают влияние на макроуровень.
Определение качества ОНГ
Задача определения качества ОНГ из-за её много-мерности и зависимости от ОЭ, представляет сложную проб-лему. При этом необходимо учесть потребности и шкалу цен-ностей приёмника информации, его инструктивные свойства, степень неизбыточности и незаменимости информации, крите-рии цели и ценности (полезности). ОНГ рассчитывают в абсолютных единицах по разности ОЭ принимающей системы до и после получения информации (ОНГ = ОЭдо – ОЭпосле). Однако, абсолютная величина не полностью показывает цен-ность ОНГ для системы-приемника, так как начальная вели-чина ОЭ может при инфоприёме изменяться. ОНГ не пока-зывает, сколько в процентах устраняется неопределённость системы. Поэтому целесообразно выразить качество ОНГ в %-нтах от средней ОЭ системы: d = ОЭдо – ОЭпосле . 100.
ОЭср
Коэффициент полезного действия при передаче инфор-мации. Часть информации теряется из-за рассеяния или шума в канале. Информация относительно события В в системе 1, содержащаяся в событии А в другой системе 2:
J (A, B) = ОЭ1(В) – ОЭ1(В / А)
Однако, из-за рассеяния (шума) в канале событие А пе-редаётся в систему 1 только частично (А*). Тогда коэффи-циент полезного действия при передачи информации K = ОЭ1(В) – ОЭ1(В / А*)
ОЭ1 (В) – ОЭ1(В / А)
Коэффициент увеличения ОЭ при инфопередаче сос-тавляет: Kэ = ОЭ1(В / А*)
ОЭ1(В / А)
где: A – отправленная от системы 2 информация о событии А A* – то же, принятая в системе 1 B – событие или цель в системе 1 (приёмнике).
Общая схема: ? ОЭ (В) – ОЭ (В / А) ? ???????????????R ? ? ?ОЭ(В)ОЭ(В/А*) ? ? ?????????R ? 0 ?ОЭ (В / А) ?ОЭ (В / А*) ? ОЭ(В) Энтропия ?????– ? ????? ??????????– ??????????R ? ОЭ (В/А) ? ? ? ????R ? ? ?ОЭ (В/А*) ? ? ??????????-?R ?
ОБЩИЕ ПРИНЦИПЫ ИНФОДИНАМИКИ
Поскольку ОНГ в системах и инфопередача между ними существуют объективно, то возникают вопросы о закономер-ностях их движения, развития, взаимоотношении, обработки, хранения, применения и рассеяния. В любой системе в результате флуктуации возникают локальные неравновесные участки, неоднородности распределения ОЭ. В неравновесных участках возникают потоки информации, которые самопроиз-вольно переидут всегда с участка, обладающей большей ОЭ, в участок с меньшей ОЭ (или большей ОНГ). Неравновес-ность есть то, что порождает порядок из хаоса.
С другой стороны ОНГ можно рассматривать в форме эквивалентного количества энергии и соответственно она должна подчиняться законам термодинамики. Только в слу-чае исследования инфопередач их терминология несколько изменяется. Но закон роста ОЭ в изолированной системе останется так же неколебимым как в энергетике. Контро-лировать изолированность системы от инфообмена значительно труднее, чем от энергообмена.
Применение некоторых общих терминов как в инфо-динамике, так и в кибернетике заставляет более чётко обосно-вать необходимость выделения новой науки – инфодинамики. Кибернетика занимается в основном процессами управления и передачи управленческих сигналов. Управление является од-ной из высших форм регуляции и оптимизации систем. Од-нако, последние операции могут осуществлятся также по-средством других механизмов, например, путём динами-ческого взаимодействия между элементами или при функ-ционировании массовых каналов связи. В отличие от кибер-нетики инфодинамика занимается наиболее общими, универ-сальными закономерностями, действующими во всех систе-мах. Вместо общих понятий применяются обобщённые ОНГ и ОЭ. Последние принципиально отличаются от кибернетичес-ких понятий своей многомерностью, оптимальностью, что даёт им универсальность и повышенную содержательность.
Основные проблемы, стоящие перед инфодинамикой, следующие:
1. Определение направления самопроизвольного про-цесса передачи информации, и превращения в ОНГ, движу-щих сил процессов и возможности их усиления.
2. Изучение механизма передачи информации, как связи между системами, обладающими разными величинами ОНГ (показателями состояния структуры и упорядоченности систем).
3. Составление балансов ОЭ и ОНГ в системах и их комплексах.
4. Определение эффективности использования и степени рассеяния (старения) информации. Разработка методов повы-шения ОНГ, качества, ценности и оптимизации размерности моделей.
5. Выяснение влияния необратимости, асимметрии вре-мени на информационные процессы, на их своевременность и на процессы управляемого развития систем (повышения ОНГ).
