355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джеймс Уиттакер » Как тестируют в Google » Текст книги (страница 16)
Как тестируют в Google
  • Текст добавлен: 21 октября 2016, 19:58

Текст книги "Как тестируют в Google"


Автор книги: Джеймс Уиттакер


Соавторы: Джефф Каролло,Джейсон Арбон
сообщить о нарушении

Текущая страница: 16 (всего у книги 26 страниц)

Эксперимент BITE

Мы создали BITE (Browser Integrated Test Environment), тестовую среду, интегрированную в браузер, для того чтобы вынести как можно больше тестовых действий, инструментов и данных в браузер и облако и показывать их в контексте. Мы хотели уменьшить время, которое тестировщики тратят не на тестирование, отвлекаясь от него. Мы хотели сделать тестирование еще более эффективным.

Что общего у пилота истребителя и тестировщика? Они оба тратят много времени на переключение контекста и обработку большого количества данных. В браузере у тестировщика часто открыто сразу несколько вкладок: одна с багтрекинговой системой, другая с электронной почтой проектной рассылки, третья с системой управления тест-кейсами, четвертая с планом тестирования. Наш пилот-тестировщик постоянно лавирует между этими вкладками. Может показаться, что мы чересчур зацикливаемся на скорости и эффективности, но здесь действительно есть проблема: легко потерять ценный контекст. Плюс ко всему:

– тестировщик тратит время на регистрацию дубликатов багов, потому что не знает правильных ключевых слов, чтобы найти уже существующие;

– тестировщик не заводит баги для проблем, которые кажутся очевидными, потому что не хочет рыскать по багтрекинговой системе в поисках правильного ключевого слова, чтобы убедиться в том, что такой баг уже занесен;

– не каждый тестировщик знает, где взять всю отладочную информацию, которая поможет разработчикам отсортировать и отладить баги;

– нужно время, чтобы вручную ввести, где был обнаружен баг, как его воспроизвести и другие важные для отладки данные. Эта рутинная работа часто выматывает и притупляет внимание инженера, как раз в тот момент, когда он должен быть особенно сконцентрирован на поиске багов.

BITE старается решить многие из перечисленных проблем и развязать тестировщику руки, дать ему сосредоточиться на самом тестировании, а не на механической работе.

Переместимся в кабину пилота истребителя. Проблема информационной перегруженности пилота решается с помощью индикаторов на лобовом стекле. Они упорядочивают информацию и подают ее в нужном контексте, как раз в поле зрения пилота. Чем сложнее становился самолет, тем больше появлялось данных и тем быстрее приходилось реагировать пилоту. Развитие разработки продуктов в Google происходит по той же схеме – чем дальше, тем больше выпусков, больше данных и тем быстрее нужно принимать решения. Мы позаимствовали подход у авиации, когда разрабатывали BITE для регрессионного и ручного тестирования.

Мы реализовали BITE как расширение браузера, чтобы можно было проследить за действиями тестировщика (см. рис. 3.35) и исследовать внутреннюю структуру веб-приложения. К тому же расширение позволяло показывать одинаковый для всех пользовательский интерфейс на панели инструментов браузера и быстро просматривать данные поверх веб-страницы: выглядит, как индикаторы на лобовом стекле пилота-тестировщика.

Рис. 3.35. Всплывающее окно расширения BITE

Давайте посмотрим, как эти экспериментальные возможности будут работать с реальными веб-приложениями Google.

Регистрируем баги с BITE

Помните про правило одного клика, которое работает в Google Feedback? Тестировщик, обнаружив баг в веб-приложении, может одним точным ударом сообщить о баге, выделив часть страницы, где возникла проблема, и дописав от себя сообщение. BITE, по сути, позволяет сделать то же самое, но в описание бага автоматически включается самая полезная и самая занудная для ручного ввода информация: URL-адрес, проблемный элемент или фрагмент текста на странице и снимок экрана. Для некоторых веб-приложений, в которых BITE встроен глубже, автоматически извлекаются отладочные URL-адреса и добавляется информация об отладке самой страницы.

Допустим, тестировщик ввел поисковый запрос «офисы Google» на maps.google.comи получил нерелевантный результат: Белый дом. Тогда тестировщик жмет в меню BITE кнопку «Сообщить о баге» и выделяет курсором часть страницы, где, по его мнению, находится баг: четвертый результат поиска в нашем случае (рис. 3.36). Он может выделить любые элементы управления, изображения, сектора карты, отдельные слова, ссылки или значки.

