Текст книги "ГЕНИЙ, БЬЮЩИЙ ЧЕРЕЗ КРАЙ Жизнь Николы Теслы"
Автор книги: Джон О Нил
Жанр:
Биографии и мемуары
сообщить о нарушении
Текущая страница: 15 (всего у книги 22 страниц)
Молчаливого и деловитого Шерффа невозможно вызвать на откровения о делах Теслы. А если бы это и удалось, то в отличие от многословного философа он просто улыбнулся бы слабости человеческой натуры и тем странным шуткам, что судьба играет с людьми и играла, по его мнению, с Теслой, который на основе одного только своего изобретения мог бы сам организовать радиокорпорацию Америки, но не сделал этого, и который отверг такую возможность в связи с еще двумя сотнями изобретений, каждое из которых могло бы принести ему целое состояние. Напротив, он помнит случаи, когда великому Тесле приходилось брать взаймы весьма скромные суммы на текущие личные расходы. Но Шерфф не пожелал отвечать на вопросы об этих случаях и вообще говорить о них.
ТРИНАДЦАТЬ
Когда его проект Всемирной системы беспроводной связи провалился, Тесла вновь обратился к тому проекту, над которым много думал во время разработки своей многофазной системы переменного тока. Речь идет о ротационной машине, которая настолько бы превосходила паровые машины, насколько тесловская система переменного тока, способная вращать его генераторы, превзошла систему постоянного тока.
На электростанциях того времени использовались паровые машины возвратно-поступательного типа, в основном такие, что придумали Ньюкамор и Ватт, но больших размеров, более совершенные и эффективные.
Машина Теслы была иного типа – турбинная, где струи пара проходят между дисками и приводят в быстрое вращение вал, на котором закреплены диски. Пар поступал у внешней кромки дисков, проходил по спирали десять или более витков и выходил из машины у центральной оси.
Когда в 1902 году Тесла сообщил одному из своих друзей, что работает над этой машиной, то сказал, что благодаря малым размерам, простоте и большой мощности это будет «электростанция в шляпе». Первая модель, которую он собрал около 1906 года, вполне отвечала этому обещанию. Она была достаточно мала, чтобы уместиться в «котелок», имея чуть больше 15 см в самом широком месте, и развивала мощность в тридцать лошадиных сил. По вырабатываемой энергии эта небольшая машина намного превосходила первичные двигатели всех использовавшихся тогда типов. Весила она немногим менее 4,5 кг, а значит, выдавала 6,6 л.с. на один килограмм. Ротор же весил лишь 0,7 кг. Легкий вес и большая энергоотдача машины дали Тесле лозунг, который он использовал на своих частных печатных бланках и конвертах, – «Двадцать лошадиных сил на фунт веса».
Сама идея преобразования энергии пара или текущей жидкости во вращательное движение была, конечно, не нова. Этот принцип использовался в ветряных и водяных мельницах – в старых, как мир, устройствах. Герон, александрийский писатель, живший, вероятно, в 200 г до н.э., описал первую турбину, но не был ее изобретателем. Она состояла из полой металлической сферы, насаженной на ось. Из сферы по касательной к ее поверхности торчали две трубки. Когда сфера заполнялась водой и подвешивалась над огнем, то выходивший из трубок пар заставлял ее вращаться.
Остроумная и оригинальная идея турбины Теслы, возможно, имела начало в том забавном и неудачном эксперименте, который он поставил еще в детстве, когда, собрав вакуумный двигатель, наблюдал за медленным вращением деревянного цилиндра в результате проникновения воздуха в вакуумную камеру; а также в идее посылки почты через океан, которой он развлекался в юности, скрываясь в горах от военной службы. Почта должна была передаваться по подводной трубе в полой сфере, переносимой быстрым потоком воды. Но тогда же он пришел к выводу о неосуществимости этой идеи из-за трения воды о стенки трубы. Трение настолько замедлит поток, что для поддержания желаемой скорости и давления воды понадобится чрезмерный объем энергии. В то же время, если вода будет двигаться с такой скоростью, то из-за трения она будет стремиться увлечь за собой и трубу.