На данном этапе развития инфодинамики основной проблемой, от решения которой зависит решение других, яв-ляется разработка надёжных методов определения количества и качества информации ОНГ и ОЭ. Для определения направ-лений дальнейших исследований можно уже сейчас сформу-лировать ряд общих принципов:
1. В изолированной системе невозможно само-произвольное увеличение ОНГ (связанной информации), но её стабильность и скорость её уменьшения зависят от коли-чества и прочности информационных и энергетических структур.
2. Информация не может самопроизвольно пере-даваться от системы с меньшей ОЭ в систему с большей ОЭ (неопределенностью) и в систему с меньшей ОЭ пере-даётся с потерями. Информация переходит без потерь только в такую систему, ОЭ которой относительно данного события или объекта существенно меньше.
3. Ни одна материально-энергетическая или инфор-мационная система не может служить кибернетической маши-ной, единственным результатом действия которой было бы увеличение ОНГ в результате перераспределения информа-ции, в т.ч. снятием информации с частей, обладающих боль-шей ОНГ (меньшей ОЭ или неопределённостью). Другими словами: Невозможен вечный двигатель (perpetuum mobile) третьего рода, т.е. кибернетическая машина, бесконечно и без компенсации повышающая свою негэнтропию и тем самым эффективность работы системы.
4. В изолированном канале связи информация само-произвольно передаётся от системы с меньшей ОНГ2 в сис-тему, обладающей большей ОНГ1 тем меньшими потерями, чем больше их разность ОНГ1 – ОНГ2. Степень эффек-тивности передачи информации приближённо
Zn = ОНГ1 – ОНГ2 . 100 процентов. ОНГ1
5. При сочетаний действий нескольких систем могут воз-никнуть несовпадающие интересы (цели) между системами, конфликты или ситуации, рассматриваемые теорией игр. Уже возникшие и обладающие ОНГ системы часто мешают возник-новению новых систем, ориентированных на такой же вид ОНГ (на такую же цель). С другой стороны, отдельные системы могут получать информацию от систем, обладающих меньшей ОНГ, усилить свой негэнтропийный потенциал, ускорить свое развитие и это приведет к возникновению ие-рархической структуры систем.
6. В информационно тесно связанной системе умень-шение её ОНГ может привести к увеличению ОНГ связанных элементов, которые перенимают основные функции первого элемента.
7. Качество информации является динамическим много-мерным понятием, которое зависит от многих факторов, в т.ч. от инструктивных свойств, степени неизбыточности и незаме-нимости информации, от "потребности" и шкалы ценности, а также от скорости и степени повышения ОНГ принимающей системы, от правильного выбора момента и адреса передачи информации с понятным ему кодом. Полнота информации по качеству зависит во многом от объёма, цели и уровня ОНГ принимающей системы, а также от размерностей её структуры и моделей.
8. Динамическая, стабильно развивающаяся система, для сохранения или увеличения своей ОНГ, должна получить больше информации, чем её рассеивается со соответственным увеличением ОЭ. Для исследования потоков информации и скорости их передачи, с учётом локальных особенностей, не-обходимо составление балансов ОЭ и ОНГ на разных иерар-хических уровнях структуры систем.
9. В экономических системах наиболее динамичным по-казателем ОНГ является собственность, в т.ч. и интел-лектуальная. Она характеризует и показывает прежде всего информационную деятельность собственника (юридического или физического), его знаний, умение предвидеть развитие и потребности общества в будущем. Собственность является ре-зультатом и оценкой труда хозяина и его борьбы за приз-нание этого труда. В зависимости от содержания в ней ОНГ собственность может быть прибыльной или убыточной, может давать доход или убытки, может представлять интерес или вызывать осуждение в обществе.
Если бы закон термодинамики об увеличении энтропии мог бы действовать без ограничений, то универсум давно пре-терпел бы "тепловую смерть". К счастью в мире есть много мощных источников ОНГ и информации, которые действуют и превращаются по законам, пока мало изученным. При раз-витии инфодинамики, очевидно, ряд вышеизложенных прин-ципов получают более точные и универсальные форму-лировки. Дальнейшей переработки требуют вопросы об уси-лении передач информации при совместном действии систем, о самопроизвольной передаче информации, о многофактор-ности информации, о её стоимости, ценности, рассеянии и др.
Для практического применения не всегда нужно ждать до выяснения всех подробностей при передаче информации и ОНГ. Ряд существенных выводов можно сделать и при применении имеющихся приближённых или вероятностных моделей. С их помощью можно при выборе вариантов отсеи-вать явно негодные комбинации исходных факторов, тем самым существенно сократив области дальнейших иссле-дований или предотвратить явно отрицательные результаты, прогнозируемых по негэнтропийному критерию. Методы инфо-динамики могут найти широкое практическое применение при определении надёжности материалов. Любое творение рук человеческих является термодинамически неравновесной сис-темой. Энтропия их растёт со временем, на каком-то уровне возрастания происходит отказ в работе материала или меха-низма. Общей задачей является достичь как можно большего негэнтропийного ресурса системы.