Рис. 3.36. BITE выделяет нерелевантный результат поиска – Белый дом, выделен в колонке слева

Если кликнуть по выделенному фрагменту страницы, откроется форма регистрации бага (рис. 3.37), и не нужно метаться с одной вкладки на другую. Тестировщик быстро вводит название бага и нажимает кнопку «Здесь баг!», чтобы быстро добавить ошибку. Инженеры обычно не добавляют много данных, поэтому BITE добавляет их автоматически, и это здорово упрощает сортировку и отладку багов. Ну или от тестировщика нужно совсем немного усилий, но все равно он не сильно отвлекается от самого тестирования.

1. Снимок экрана создается автоматически и прикладывается к отчету о баге.

2. В отчет вкладывается код HTML выделенного элемента.

3. Все действия, совершенные с перехода на maps.google.com, записываются в фоновом режиме и преобразуются в код JavaScript. Если разработчик захочет понаблюдать, как воспроизводится этот баг в его браузере, ему достаточно открыть ссылку на код, которая будет автоматически приложена к отчету (обратите внимание на рис. 3.38).

4. Отладочные URL-адреса конкретной карты тоже будут автоматически прикреплены к отчету. Часто в обычных адресах недостаточно информации для полного воспроизведения.

5. Все данные о браузере и ОС тоже прикладываются.

Рис. 3.37. BITE: встроенная форма сообщения о баге

Информация о баге заносится в багтрекинговую систему с полной информацией для приоритизации, и скорости регистрации багов позавидует любой пилот истребителя.

Рис. 3.38. BITE: код JavaScript, записанный в ходе тестирования

Влияние BITE на проект Maps

Сейчас BITE используют только внутри Google для регистрации багов Google Maps. Большая часть информации о состоянии приложения не сохраняется в URL-адресе, а серверные данные постоянно меняются, поэтому регистрация багов Google Maps – дело очень затейливое. Проще говоря, пользователи просматривают карты, меняют масштаб, но текущее состояние нигде не сохраняется. Когда появился BITE, менеджер продукта Google Maps был просто счастлив наконец снять с команды GEO этот груз. Он заверил нас, что теперь баги, поступающие от обычных сотрудников Google через BITE, ничем не уступают отладочной информации, получаемой от самых опытных тестировщиков, которые в Google Maps съели не одну собаку. Теперь приоритизация проходит быстрее, и разработчики могут воспроизводить и отлаживать намного больше багов, чем раньше. Без BITE они бы так и остались невоспроизводимыми.

Просмотр багов в BITE

Когда инженер в кабине пилота-тестировщика исследует приложение или выполняет регрессионные тесты, информация о багах страницы, на которой он сейчас находится, показывается прямо над тестируемым приложением. Это помогает быстро сориентироваться и понять, заведен ли уже этот баг и какие еще баги есть в этой части приложения.

BITE выводит информацию о багах как из внутренней базы, так и из системы отслеживания ошибок chromium.org, в которой внешние разработчики, тестировщики и пользователи могут заводить баги Chrome.

Рис. 3.39. BITE: панель с перечнем багов, относящихся к maps.google.com

Рис. 3.40. BITE: панель багов на домашней странице YouTube

Число рядом со значком BITE в браузере указывает, сколько багов связано с текущей веб-страницей. Это очень просто делается для багов, которые завели через BITE. У нас есть все данные про них, вплоть до части страницы, где он проявился. А с багами, заведенными традиционным способом, например непосредственно в Issue Tracker или в нашей внутренней системе Buganizer, мы поступаем по-другому. У нас есть бот, который ищет URL-адреса в их описаниях и сравнивает степень их соответствия с URL-адресом текущей страницы. Сначала показываются точные совпадения, потом совпадения путей, а потом совпадения с доменом текущего URL-адреса. Схема простая, но очень надежная.

Рисунок 3.39 показывает, как выглядит страница карты с наложенной панелью багов BITE. Один клик на номер бага откроет полную страницу отчета в Buganizer или Issue Tracker. На рис. 3.40 показана панель багов на странице YouTube.

Запись и воспроизведение сценариев в BITE

Тестировщики и разработчики в тестировании трятят значительную часть своего рабочего времени на автоматизацию больших, сквозных регрессионных тест-кейсов. Именно эти тесты показывают, могут ли все части продукта работать слаженно на благо конечного пользователя. Подавляющее большинство таких тестов пишется на Java с использованием Selenium для управления браузером и хранения логики тест-кейсов. Но у этого подхода есть недостатки.