И вот это-то трение он и использовал теперь в своей турбине. Струя пара, проходящая с высокой скоростью между дисками, отделенными друг от друга очень небольшим расстоянием, замедлялась трением, но способные вращаться диски двигались все быстрее, пока их скорость почти не уравнивалась со скоростью пара. Помимо трения существует еще особое притяжение между газами и металлическими поверхностями, благодаря чему движущийся пар может лучше цепляться за металлические диски и увлекать их за собой на высоких скоростях. Первая модель, собранная Теслой в 1906 году, имела двенадцать дисков по 13 см диаметром. Работала она не на пару, а на сжатом воздухе, и вращалась со скоростью 20000 оборотов в минуту. В конечном итоге изобретение Теслы заключалось в использовании масла, сгорающего в сопле, благодаря чему многократно возрастала мощность, и в замене вращающей ротор жидкости на горящие и сильно расширяющиеся газы. При этом отпадает необходимость в паровом котле для выработки пара и пропорционально возрастает эффективность самого процесса.
Возьмись Тесла за разработку своей турбины в 1889 году, когда он вернулся с завода Вестингауза, его турбина была бы, пожалуй, единственной, которая в конечном счете заменила бы тогдашние медленные, громоздкие и неуклюжие машины возвратно-поступательного типа. Но задержка в пятнадцать лет, посвященных им работе над высокочастотными токами высокого напряжения, дала возможность другим разработчикам турбин настолько продвинуться в своей работе, что Тесла остался далеко позади. Разработанные за это время турбины стали буквально ветряными мельницами в коробке. Они состоят из ротора, по окружности которого крепятся небольшие лопатки, приводимые в движение струей пара. Им не хватало лишь простоты турбины Теслы, но к тому времени, когда он сделал свою разработку, другие уже имели сильные позиции в области разработки турбин.
Первый маленький двигатель Теслы был собран в 1906 году Юлиусом Шито, который управлял в «Астории» на Лонг-Айленде механической мастерской, где собирались модели изобретателя. Он же собрал и модели турбины 1911 и 1925 годов, а также другие устройства, над которыми Тесла работал до 1929 года. Отец Шито входил в персонал лаборатории Теслы на Хьюстон-стрит с 1892 по 1899 год и лаборатории в Колорадо Спрингс.
Вот как описал Шито первую модель:
Ротор состоял из набора очень тонких дисков диаметром в 13 см из немецкой стали. Они имели толщину 0,8 мм и разделялись прокладками из того же металла и той же толщины, но гораздо меньшего диаметра и сделанными в виде креста с круглой центральной частью. Рукава креста служили ребрами жесткости для дисков. Дисков было восемь, и весь набор имел толщину лишь в 1,3 см. Крепились они в центре вала, имевшего чуть более 15 см в длину. В середине вал имел около 2,5 см в диаметре и ступенчато сужался, имея около 1 см на концах. Ротор устанавливался в кожухе, состоявшем из четырех частей, скреплявшихся между собой болтами.
Круглая камера, где вращался ротор, была точно подогнана таким образом, чтобы во время работы между ротором и кожухом оставался зазор в 0,4 мм. Тесла хотел, чтобы при вращении ротор едва ли не касался кожуха. При этом надо было принять во внимание, что ротор развивал огромные скорости, доходившие в среднем до 35000 оборотов в минуту. На такой скорости центробежная сила возрастала настолько, что заметно растягивала металл крутившихся дисков. При вращении на предельной скорости их диаметр увеличивался на 0,8 мм по сравнению с их диаметром в состоянии покоя.
Модель большего размера Тесла построил в 1910 году. Она имела диски диаметром 30 см и со скоростью вращения 10 000 оборотов в минуту развивала мощность в 100 лошадиных сил, значительно превосходя по эффективности первую модель. Вращаясь в два раза медленнее, она давала троекратную мощность.
В течение следующего 1911 года машина подвергалась дальнейшему совершенствованию. При уменьшении диаметра дисков до 25 см и снижении скорости на 10 процентов – до 9000 оборотов в минуту, мощность возросла на 10 процентов, поднявшись до 110 лошадиных сил! Проведя ее испытания, Тесла сообщил:
Я поднял мощность до 110 лошадиных сил при диаметре дисков в 25 см и при толщине всего набора около пяти сантиметров. В соответствующих условиях можно достичь и 1 000 лошадиных сил. В сущности, механической производительности такой машины почти нет пределов. Она может работать на газу, как обычные автомобильные и авиационные двигатели внутреннего сгорания, даже лучше, чем на пару. Проведенные мной испытания показали, что газ дает более быстрое вращение, чем пар.