В сложных системах целевые критерии зависят от ог-ромного количества факторов. Однако, путём эвристических методов и системного анализа удаётся существенно понизить размерность моделей, сузить их поисковое пространство. Для этого необходимо сочетать априорную (теоретическую) и апостериорную (экспериментально-статистическую) инфор-мацию.
Информационные методы полезны при принятии реше-ний в системах, при определении вероятностей в сложном многофакторном пространстве в условиях неопределённости.
Оценка полезности Д достижения цели:
Д = j (V . P) где: V – ценность цели, Р – вероятность её реализации.
Именно вероятность реализации цели в сложных ситу-ациях трудно определяема из-за отсутствия статистических данных и их зависимости от влияющих факторов. В этом случае помогает использование информационных моделей: перевод вероятностей влияния исходных факторов на целе-вые критерии в единицы ОЭ (логарифмы вероятностей) и после сложения обратно в вероятность достижения цели.
Вероятностно-информационные методы необходимо шире применять для оптимизации целей и задач при проек-тировании сложных систем. Модели последних в процессе проектирования постепенно уточняются по критериям ОЭ и ОНГ. Процессы управления и оптимизации при составлении проектов проводят по методам многоэтапного системного и затратного анализа.
При исследовании информационных процессов в об-ществе инфодинамика должна ещё выяснять распределение потоков информации по достоверности и выяснять причины (интересы) сознательного или бессознательного распростра-нения неверной информации, полуправды или даже дезин-формации. Возникают вопросы, как повысить заинтересо-ванность людей в передаче правильной информации, как бо-роться с засекречиванием информации в конкретной конку-рентной борьбе. Большое значение здесь тоже имеет на-дёжное и своевременное определение ценности (стоимости) информации и ОНГ.
Из предыдущего не выясняется причинность передачи информации. Происходит ли это случайно, самопроизвольно или в случае каких-либо особых условий или причин? В тех-нических каналах связи информация передаётся просто по физическим законам путём распространения электрических или других сигналов по воле человека. Но и здесь остав-ляется человеку свобода выбора и право решения, что пере-давать и стоит ли переданное принимать и хранить? Но ин-формационные процессы протекают везде в живой природе, на более низком уровне также в неживой природе. Здесь трудно представить, что кто-то их "направляет" умышленно. Они как-будто протекают "самопроизвольно". Однако, как указано ранее, передача информации происходит только тогда, когда ОНГ приёмной системы увеличивается. Но по второму закону термодинамики увеличиваться произвольно может только ОЭ. Действительно, увеличение ОЭ, т.е. умень-шение ОНГ, рассеяние информации, её старение, забвение, потеря происходит везде.
Повышение ОЭ в инфосистемах нельзя не учитывать в любой практической деятельности. Следовательно "само-произвольность" некодированной передачи информации кажу-щаяся. В действительности для такой передачи необходимы дополнительные условия, которые неполностью раскрыты в кибернетике и синергетике. Во первых, должна быть между системами приёмника и отправителя разность ОНГ относи-тельно события (цели) в принимающей системе. Разность ОНГ показывает неравновесное состояние между системами, для достижения этого затрачена дополнительная энергия или ОНГ. Во вторых, система-приёмник должна иметь структуру, обладающую инструктивными свойствами, т.е. иметь код для дешифрования и хранения информации. Система – отправитель должна быть готовой принимать ОЭ, при этом в большем количестве, чем количество отправленной инфор-мации. В общей изолированной системе "отправитель-при-ёмник информации" количество ОЭ должно повышаться.
По форме и сложности можно информацию разделить на 3 группы:
1. Сознательно передаваемая информация. Свойственна человеку и обществу, передаётся в виде понятий и моделей путём кодирования через инфоканалы.
2. Рефлективно передаваемая информация. Свойственна живым организмам. Передается рефлексами, инстинктами, генетическим кодом, эмоциями.
3. Неформализованная структурно-передаваемая информация. Эффективность и потери при передаче зависят от структуры и условий функционирования системы. В на-правлении системы с меньшим ОНГ передача сильно за-труднена. В других условиях она осуществляется с потерями. Свойственна всем системам в универсуме, в т.ч. в обществе.
До настоящего времени мы рассматривали общие интер-активные инфосвязи между системами. Однако, в иерархи-ческих комплексах систем очень много вертикальных инфор-мационных связей, которые имеют ряд особенностей.
1. Системы, обменивающиеся информацией, находятся на разных уровнях обобщения, тем самым имеют разные качества ОНГ.
2. Снизу вверх передаётся и принимается информация, которая интересует весь комплекс систем, т.е. по вопросам, затрагивающим сосуществование всех систем и их взаи-модействие.
3. Сверху вниз передаётся информация по более конк-ретным вопросам. По этим вопросам ОНГ нижестоящей системы может быть больше, вышестоящей и инфо передаётся с меньшими потерями. Информация движется между уров-нями, но качество ОНГ должна увеличиваться при повыше-нии уровня. Естественно, что каждое сообщение не является информацией, не является существенной относительно повы-шения ОНГ.