– Трудности перевода.Логика теста пишется на одном языке, а выполняемое приложение на другом (Java вместо JavaScript). Разработчики и тестировщики в Google часто жалуются на эту разницу, потому что она значительно замедляет отладку, и не каждый инженер хочет учить дополнительный язык.

– Место жительства.Код тестов живет за пределами браузера, поэтому приходится делать дополнительный шаг для сборки и развертывания тестовых бинарных файлов на компьютерах. Централизованная инфраструктура автоматизации тестирования Matrix, к сожалению, не решает проблему полностью.

– Окружающая среда. Тестировщик работает в установленной локально среде разработки, отделенной от браузера и настроенной только для тестируемого проекта.

– Потерянное время.Тестировщики тратят много времени на постоянное переключение между страницей приложения и средой Eclipse. Они ищут XPath-пути нужных элементов, а потом вручную добавляют их в Java-код. Потом сборка, запуск, проверка работоспособности. Все это требует времени и достаточно утомительно.

– Ничто не вечно.Веб-приложения Google часто меняют свою модель DOM. Это значит, что тест-кейсы падают при каждом изменении положения элемента на странице или его атрибутов. Поэтому команды сначала тратят много времени на сопровождение тестов, а потом и вовсе игнорируют полученные результаты из-за обилия ложноположительных срабатываний.

Мы придумали веб-решение этих проблем: Record and Playback Framework (RPF) на основе JavaScript, а еще мы серьезно поработали над хранением сценариев тест-кейсов в облаке. Это решение отлично работает и в Chrome OS, которая не поддерживает выполнение тест-кейсов Selenium или WebDriver.

Чтобы записать тест, просто нажмите Record and Playback в BITE-меню в браузере. На экране появится окно записи, в котором запишутся все операции мышкой в основном окне браузера. Клик правой кнопкой мыши на любом элементе запустит режим проверки, в котором можно проверить конкретную строку, картинку, значение конкретного элемента. Можно даже проверить относительную позицию элемента на странице. Это полезно при работе с YouTube: не всегда известно, где именно будет располагаться видео на домашней странице, но общий макет страницы мы знаем.

Самый главный плюс метода RPF в том, что он избавляет инженера по тестированию от хлопотного просмотра модели DOM приложения и пересчетов путей XPath, когда элементы меняются. Мы вложили много усилий в написание кода, который останавливает тест. Если элемент не найден в процессе воспроизведения, код сделает паузу, чтобы тестировщик выбрал новый элемент, автоматически обновит скрипт и продолжит работу. Еще мы реализовали так называемое «ленивое выполнение»: вместо того чтобы придирчиво проверять, соответствует ли элемент ожидаемому XPath, RPF проверяет все атрибуты элемента HTML, в том числе и его родительские и дочерние элементы в DOM. Во время воспроизведения RPF сначала ищет точное совпадение. Если не находит, начинает искать максимально похожие элементы. Может быть, например, изменился только ID, а все остальное осталось прежним. Точность совпадений поиска настраивается. Если различие в пределах допустимого, тест переходит к следующему шагу и просто записывает предупреждение в логи. Мы надеялись, что этот метод сэкономит много времени разработки.

Первой RPF опробовала команда тестирования Chrome Web Store. RPF успешно отработал в 90% тестовых сценариев. Проблемы возникли только с диалоговыми окнами загрузки файлов, которые по сути – встроенные окна ОС, а не браузера, и с некоторыми функциями Google Checkout: нельзя автоматизировать финансовые сценарии через Web API из-за безопасности. Правда, тестировщиков не сильно захватила идея «ленивого» поиска совпадений или возможность поставить работу на паузу для исправления. Им было проще и быстрее переписать тест с нуля. Все тесты мы поначалу разрабатывали параллельно на два фронта, для WebDriver и для RPF. Оказалось, что RPF в семь раз эффективнее для генерации и сопровождения тестов, чем Selenium или WebDriver. Показатели могли меняться, но это уже был хороший признак.

BITE использует RPF для записи сценариев при регистрации багов. Для некоторых сайтов BITE автоматически записывает все действия тестировщика, а когда инженер регистрирует баг с помощью BITE, к нему прикрепляется ссылка на сгенерированный сценарий воспроизведения. Для Google Maps, например, сохраняются все операции поиска и изменения масштаба. Если у разработчика установлен BITE, он может одним кликом запустить воспроизведение и посмотреть, что делал тестировщик, когда нашел баг. Если во время сеанса на сайте баг не заводился, то записанный сценарий самоуничтожается.