Вдохновленный успехом малых моделей, работавших на сжатом воздухе и в более ограниченных пределах при непосредственном сгорании бензина, Тесла разработал и построил вдвое больший агрегат, который планировал испытать на станции Уотерсайд, главной электростанции нью-йоркского отдела «Эдисон компани».
Изначально эта станция строилась для работы по эдисоновской системе постоянного тока, но теперь она полностью перешла на многофазную систему переменного тока Теслы.
Итак, Тесла, вторгшийся в святилище Эдисона для испытания нового вида турбины, который, как он надеялся, заменит использовавшиеся в то время, оказался на вражеской территории. То, что он пользовался поддержкой Моргана и что «Эдисон компани» тоже была моргановской компанией, никак не смягчало вражду между двумя изобретателями.
Отнюдь не смягчалось это положение и тем, как Тесла проводил свои испытания. Он был хроническим «совой» и предпочитал по возможности работать в вечернее, а не в дневное время. В силу необходимости самая большая нагрузка ложится на электростанции после захода солнца. Дневная же нагрузка относительно невысока, но с приближением темноты генераторы начинали стонать под тяжестью вечерней нагрузки. И работники станции Уотерсайд могли помогать Тесле в установке и испытаниях его турбины в дневное время, когда они были меньше всего заняты своими служебными обязанностями.
Тесла, однако, редко показывался до пяти и более часов вечера и не внял просьбам служащих станции приходить раньше. Он настоял на том, чтобы выбранные им работники оставались после пяти часов, когда кончается дневная смена, и работали бы вместе с ним сверхурочно, и не хотел считаться ни с инженерами, ни с чиновниками компании. Разумеется, что и те не испытывали к нему особой симпатии.
Турбина, построенная Теслой для этого испытания, имела ротор диаметром в 46 см, вращавшийся со скоростью 9000 оборотов в минуту, и развивала мощность в 200 лошадиных сил. При весе в 180 кг длина ее равнялась 90 см, ширина и высота – по 61 см.
На официальном испытании, куда Тесла пригласил множество гостей, он выступил с речью, в которой, в частности, сказал:
Следует заметить, что хотя экспериментальная установка развивает мощность в 200 лошадиных сил при давлении в 8 кг в подводящем трубопроводе и свободном выпуске отработавшего пара, но при максимальном давлении в питающей линии выходную мощность можно поднять до 300 л.с. А многоступенчатая турбина с отводом отработанного пара в ступень низкого давления, где в три раза больше дисков, чем в ступени высокого давления, и с вакуумным конденсатором на 72– 73 см даст, судя по результатам данной машины высокого давления, мощность в 600 лошадиных сил, не требуя значительного увеличения размеров. Причем это весьма скромная оценка.
Испытания показали, что когда турбина работает на 9000 оборотах в минуту при входном давлении в 8 кг на квадратный сантиметр и свободном выпуске отработавшего пара, она развивает эффективную мощность в 200 лошадиных сил. Максимальное потребление при этих условиях 17 кг насыщенного пара на лошадиную силу в час – это очень высокая эффективность, учитывая, что теплоперепад, измеряемый посредством термометров, равен лишь 130 британским тепловым единицам и что передача энергии происходит в один этап. Поскольку современные установки с перегревом и высоким вакуумом позволяют получать в три раза больше тепловых единиц, использование этих возможностей означает потребление менее, ем 5,5 кг на лошадиную силу в час в таких турбинах, рассчитанных на максимальный теплоперепад.
Определенные условия позволили получить очень высокий термический кпд, что показывает, что в больших машинах, построенных на этом принципе, потребление пара намного снизится и должно приблизиться к теоретическому минимуму, давая в результате почти свободную от трения турбину, которая будет почти полностью передавать на вал всю огромную энергию пара Следует иметь в виду, что все построенные и испытанные Теслой турбины были одноступенчатыми и использовали лишь около трети энергии пара. Предполагалось, что на практике они будут устанавливаться со второй ступенью для использования оставшейся энергии, а выходная мощность возрастет в два-три раза. (В настоящее время широко применяется два вида турбин с двенадцатью и более ступенями в одном корпусе).