Слияние BITE с RPF
Джеймс Арбон

В первые дни тестирования Chrome OS мы обнаружили, что главное качество платформы – безопасность – сильно осложняет тестирование. Тестируемость часто конфликтует с безопасностью, а ведь в Chrome OS очень большой упор сделан именно на безопасность.

В ранних сборках еще была частичная поддержка виртуальных Java-машин (JVM) с ограниченной сетевой функциональностью и поддержкой других базовых библиотек. Так как основные сценарии пользователя основаны на просмотре веб-страниц, мы решили написать несколько тестов с использованием Selenium, чтобы проверить базовую функциональность браузера, и надеялись, что получится просто портировать все уже готовые тесты Selenium для регрессионного тестирования.

Простейшие тесты заработали, но радоваться было рано: мы столкнулись с отсутствием полноценной поддержки Chrome в Selenium и WebDriver. Вернувшись к работе после праздников, мы обнаружили, что из базовой ОС Linux исключили поддержку Java, чтобы повысить уровень безопасности Chrome OS. Конечно, это осложнило выполнение тестов на Java, но мы решили проблему, построив специальную сборку Chrome OS с встроенной поддержкой Java. Это, конечно, было обходное решение, и мы не были им довольны на все сто.

В Google часто говорят, что «дефицит приносит ясность». Это работает в мире тестирования, как нигде больше. Это сработало и для нас в тот момент. Хорошенько оценив ситуацию, мы поняли, что решение было так себе. По сути, мы не тестировали реальный продукт в том виде, в котором им будет пользоваться наш клиент. Мы строили образы Chrome OS, которые содержали Java, артефакты тестирования (jar-файлы), и отключали некоторые средства безопасности. Посмотрите на фотографию нашей лаборатории автоматизации тестирования ранних версий Chrome OS (рис. 3.41).

Рис. 3.41. Лаборатория тестирования ранних версий Chrome OS

Вскоре нужное решение пришло. Мы вспомнили про проект нашего коллеги По Ху по автоматизации тестирования веб-страниц с использованием JavaScript через расширения Chrome. Это могло сработать. Он назывался Puppet, и это был внутренний API, похожий на WebDriver и работающий только на JavaScript. Правда, из-за межсайтовых ограничений он должен был развертываться вместе с тестируемым веб-приложением. Мы рискнули поместить сценарий Puppet в расширение Chrome, чтобы оно работало для любых сайтов. И – о чудо! – установив только это расширение и сохранив тесты в облаке, мы смогли выполнять браузерные тесты в Chrome OS даже на компьютере Chromebook, только что купленном в магазине. Реализация этой идеи заняла бы у нас больше времени, чем у нас было до выпуска Chrome версии 1, и мы подвинули этот проект в список инструментов, которые нужно разработать к следующей версии.

Кстати, исходная версия BITE называлась Web Test Framework, или WTF, и нам сошло это с рук. Официально считалось, что сокращение происходит от названия, а не наоборот. А вот метод RPF изначально назывался Flux Capacitor, [58]58
  Деталь машины времени из фильма «Назад в будущее». – Примеч. перев.


[Закрыть]
так как она позволяла двигаться назад в будущее.

Ручные и исследовательские тесты в BITE

Мы в Google опробовали уйму способов распределения тестов между инженерами: от недружелюбного TestScribe до электронных таблиц совместного использования, где вручную вводились имена людей напротив тестов, которые они должны провести.

BITE поддерживает подписку тестировщиков на пакеты тестов в Google Test Case Manager для многих продуктов Google. Схема работы проста: когда тест-менеджер хочет начать серию тестов, он нажимает на кнопку на сервере BITE, и тесты доставляются участникам через пользовательский интерфейс BITE. К каждому тесту можно привязать URL-адрес. Если тестировщик принимает запрос на выполнение теста, BITE открывает URL-адрес в браузере и выводит тестовую страницу с последовательностью действий и критериями проверки. Всего одним кликом можно пометить тест как пройденный, после чего автоматически открывается URL-адрес для следующего теста. Если тест не проходит, это записывается в базу, и открывается интерфейс для создания баг-репорта.

Мы успешно опробовали этот метод на краудсорс-тестировщиках. Они выполняли тесты с установленным BITE, причем они и тесты получали через это приложение. Больше не нужно было пристально следить за работой тестировщиков и оперативно распределять между ними тесты – за нас все делал BITE. Те, кто быстро выполнял тесты, автоматически получали новые. Если тестировщик делал перерыв или прекращал работу, его задания просто передавались другому участнику команды. С исследовательским тестированием BITE тоже здорово помог: описание каждого высокоуровневого тура мы оформили как тест, после чего их распределили между тестировщиками, которые уже заводили баги с помощью BITE.

Уровни BITE

Как и любое приложение, внутренние проекты всегда нужно делать расширяемыми. В BITE есть возможность размещения произвольных сценариев и их внедрения в тестируемую страницу. То есть в архитектуре есть несколько логических уровней: один из них, к примеру, позволяет разработчику удалять элементы со страницы в поисках причины бага. Уровни могут включаться и отключаться со специальной консоли. Мы исследуем, какие еще полезные уровни можно добавить. Сейчас, например, мы работаем над включением сценариев от команды безопасности.

BITE был создан как универсальное средство помощи всем тестировщикам. Сначала его фичи были реализованы отдельными расширениями, но команда решила, что целое – это не просто совокупность частей, и мы потратили немало усилий на то, чтобы эффективно свести все воедино в BITE.

Как и в случае с другими экспериментами, команда надеется вскоре открыть доступ к проекту широкому сообществу тестирования.

Проект BITE был переведен на модель открытого кода (подробнее в приложении В). Первым техническим руководителем был Алексис О. Торрес; сейчас проектом руководит Джейсон Стредвик. С ним работают Джо Мухарски, По Ху, Дэниел Дрю, Джулия Ральф и Ричард Бастаманте, когда им удается выкроить минутку в своих текущих проектах. На момент написания книги некоторые внешние компании внедряли BITE в свою инфраструктуру. Сейчас мы работаем над добавлением поддержки Firefox и Internet Explorer.

Google Test Analytics

Несмотря на то что анализ рисков нужен разработке как воздух, этот процесс часто происходит как попало. Если данным вообще удается покинуть головы участников команды, то часто они просто фиксируются в таблицах. Что в этом плохого?

– У данных нет единой схемы, потому что каждая таблица создается под конкретную ситуацию. Данные нельзя связать между собой, а это очень неудобно, если вы следите за несколькими проектами.

– Простые, но важные вещи, например четырехбалльная шкала оценки и общая схема названий из ACC-анализа, порой теряются при попытках сократить количество полей в таблицах.

– Данные не хранятся централизованно, поэтому недоступны всегда и всем. Командам приходится запрашивать друг у друга информацию устно при каждой необходимости.

– Разработка скриптов, которые связали бы анализ рисков с метриками продукта, обычно обходится дорого, поэтому редко сочетается с таблицами.

Google Test Analytics (GTA) – наша попытка решить эти проблемы. В интерфейс GTA встроены методы ACC-анализа, это простое приложение упрощает ввод данных и работу с рисками. Все данные представлены по одной схеме – менеджеры и директора могут легко получить сводку рисков по всем своим проектам, чтобы перераспределить ресурсы в более опасные области.

Итак, GTA поддерживает модель анализа рисков ACC. Атрибуты и компоненты вводятся в простые формы и формируют таблицы (рис. 3.42 и 3.43), а интерфейс позволяет добавлять возможности в ячейки при планировании тестирования (рис. 3.44). Чтобы добавить риск, нужно просто выбрать частоту и степень воздействия из выпадающих списков для каждой возможности. Все эти значения сводятся в общую витрину рисков. Итоговый риск для каждой области (рис. 3.45) считается простым усреднением рисков по ней. [59]59
  Да, получается, что одна способность выского риска может потеряться в темном лесу других, менее рискованных. Это редкая ситуация, но мы умышленно создавали очень простой инструмент, помогающий думать, а не полностью работающий за вас.