Некоторые сторонники электротехнического лагеря Эдисона, наблюдавшие за испытаниями реактивной штанги и явно не понявшие, что в подобном испытании два ротора остаются неподвижными -поскольку своим противоположно направленным усилием оказывают противодействие друг другу, измеряемое как вращающий момент, – пустили слух, будто турбина оказалась совершенно неудачной, и на практике поднять ее эффективность в тысячу раз не удастся. Подобные истории создали Тесле репутацию бесплодного фантазера. Однако его турбина в одноступенчатом варианте, работавшая как миниатюрный генератор энергии в том виде, в каком ее можно было реально испытать, более чем на двадцать пять лет опередила турбину, установленную в последние годы на станции Уотерсайд. Это очень небольшой агрегат с лопатками на роторе, известный как «предвключенная турбина», который включается в линию паропередачи между паровыми котлами и обычными турбинами. При передаче пара под повышенным давлением предвключенная турбина снимает эти «сливки» и выпускает пар в другие турбины, работающие в своем нормальном режиме.
«Дженерал электрик» развивала в то время турбину Куртиса, а «Вестингауз электрик энд мэньюфэкчуринг» развивала турбину Парсонса, и ни та, ни другая не проявила ни малейшего интереса к демонстрации Теслы.
На дальнейшее развитие его турбины в более крупных масштабах требовались большие деньги, а у Теслы не было тогда и небольших.
*
В конце концов ему удалось заинтересовать компанию «Аллис Чалмерз мэньюфэкчуринг» из Милуоки, специализировавшуюся на возвратно-поступательных двигателях, турбинах и другом тяжелом оборудовании. В своей типичной манере он показал себя на переговорах настолько недипломатичным и проявил такое непонимание человеческой натуры, что было бы гораздо лучше, если бы он вообще не смог договориться об эксплуатации турбины.
Инженер Тесла, проигнорировав инженеров «Аллис Чалмерз», обратился прямо к президенту компании. Пока готовилось техническое заключение о его предложении, он пошел в совет директоров и, прежде чем инженеры получили возможность высказать свое мнение, убедил его принять свой проект. Было продано три турбины. Две из них имели по двадцать дисков по 46 см в диаметре и были испытаны при давлении пара в 5,6 кг на см2. На скоростях в 12000 и 10000 оборотов в минуту они развивали мощность в 200 лошадиных сил. Это та же мощность, какую выдавала модель Теслы 1911 года, диаметр дисков которой был в два раза меньше и которая работала со скоростью в 9000 оборотов и с давлением в 8 кг на квадратный сантиметр. Следующей была машина больших размеров с пятнадцатью дисками по 150 см в диаметре, рассчитанная на 3600 оборотов в минуту и номинальную мощность в 500 киловатт, или около 675 лошадиных сил.
Вот что, в частности, говорит по этому поводу Ханс Дальстранд, технический консультант отдела паровых турбин:
Мы также собрали паровую турбину на 500 кВт с частотой вращения в 3600 оборотов в минуту. Ее ротор состоял из пятнадцати дисков диаметром в 150 см и в 3 мм толщиной. Отделялись они друг от друга расстоянием приблизительно в 3 мм. Испытания проводились с подключенным генератором. Максимальный механический кпд этого агрегата составлял приблизительно 38% при работе с абсолютным давлением пара в 5,6 кг и с абсолютным противодавлением в 0,2 кг при 56° С перегрева на впуске.
При подъеме давления пара выше указанных величин механический кпд падал, а это значит, что в силу конструкции этих машин для получения максимальной эффективности при высоком давлении было необходимо иметь более одной турбины в серии. Эффективность небольших турбин Теслы сопоставима с эффективностью небольших активных турбин с частотами вращения, позволяющими непосредственно подключать их к насосам и другим механизмам. Ясно поэтому, что небольшая паровая турбина для работы с тем же кпд должна была работать с частотой вращения от 10000 до 12000 оборотов и соединяться с ведомым агрегатом через редуктор.
Кроме того, по своей конструкции турбина Теслы в смысле производственных затрат не может состязаться с малогабаритными активными турбинами. Довольно сомнительно также, что роторные диски в силу своей легкости и высоких нагрузок будут долговечными при постоянной работе. Все вышесказанное точно так же относится и к большой турбине с частотой вращения в 3 600 оборотов. При ее разборке выяснилось, что диски значительно деформировались, и было высказано мнение, что если они будут работать и дальше, то очень скоро окончательно выйдут из строя.
Газовую же турбину так и не собрали по той причине, что компания не смогла получить от г-на Теслы достаточную техническую информацию, чтобы составить хотя бы приблизительное представление о его замысле.
По-видимому, на этой стадии Тесла демонстративно бросил испытания. Но в Милуоки не было своего Джорджа Вестингауза, чтобы спасти ситуацию. Позднее, уже в двадцатые годы, автор спросил Теслу, почему он прекратил работу с «Аллис Чалмерз», на что тот ответил: «Они не стали бы строить турбины так, как я хотел», и больше не стал говорить об этом.
А «Аллис Чалмерз» впоследствии стала пионером в производстве газовых турбин другого типа, которые успешно работали долгие годы.
Хотя отчет Дальстранда звучит как суровый приговор турбине Теслы и показывает ее существенные недостатки, которых нет в других турбинах, но в действительности все совсем не так. В основном в нем дается, конечно, справедливая оценка результатов, но описание явных недостатков лишь с иной точки зрения освещает то, о чем и сам Тесла говорил еще при первых испытаниях, а именно, что, работая в одноступенчатом варианте, она использует лишь около трети энергии пара, и для использования остальной энергии она должна работать в соединении со второй турбиной.
Ей [турбине] придется подождать, пока ученые и инженеры не разработают материалы, способные выдерживать эти давления и скорости. Например, одна лопатка современной турбины, движущаяся со скоростью 960 км в ас, испытывает на себе центробежную силу в 40000 кг, которая стремится сорвать ее с лопастного колеса и вала… В этом бушующем аду лопатки под высоким давлением на одном конце турбины раскаляются докрасна, а всего в нескольких футах от них большие лопатки последних ступеней вращаются со скоростью 960 км в час под холодным ливнем – настолько быстро, что капли конденсированного пара режут, как песчаная струя.
В своем отчете Дальстранд говорит также о трудности с вибрацией в турбине Теслы, обусловливающей необходимость усиления дисков. Но о том, что данная трудность возникает во всех турбинах, отмечено позднее в буклете «Дженерал электрик», где сказано:
Вибрация раскалывала диски и колеса и выводила из строя турбины иногда в течение нескольких часов, а иногда через годы работы. Возникала она из-за извлечения огромной энергии из относительно легкого устройства – в некоторых случаях не менее 400 л.с. из лопатки весом всего лишь в полкило или килограмм…
С турбиной связаны четыре основные проблемы: высокие температуры, высокие давления, высокие скорости и внутренняя вибрация. А разрешить эти проблемы можно лишь с помощью научных исследований, инженерного искусства и производственного опыта.
Проблемы эти до сих пор ждут своего окончательного разрешения даже у тех производителей, которые выпускают турбины уже сорок лет. И то, что они выявились и в турбине Теслы, о чем говорил и он сам, никак нельзя считать окончательным приговором его изобретению на ранних стадиях его развития.
Слухи, гуляющие последние год или два в технических кругах, свидетельствуют о пробуждении нового интереса к турбине Теслы и о возможности того, что производители предложенных Куртисом и Парсонсом турбин могут использовать и его турбину для совместной работы с другими видами турбин. Появление новых сплавов, которые почти полностью удовлетворяют требованиям механической прочности в условиях высокой температуры и огромных нагрузок, во многом способствует такому повороту событий.
Возможно, что если бы турбина Теслы включала в себя две или более ступеней со всеми их достоинствами, что давало бы ей диапазон рабочих характеристик турбины Куртиса или Парсонса, и собиралась бы со всеми преимуществами, которые даются инженерно-техническим мастерством и достижениями современной металлургии и щедро вкладываются в турбины упомянутых изобретателей, то благодаря тому, что турбина Теслы значительно проще, она оказалась бы более эффективной в работе и экономичнее по конструкции.
ЧЕТЫРНАДЦАТЬ
Высшим знаком признания, который мир дарит своим ученым, является Нобелевская премия, основанная шведским ученым Альфредом Нобелем, который разбогател благодаря изобретению динамита. Ежегодно выдается пять премий, каждая из которых в нормальное время составляет около 40000 $.