[Закрыть]

Рис. 3.42. Test Analytics: ввод атрибутов для Google+

Рис. 3.43. Test Analytics: ввод компонентов для Google+

Рис. 3.44. Test Analytics: ввод возможностей в ячейке. Обратите внимание: вводится количество возможностей на пересечении, а не величина риска

Рис. 3.45. Test Analytics: карта рисков для Google+

Возможность связать расчет рисков с текущими данными проекта – это опциональнаяэкспериментальная возможность GTA. Вы добавляете новые тесты, пишете новый код, находите новые дефекты, и оценка риска меняется. Как инженеры по тестированию, мы и так всегда держали все эти изменения в голове, эта фича просто позволяет опираться на фактические данные и делать это более системно. Тест-планы, даже основанные на рисках ACC, часто хороши в начале планирования тестирования. Но скоро они могут устареть и покрыться пылью. Хотя в GTA всегда можно внести любые изменения при получении любых новых данных, мы хотим автоматизировать и эту сторону планирования тестирования.

Пока GTA умеет связывать свои данные только с нашими внутренними базами, но мы работаем над избавлением от этой зависимости в будущем. Работая с возможностями в GTA, тестировщики могут ссылаться на секции или запросы в багтрекинговой системе, ветку кода или номер тест-кейса. В Google все используют одни и те же базы, поэтому это работает. Как только метрики багов, кода или тестов меняются, запускаются простые подсчеты и риски пересчитываются. Сейчас несколько команд разработки испытывают этот метод на себе.

Правила расчета, которые мы используем, постоянно меняются, поэтому мы их не будем здесь приводить. По сути, они показывают, как изменилось число багов, строк кода, прошедших и упавших тестов к завершению оценки рисков. Мы учитываем то, что у разных команд разные подходы, ведь некоторые заносят даже мельчайшие баги или по-другому измеряют свой код. Каждый компонент риска масштабируется в рамках условий проекта. Посмотрите примеры связей данных с рисками для Google Sites на рис. 3.46–3.48.

Рис. 3.46. Test Analytics: связь источников данных с риском

Рис. 3.47. Test Analytics: связанные тесты

Рис. 3.48. Test Analytics: связанные баги

Легко не заметить одну очень важную функцию в GTA: тестировщики могут быстро превратить список возможностей в серию тестов. Команды очень просили добавить именно эту фичу. Смысл в том, что возможности – это простой список высокоуровневых тестов, который нужно прогнать перед выпуском программы. Для маленьких команд, которые фокусируются на исследовательском тестировании, например как команда Google Docs, этот список можно легко использовать вместо базы данных тестов.

В GTA используется матрица ACC-анализа, и это дает тестировщикам кардинально новый подход. Обычно тестовые серии или задания на разработку тестов назначаются по компонентам. ACC позволяет распределять тестировщиков по атрибутам. Наши эксперименты показали, что такой фокус работает лучше всего. Если за тестировщиком закрепить атрибут «быстрый» для всего набора тестов, то он может оценить, насколько быстро работают все интересующие компоненты продукта за одну серию тестов. Так можно выловить медленные компоненты, которые при независимом тестировании могли прикидываться достаточно быстрыми.

Что же со связями и зависимостями между рисками разных проектов? В GTA эта фича пока не реализована. Каждый проект делает свой ACC– анализ и оценивает риски только для своего проекта, без учета других проектов компании. Если кто-то хочет проанализировать риски нескольких продуктов сразу, ему нужно нормировать данные между проектами, чтобы смотреть на них в совокупности. Только то, что ваша маленькая команда работает над внутренним инструментом, не значит, что у вас не может быть максимальных значений рисков. Оставьте относительность тем, кто видит много проектов сразу. Когда оцениваете риск для своего проекта, оценивайте его так, как будто ваш проект – единственный в компании. В нем вполне могут быть часто срабатывающие риски с высокой степенью воздействия.

Сейчас проект GTA используется еще в нескольких компаниях, и мы хотим сделать GTA общедоступным продуктом с открытым кодом. Мы хотим, чтобы другие команды тестирования могли устанавливать у себя свои системы на движке Google App Engine или даже портировать код и разворачивать на других платформах.

GTA делает анализ рисков настолько простым и удобным, что люди действительно им пользуются. Джим Рирдон вырастил GTA с нуля и сейчас поддерживает его в опенсорсе (подробнее об этом мы рассказываем в приложении В). На момент написания книги несколько больших компаний, занимающихся облачным тестированием, хотят интегрировать эту технологию в свои рабочие процессы и инструменты. [60]60
  Одной из таких облачных компании является Salesforce. Фил Валигора из SalesForce.com занимается интеграцией GTA во внутренний инструментарий.


[Закрыть]
И еще около 200 внешних инженеров записались на использование GTA.


    Ваша оценка произведения:

Популярные книги за неделю