В 1912 году из Швеции пришло сообщение о том, что Николе Тесле и Томасу Эдисону присуждается совместная премия за достижения в области физики. Премию, однако, так и не выплатили, и в результате она досталась шведскому ученому Густаву Далену.
Доподлинно неизвестно, что же произошло на самом деле. Никакой корреспонденции на этот счет нет. Точно установлено, что Тесла отказался от этой премии. В то время он остро нуждался в деньгах, и 20000 $, которые он получил бы в качестве своей доли премии, помогли бы ему продолжить свою работу. Однако для него были важнее другие соображения.
Тесла проводил оень еткую грань между изобретателем полезных устройств и открывателем новых принципов. Открыватель новых принципов, говорил он в разговоре с автором, это первопроходец, открывающий новые сферы знания, куда стекаются тысячи изобретателей, чтобы, руководствуясь новыми сведениями, создавать коммерческие приспособления. И себя он считал открывателем, а Эдисона изобретателем. По его мнению, отнесение обоих в одну и ту же категорию полностью подрывало всякое понимание относительной ценности достижений обоих.
Вполне возможно, что на решение Теслы повлияло и присуждение тремя годами ранее Нобелевской премии за достижения в физике Маркони, что весьма удручило Теслу. Награждение сначала Маркони, а затем предложение Тесле разделить премию с Эдисоном слишком умаляло относительную ценность заслуг Теслы перед миром, чтобы он мог спокойно снести это.
Тесла был первым и, пожалуй, единственным из ученых, кто отказался от этой престижной премии.
Одной из высочайших наград в техническом мире является также медаль Эдисона, учрежденная неизвестными друзьями Томаса Эдисона и вручаемая каждый год Американским институтом инженеров электриков на его ежегодном собрании за выдающийся вкладе научную и практическую электротехнику.
Обычно награждаемые очень радуются этой награде, но в 1917 году, когда комитет проголосовал за присуждение ее Тесле, все было совсем не так.
Председателем наградного комитета был Б.А. Бехренд, который одним из первых среди инженеров электриков понял огромную важность открытий Теслы в связи с переменным током и их далеко идущее значение для каждой отрасли электротехнической промышленности. Лишь немногие выдающиеся инженеры смогли в самом начале разобраться в тонкостях работы с переменным током, получившей благодаря открытиям Теслы непосредственное практическое значение. Но Бехренд разработал простой и красивый математический метод, известный как «круговая диаграмма», которая позволяет очень легко разрешать проблемы конструирования техники переменного тока и понимать сложные явления, происходящие в подобных приборах. Он написал бесчисленное множество статей на эту тему, опубликованных в технических журналах, а также классический учебник, вышедший под заголовком «Асинхронный электродвигатель». Бехренд стал известен и богат; он получил признание как один из выдающихся инженеров-электротехников, а позднее был избран вице-президентом Американского института инженеров-электриков. Его работа оказалась настолько важной для мира коммерции, что его считали вероятным претендентом на получение медали Эдисона.
Бехренд начал писать посвященные своей круговой диаграмме статьи в 1896 году, но познакомился с Теслой лишь в 1901 году, когда Тесле нужен был определенный вид электродвигателя для его Всемирной трансляционной станции, строившейся на участке Уорденклиф на острове Лонг-Айленд, и его разработку поручили техническому отделу производственной компании, которым руководил Бехренд. После знакомства между ними завязалась очень тесная дружба. Бехренд был одним из немногих, кто полностью понимал работу Теслы, и изобретатель, чувствовавший себя одиноким из-за того, что не находил людей, мысливших так же широко и масштабно, как и он сам, высоко ценил дружбу Бехренда.
Поэтому Бехренд думал, что оказал Тесле знак высшей признательности, когда ему удалось добиться решения о награждении его медалью Эдисона, и он был очень рад сам сообщить эту добрую весть изобретателю. Однако сообщение вовсе не обрадовало Теслу. Ему не нужна была медаль Эдисона, и он не желал получать ее!
Весьма удивленный категорическим отказом Теслы, Бехренд попросил его объяснить причину.
– Давайте просто забудем об этом, г-н Бехренд. Я благодарен вам за вашу доброжелательность и ценю вашу дружбу, но хочу, чтобы вы вернулись в комитет и предложили ему выбрать другого кандидата. Вот уже почти тридцать лет, как я рассказал Институту о вращающемся магнитном поле и о системе переменного тока. И мне не нужны его награды, пусть их берет кто-нибудь другой.
Бехренд не мог отрицать, что за столь долгое время Институт так и не удосужился выразить свое уважение человеку, открытия которого заняли работой, наверно, более чем три четверти всего штата его сотрудников, тогда как многие другие получили награды за менее значительные – в относительном смысле – достижения. Однако на правах друга Бехренд все же постарался получить более подробные объяснения.
– Вы предлагаете, – ответил Тесла, – наградить меня медалью, которую я повешу себе на грудь и буду целый час ходить с важным видом перед членами и гостями вашего Института. Вы окажете мне внешнее подобие почестей, но лишь украсите мое тело, а затем – не признавая того, что должны бы, -оставите на прозябание мой ум, творческие плоды которого заложили основание, на котором зиждется теперь большая часть вашего Института. А во время пустой пантомимы чествования Теслы вы будете чествовать не Теслу, а Эдисона, который незаслуженно прославлялся при каждом вручении этой медали.
Однако за несколько визитов Бехренд уговорил-таки Теслу принять награду.
По обычаю, награждаемый должен был выступить с речью. Когда за четверть века до того Теслу приглашали выступать перед Институтом, он брал с собой массу лабораторного оборудования, тщательно продумывал свои лекции и тратил на их подготовку много времени, сил и денег. Но никаких наград за эти лекции он не получал. На этот раз у него не было ни лабораторного оборудования, ни достаточных средств, хотя его более зрелый ум по-прежнему переполняли идеи и не рожденные изобретения. Ему не нужно было читать демонстрационную лекцию. В этом смысле, однако, он оказался жертвой собственных представлений, ведь ожидалось, что, явившись из относительного забвения, в которое он погрузился более чем на десятилетие, он, словно великий маг, принесет миру новые и чудесные дары изобретательства.
Тесла посетил несколько собраний съезда, и Бехренд, не слишком уверенный в поведении медалиста, увел его после дневного заседания за собой и препроводил в отель «Сент-Регис», где теперь жил Тесла и где оба переоделись в парадные костюмы для вечерней церемонии.
Первым пунктом в вечерней программе значился неофициальный обед в клубе инженеров, который устраивался для медалиста Институтом. Кроме самого медалиста, который был на нем почетным гостем, там собирались и те, кто награждался медалью Эдисона раньше, а также члены комитета и служащие Института. Это было торжественное событие, собиравшее необычное множество величайших талантов мировой электротехники. Можно было с уверенностью ожидать, что Тесла придаст великолепие любому подобному событию, но, хотя его блестящие речи действительно вносили немалую лепту в картину общего веселья, сам он был явно смущен.
Клуб инженеров на южной стороне 40-й улицы между Пятой и Шестой авеню выходит фасадом на Браянт-Парк, восточную треть которого занимает классическое здание нью-йоркской Публичной библиотеки, фасад которой растянулся вдоль Пятой авеню от 40-й до 42-й улицы. А сзади к клубу инженеров почти вплотную примыкает здание Объединения технических обществ – внушительное строение на северной стороне 39-й улицы. Чтобы перейти из одного здания в другое, достаточно лишь пересечь аллею шириной в несколько шагов.
После обеда в клубе инженеров блистательная группа медалистов ерез аллею прошла в многолюдный вестибюль Объединения, где кипела связанная со съездом обширная деятельность. Компания погрузилась в лифты, которые понесли ее на пятый этаж, где в большой аудитории должно было состояться вручение медали.
Аудитория была переполнена людьми, пришедшими в основном с официальных обедов, входивших в программу съезда. И зал, и балкон были забиты до отказа. Оживленные разговоры стихли, как только на сцену во фраках и белых галстуках вышли торжественной шеренгой выдающиеся представители мира электротехники. Как почетные гости церемонии они должны были принять участие во вручении награды.
После того как они заняли заранее отведенные им места, церемонию можно было открыть. Но открытие состоялось не по расписанию. Группу охватил ужас, когда обнаружилось, что место главного участника события пустует.
Теслынебыло!
Обыскали боковой зал, ведущий на сцену, и другие помещения, но найти его не удалось. Потихоньку ускользнув, члены комитета тем же путем, что и пришли, вернулись в столовую клуба.